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Steady simulations were performed to investigate tip leakage flow and heat transfer 

characteristics on the rotor blade tip and casing in a single stage gas turbine engine. A 

typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The 

predicted isentropic Mach number and adiabatic wall temperature on the casing showed 

good agreement with available experimental data under similar operating condition. The 

present numerical study focuses extensively on the effects of tip clearance heights and rotor 

rotational speeds on the blade tip and casing heat transfer characteristics. It was observed 

that the tip leakage flow structure is highly dependent on the height of the tip gap and the 

speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just 

around the corner of the pressure side of the blade tip. This region of re-circulating flow 

enlarges with increasing clearance heights. The separated leakage flow reattaches 

afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface 

heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is 

induced by the relative casing motion, is found to influence significantly the blade tip and 

casing heat transfer distribution. A region of critical heat transfer exists on the casing near 

the blade tip leading edge and along the pressure side edge for all the clearance heights that 

were investigated. At high rotation speed, the region of critical heat transfer tends to move 

towards the trailing edge due to the change in inflow angle. 

Nomenclature 

C = chord at the blade tip, m 
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Cx = axial chord at the blade tip, m 

h = heat transfer coefficient, 













inorw TT

q
h

,
 

, W/m
2
K 

i = incidence angle, 0
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PS = pressure side 

SS = suction side 

Nu = Nusselt number, 
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kt = fluid thermal conductivity, W/m K 

q = heat flux, W/m
2
 

ty = blade thickness, m 

T = temperature, K 

T0,in = vane inlet total temperature, K 

V = absolute velocity 

Vbl = rotational speed of rotor blade, r 

W = relative velocity 

x = axial coordinate, m 

y = Cartesian coordinate oriented along the circumferential direction, m 

y
+
 = nondimensional wall distance, uyp/ 

z = Cartesian coordinate oriented along the radial direction, m 

 = angle of absolute rotor inlet velocity vector 

 = angle of relative rotor inlet velocity vector 

 = density, kg/m
3
 

 = angular velocity 

 

Subscript 

w = wall condition 

o = total  
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r = rotor 

in = inlet 

Superscript 

0 = zero incidence or design point 

+ = positive incidence 

- = negative incidence 

I. Introduction 

URBINE inlet temperature is continuously increasing to increase efficiency and power of modern gas turbine 

engines Consequently, turbine components are subjected to high thermal loads. The heat load is not uniform but 

rather concentrated in certain critical regions on turbine components. The turbine blade tip clearance region is one 

critical region that experiences a high thermal load. Blade tip leakage flow occurs as a result of the pressure 

difference between the pressure and suction surfaces of the blade, and enhances heat transfer on the blade tip and 

casing. 

Many experimental and numerical studies have been conducted to explore the details of the aerodynamics and 

heat transfer inside the turbine blade tip clearance. Unfortunately, due to the geometric complexity of the tip 

clearance and limitations in current measurement techniques, it is very difficult to capture accurate data in the tip 

gap region. Turbine linear cascades have been mainly used to study the fundamental characteristics of the tip 

leakage flow and the heat transfer on blade tip and casing, disregarding the rotational effect on the flow structure 

and heat transfer. 

Ameri et al. (1998) conducted a numerical study of rotor heat transfer and stage efficiency for the GE-E
3
 turbine 

blade. Three different configurations of the squealer tip geometry were investigated. Simulations were performed 

using the CFD code, TRAF3D.MB, designed for flows in complicated geometries. The computational grid consisted 

of hexahedral structured elements and a C-type grid around the airfoil surface. The speed of the rotor was set to 

8450 RPM. The heat transfer analysis was conducted for a constant wall temperature (70% of the inlet total 

temperature). Flow separation appeared on the pressure side rim of the squealer cavity at 20% and 40% of the chord 

distance. A small vortex appeared near the pressure side cavity and a flow circulation zone was observed within the 

cavity space. The flow circulation zone blocks the flow in the tip clearance region, thereby, reducing the mass 

T 
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transfer through the gap.  Heat transfer distribution on the tip surface was also investigated and a higher heat transfer 

region near the pressure side of the flat tip surface was observed, and was attributed to leakage flow reattachment. 

Tallman and Lakshminarayana (2001a) numerically studied the effect of the tip clearance height on the tip 

leakage flow in a linear cascade. 3D Navier-Stokes code with standard k- turbulence model was used. A high 

resolution H-grid was used with appropriate clustering near the wall (y
+
 < 10). The clearance heights were 2.5% and 

1% of the blade span. It was found that reducing tip clearance decreases greatly the mass flow rate through the gap, 

reduces the size of the leakage vortex and results in lower aerodynamic losses. The impact of the rotating relative 

motion of the turbine casing on the tip leakage flow was also investigated (Tallman and Lakshiminarayana, 2001b). 

It was found that a developed shear layer at the wall, reduces the mass flow rate, and increases the flow blockage. 

Aerodynamic losses were higher due to the additional near-casing secondary flow. 

A detailed experimental study of the heat transfer coefficient distribution on a gas turbine blade was conducted 

by Teng et al. (2001). A five-blade linear cascade was used in a low speed wind tunnel facility. Mainstream exit 

Reynolds Number was measured to be 5.3×10
5
. Three different tip clearance heights were investigated namely, 

1.1%, 2% and 3% of the blade span. A critical region of high heat transfer was found at the mid chord of the blade 

tip surface near the pressure side, where a major pressure-driven leakage flow existed. Low heat transfer coefficients 

were obtained between the leading edge and the front of the suction side due to the entrance effect and the adverse 

pressure gradient on the mid-chord region of suction side tip. Larger tip gaps resulted in a higher overall heat 

transfer coefficient. 

Mumic et al. (2004) conducted a numerical study of the leakage flow and heat transfer in the tip region for 

clearance heights of 1%, 1.5%, and 2.5% of the blade span. The total pressure and temperature at the rotor inlet were 

specified as 129.6 kPa and 297 K, respectively, and a pressure ratio of 1.22 was imposed across the blade. The 

uniform wall temperature of 350 K was used for heat transfer measurement.  The overall heat transfer coefficient 

increased due to the increase in tip leakage flow velocity as the tip gap clearance increased. The flat tip heat transfer 

coefficient for reaches a peak value at mid-chord region along the pressure side due to leakage flow reattachment. 

Key and Arts (2006) experimentally compared turbine tip leakage flow for flat and squealer tip geometries under 

high speed conditions. Flow visualization techniques helped analyze tip leakage flow structure in the tip gap and 

over the suction surface of the blade. Pressure ratio and tip flow velocity levels increased with increasing Reynolds 

number for the case of flat tip geometry. The highest pressure gradient across the blade tip occurred at around 6 to 8 
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percent of the axial chord. A pressure side separation vortex appeared at the tip of the blade in the case of a flat tip 

geometry, while no flow separation was present in the case of a squealer tip.  

Newton et al. (2006) investigated the heat transfer and aerodynamics in a five-blade cascade for three different 

blade tip geometries; flat, suction side squealer and cavity squealer. Two tip clearance heights were also 

investigated; 1.6% and 2.8% of the blade span. Exit Reynolds number based on exit velocity and chord was 

measured to be 2.3×10
5
. For a flat tip, flow separated near the pressure edge and reattached on the tip surface. Heat 

transfer coefficient was measured on the suction surface and was found to be higher where the leakage vortex 

attaches on the suction surface. 

The effect of tip clearance height and tip geometry on heat transfer and pressure losses was studied by El-Gabry 

(2007) numerically for an un-cooled gas turbine blade tip. The impact of blade tip geometry on the heat transfer 

distribution was investigated using three tip geometries namely, plain tip, full perimeter and partial perimeter 

squealer. A three-dimensional, compressible flow code named TACOMA was used. Three clearance heights equal 

to 1.25%, 2% and 2.75% of the blade span were also investigated. Numerical results showed that increasing the tip 

clearance increases the near tip pressure loading and consequently increases the tip leakage flow and the overall total 

pressure drop from the inlet to the exit of the blade. Increasing the tip gap increases the blade tip surface heat 

transfer for all three geometries. However, the relative motion of the rotor casing was disregarded. 

From the above literature, the following key points could be summarized: 

 Leakage flow separates near the pressure side edge and then reattaches on the tip surface, resulting in higher 

surface heat transfer.  

 The leakage flow mass transfer rate and the size of the leakage vortex are dependent on the tip clearance 

height. A larger clearance height allows higher mass transfer rates and results in a larger leakage vortex. 

 Higher tip leakage mass flow rate enhances the heat transfer on the blade tip and casing surfaces, since flow 

velocity increases with increasing temperature. 

 The relative motion of the casing develops a boundary layer at the wall that opposes the leakage flow and 

reduces the strength of the leakage vortex. 

Tip leakage flow is significantly affected by tip geometry and strongly related to heat transfer on the casing and 

blade tip surfaces. Both numerical and experimental studies were conducted using simplified flow conditions, such 

as, stationary blade, low pressure ratio, and low inlet temperature. Both steady and unsteady simulations of blade tip 
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leakage flow in a single stage gas turbine were performed by Phutthavong et al. (2008a, 2008b) using a non 

commercial CFD solver called Nistar. The shear stress transport (SST) k  turbulence model was selected in 

order to capture the flow characteristics in the tip gap region. CFD code validation and time-averaged simulations 

were presented in the first part, while the second part consisted of a time dependent and parametric study. In the 

present study, the former work is extended to include an investigation of heat transfer characteristics on the casing 

and tip surfaces associated with the tip leakage flow structure. The first part of the present study investigates the 

impact of tip clearance height and rotor speed on the heat transfer characteristics of the turbine blade tip and casing. 

The second part (Rahman et al. 2014) investigates stator-rotor interactions and their impact on the heat transfer 

characteristics. 

II. Computational Details  

Chana and Jones (2003) conducted an experimental study of turbine tip and casing heat transfer, using the 

Isentropic Light Piston Facility (ILPF) to test the MT1 turbine. The MT1 is a full-size, high-pressure, un-shrouded, 

one-stage research turbine. In the authors’ research group, a full-size single stage gas turbine was modeled 

(Phutthavong et al., 2008a) based on the available limited information of the MT1 turbine (especially, the blade tip 

geometry in Chana and Jones, 2003). The turbine geometry is not identical to that of the MT1 turbine but its length 

is close to that of Chana and Jones (2003). The pitch angle was set to 12° for both the rotor and the stator to achieve 

an equal periodic angle. The turbine stage consisted of 30 vanes and 60 blades as opposed to 32 vanes and 60 blades 

in the MT1 turbine. The present study uses the same model as the one by Phutthavong et al. (2008). For comparison 

purposes, the boundary and operating conditions were based on the experimental works of Chana and Jones (2003) 

(see Table 1). A total pressure of 4.6 bars and a total temperature of 444 K were specified at the inlet of the stator 

domain, while a static pressure of 1.46 bar was set at the rotor domain outlet to achieve a value of static pressure at 

the blade exit as close as possible to the experimental one. A constant wall temperature boundary condition (Tw = 

222 K) was imposed on the entire surface to compute the wall heat flux. 

The present study uses a commercial CFD (Computational Fluid Dynamics) solver named ANSYS
®
 CFX

®
 R.11. 

High resolution second order central difference scheme was used to discretize the equations for the flow, turbulent 

kinetic energy, and specific dissipation rate. Krishnababu et al. (2007) generated numerical predictions for tip 

leakage flow and heat transfer using ANSYS CFX solver and different turbulence models: k , k , and SST 

k  models. They found that the SST k  model shows the best agreement with experimental data. Hence, the 
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present study uses the SST k  turbulence model for turbulence closure. Ideal gas air was used as a working fluid. 

Gas properties (i.e. thermal conductivity, dynamic viscosity and specific heat at constant pressure) were set to be 

linear functions of temperature. 

The computational domain consists of one vane and two rotor blades as shown in Fig. 1. The grid was generated 

using ANSYS
®
 ICEM CFD

TM
 grid generation tools. An unstructured tetrahedral grid with proper attention to the tip 

clearance region including blade tip and casing surfaces was adopted as shown in Fig. 2 for different cross-sectional 

planes. Grid clustering near the wall was performed by introducing prism layers to ensure sufficient number of cells 

within the tip clearance region. 

Steady simulations were performed using the ANSTS CFX ‘Stage model’ option at the stator-rotor interface and 

allowed to run up to 500 iterations to reach at least three orders reduction of the residuals for continuity, momentum, 

heat transfer, and turbulence equations. Convergence of different parameters such as mass flow rate, total pressure, 

and static pressure at different locations of the domain were also monitored and remained constant over this large 

number of iterations. The ‘Stage model’ option in ANSYS CFX performs a circumferential averaging of the fluxes 

at the upstream side of the interface between the stator and rotor, then applies them as inlet boundary conditions to 

the rotor at the downstream side. All simulations were performed in a parallel processing environment which 

consisted of 10 processors on the High Performance Computing cluster system at Concordia University. 

Computation time was approximately 11 hours to achieve a converged steady-state solution within 500 iterations. 

III. Comparisons and Grid Test 

Numerical results obtained were compared with experimental data. The turbine length, blade chord, blade profile 

at the tip and root are same as those of Chana and Jones (2003). Boundary and operating conditions, based on the 

test conditions of Chana and Jones (2003), have been applied in this simulation (please refer to Table 1). The turbine 

inlet temperature and the rotor rotation speed are adopted from their experiments (Table 1). The isentropic Mach 

number at the stator exit casing and hub and the rotor inlet relative total pressure were compared with the 

experimental data (Table 2). Although the stator comprises 30 vanes, instead of 32 vanes, the present modeled vane 

has a larger exit angle and a narrower throat area (comparison of vane profiles at mid span). Hence, Mach number at 

vane exit is larger than that measured by Chana and Jones (2003). 

One unsteady simulation was performed with an adiabatic wall condition. The predicted time averaged adiabatic 

wall temperatures on the casing surface were compared to experimental data as depicted in Fig. 3. The falling of the 
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adiabatic wall temperature at a fixed row of gages showed how the work extraction is distributed through the rotor 

passage. The predicted temperature distribution seems reasonable knowing that the experimental uncertainty of the 

adiabatic wall temperature was assessed to be ±5 K. The pressure distributions on the vane and blade mid span are 

plotted in Fig. 4 and compared with available experimental (Hilditch et al., 1996) and numerical (Roux et al., 2001) 

data. Hilditch et al. (1996) and Roux et al. (2001) performed aerothermal measurements and predictions on NGV of 

the MT1 turbine. The test conditions were identical to those in the work of Chana and Jones (2003). The predicted 

location is slightly shifted to the trailing edge (Fig. 4a). In the present study, this trailing edge shock is under 

predicted with higher discrepancies (Fig. 4a) that might be attributed to the reflection of the vane trailing edge shock 

from the neighboring vane. When the flow enters the rotor section, it flows with a higher positive flow incidence 

caused by the stator vane, resulting in a high pressure gradient at the suction side of the leading edge, normal to the 

airfoil surface. As a result, the flow is separated from the blade wall at the suction side near the leading edge (Fig. 

4b). The discrepancies in pressure distributions are not significant at all other locations. It was concluded that the 

gas turbine flow and heat transfer characteristics under the current operating conditions, representative of real 

engines conditions, can be well simulated using the present methodology. 

 Grid independence tests were conducted before obtaining any results, following two approaches. Firstly, 

pressure distributions at the rotor mid span were compared for one fine and one coarse grid of about 4×10
6
 and 

2.8×10
6
 cells in the rotor domain, respectively. The two grids yielded very similar results. The percent difference 

between the static pressure values was less than 3%. Secondly, the velocity and temperature profiles in the tip region 

were compared for different number of cells in the tip clearance region (e.g. 20, 35, 45, 60 cells in radial direction, 

Fig. 5). Grids with 45 cells and 60 cells in the tip clearance yielded very similar results for both velocity and 

temperature profiles. Consequently, all analysis in the current study uses a coarse grid with 45 cells in the tip region, 

and the average y
+
 on the tip and casing surfaces is less than 10.  

IV. Results and Discussion 

Details of heat transfer distributions on the blade tip and casing, associated with tip leakage aerodynamics in the 

blade tip clearance region are discussed in the subsequent sections. A tip clearance of 1.2 mm, a uniform inlet total 

temperature of 444 K, and a rotational speed of 9500 RPM were imposed for the Baseline case. The test matrix of all 

cases is shown in Table 3. The effects of clearance height were investigated by considering three gap sizes of 0.6 

mm, 1.2 mm, and 2 mm (1.5%, 3%, and 5% of the blade span, respectively). Similarly, the effect of rotor rotational 
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speed on the leakage flow structure and its influence on the heat transfer distributions was investigated by 

considering three different rotor speeds namely 9500 RPM (off-design; 76% of design speed), 12500 RPM (design 

speed), and 15500 RPM (off-design; 124% of design speed). Typical rotating speeds of gas turbines range between  

-30% and 20% of the design speed (Krieger et al., 1999). The lower rotor speed (9500 RPM) corresponds to the 

experimental reference, the same interval was applied to obtain the higher speed (15500 RPM). Leakage flow 

structure variation is significantly affected by clearance heights and rotational speeds (incidence angle), and 

influences the distribution of heat transfer rate. The present study focuses extensively on the aerodynamics and heat 

transfer characteristics. It is to mention that all results are presented in a rotating frame of reference. 

Typical flow structure taking place in the tip clearance region was sketched in Fig. 6a. The no slip condition on 

the blade tip and the constant relative motion of the casing in a direction opposite to that of the tip leakage flow 

create a complex tip clearance viscous flow field. Leakage flow entering the tip gap from the pressure side with 

sudden change in area and direction causes flow separation (SB) from the blade tip surface. Leakage flow then 

reattaches on the tip surface (LR) beyond SB. The outer casing velocity Vcasing shears the outer edge of the tip 

leakage flow in the gap. It follows that there must be a stagnation line S1-S2 on which the velocity is zero. The 

relative flow (RR) with respect to the blade tip is reversed near the casing. The relative casing motion is 

communicated to the leakage flow via viscous and turbulent diffusion process. Moreover, the relative casing motion 

may help in reducing the tip leakage mass flow rate and momentum by shearing it in its opposite direction (Arts, 

2004). 

Figure 6b presents a 3-D view of path lines to help visualize the complex tip leakage flow structure. Path lines of 

the fluid particles are originated from two distinct locations. The first location is in the tip region where flow 

separates near the pressure side edge. The recirculating flow near the pressure side moves downstream with swirling 

motion along the tip surface. In all cases, this recirculation (SB) zone is observed on the blade tip surface. However, 

the strength and size of SB vary with operating and geometry conditions. The second location is taken from the 

passage flow near the casing. It shows a relative reverse flow (RR) near the casing and a vortical flow. The vortical 

flow moves downstream with a vortical mixing between RR and tip leakage flow, called the secondary reversed 

leakage vortex (SRLV). The strength of RR is fully dependent on the rotor speed. The details of the effect of the 

clearance height and rotor speed on the leakage flow structure and heat transfer are presented in the following 

sections. 
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A. Effect of the Tip Clearance Height 

The variation of the tip leakage flow structure with clearance height is shown in Fig. 7 as streamlines. Since the 

casing and the tip leakage flow have mainly circumferential motions with opposing directions, the circumferential 

flow variation in the tip clearance region can be used to see their interaction. Tangential velocity profiles at several 

locations across the blade tip at 25% axial chord plane are plotted against the clearance height in Fig. 8. Separation 

bubble (SB) is an important flow phenomenon associated with the leakage flow and heat transfer. It results in a low 

pressure region on the blade tip surface near the pressure side, and obstructs the leakage flow attachment on the tip 

surface. The negative velocity near the blade tip surface in the vicinity of the pressure side, representing SB, can 

also be seen in Fig. 8. The height of SB increases with the size of the tip gap (Figs. 7 & 8). As the clearance height 

increases, the area of SB also enlarges. Leakage flow reattachment (LR) on the tip surface occurs around 

yty / 25% and 40% in xCx / 25% plane for Case 1 (0.6 mm) and Baseline (1.2 mm), respectively. At Case 2 (2 

mm), leakage flow reattaches at about yty / 70% from the pressure side edge at xCx / 25% plane. LR increases 

the surface pressure and reduces the boundary layer thickness. Thus it is expected to have higher heat transfer at LR 

region. 

It is also seen that the relative reverse flow (RR) is outstanding near the suction side. It restricts the leakage flow 

near the blade tip surface in the vicinity of the suction side. The effect of RR is gradually diminishing from suction 

side to pressure side, where it encounters the tip leakage flow from the pressure side. Under the same operating 

condition, the leakage flow velocity increases with the clearance height, thus mass transfer rate through the tip gap 

increases. The rate of RR also increases with the clearance height. However, it decreases in Case 2 because the 

leakage mass flow rate increases but the viscous effect on the casing remains invariable at the same rotation speed. 

The tip leakage flow, passing through the tip clearance, creates a tip leakage vortex along the suction side of the 

blade, causing significant aerodynamic losses by changing the rotor passage flow momentum. In Case 1, the tip 

leakage flow is too weak to generate a tip leakage vortex (see Fig. 8), whereas the tip leakage vortex becomes 

significant as the clearance height increases. 

Figure 9 shows contours of Nusselt number on the casing for different clearance heights. The higher Nusselt 

number region is seen around the pressure side edge. Nusselt number is maximum near the blade leading edge and 

then decreases gradually. This higher heat transfer region coincides with the region where the blade loading driven 

tip leakage (BLL) of higher temperature from pressure side conflicts with the casing along the pressure side edge. It 



11 

 

is also observed that the Nusselt number is low in the region near the suction side of the blade, where the tip leakage 

flow is detached from the casing by RR (see Figs. 7 and 8). Nusselt number distributions on the blade tip surface are 

presented in Fig 10. Near the pressure side edge, heat transfer rate is lower indicating the region of flow 

recirculation on the tip surface for all cases (see Fig. 7). For 2 mm height, Nusselt number near the suction side, 

between 20% to 60% of the chord, is higher caused by the leakage flow reattachment beyond the flow separation 

region (Fig. 7). However, at smaller clearance heights, the region of low heat transfer rate appears again beyond the 

leakage flow reattachment region where the heat transfer rate is high. At all clearance heights, the heat transfer rate 

on the tip surface becomes the minimum value near the trailing edge because of leakage flow lift off and the 

coverage of recirculating flow. 

Nusselt number distributions on the casing circumference (lines without symbol) are plotted for different 

clearance heights at x/Cx=25% in Fig. 11. Nusselt number on the casing is highest near the pressure side edge, as 

discussed earlier, and rapidly decreases along the circumferential direction. And then, it remains relatively low 

beyond locations of yty / 15%, 20% and 75% for 0.6 mm (Case 1), 1.2 mm (Baseline), and 2.0 mm (Case 2) 

heights, respectively. It can be attributed to RR coverage on the casing in this region (see Fig. 8). Figures 7 & 8 

show that Case 1 has a weaker RR (lower velocity) coverage and SRLV close to the pressure side in the tip 

clearance region in comparison with Baseline case. The fluids inside the tip gap are fully mixed through SRLV, so 

the effect of RR coverage is not identified in temperature profiles in Fig. 12. Hence, Case 1 has a higher Nusselt 

number in this region (beyond yty / 20%) than the Baseline case (Fig. 11). The area of RR coverage is small for 

Case 2 due to the higher mass flow rate leakage flow. In this case, there is no SRLV in the tip region (Fig. 7c). This 

is the reason why Case 2 has larger distribution of high Nusselt number on the casing above the blade tip, up to 

around yty / 60%, as opposed to the cases with smaller tip gaps (Fig. 11). 

Figure 11 also shows Nusselt number distributions (lines with symbols) along the circumferential line on the 

blade tip surface at x/Cx=25% for different clearance heights. Case 1 and Baseline have the same pattern of Nusselt 

number distributions. The low Nusselt number region, caused by SB, exists near the pressure side edge. Beyond this 

region, Nusselt number reaches a maximum due to LR on the tip surface. SRLV enhances the mixing between the 

tip leakage flow and RR in the tip clearance region (see Figs. 8 and 12). Therefore, heat transfer rate decreases again 

toward the suction side in Case 1 and Baseline case. However, the Nusselt number continuously increases from 

pressure side to suction side in Case 2, in contrast with the other cases. This is attributed to a larger SB from the 
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pressure side edge and LR close to the suction side edge without SRLV in the tip region (Fig. 7c). The key elements 

of the tip leakage flow structure such as, SB, RR and SRLV reduce the mass flow rate of tip leakage flow and the 

heat flux on the tip and casing. The size and position of them depend on the clearance height. Optimum height and 

tip geometry for maximizing the effect of RR, SB and SRLV could minimize the tip leakage loss and the thermal 

load on the tip and casing. 

B. Effect of the Rotational Speed 

To understand how the rotational speed alters the velocity triangle at the inlet of a rotor blade passage at off-

design conditions, the velocity triangle and incidence angle are presented in Fig. 13a. Velocities V and W are the 

absolute and relative velocities, respectively. Vbl is the rotational velocity of the rotor blade, r (r=radius, =angular 

velocity). The superscripts of “–”, “0”, and “+” indicate negative, zero and positive incidences, respectively. The 

incidence angle, i, is defined as )( 0

11   . Positive incidence means that the relative inlet flow angle, 1 is larger 

than the blade inlet angle, 0

1 . The flow path through the tip clearance region at different rotor speeds is also 

presented in Fig. 13 with streamlines originating from the same circumferential line upstream the rotor blade. The 

flow incidence angle changes from positive (Fig. 13b) to negative (Fig. 13d) with respect to rotor speeds. The blade 

tip region is covered by the blade loading driven tip leakage flow (BLL) from the pressure side when the rotor has a 

positive incidence angle (Baseline case, 9500 RPM). In this case, the most of BLL has a normal direction to the 

blade profile of pressure side edge. As a result, the separation bubble (SB) occurs along the pressure side edge (see 

Fig. 14a). In contrast to Baseline, the suction side tip leakage from leading edge incidence flow (SSL), mainly 

covers the upstream parts of the tip clearance region (near the leading edge) for Case 4 (15500 RPM; negative 

incidence). Therefore, SB near the pressure side edge becomes very small (see Fig. 14c) and not dominant up to 

70% of axial chord. The small SB occurs near the leading edge and the suction side due to the negative incidence of 

SSL in Case 4 (see Fig. 17). The effect of rotational speed on the variation of the tip leakage flow structure for 1.2 

mm clearance height is illustrated by using 2-D velocity vectors in Fig. 14. The relative reverse flow (RR) near the 

casing is significant and dominates in the tip clearance region as the rotation speed increases, because the effect of 

the relative casing motion increases with the rotation speed. It is also attributed to the change of flow incidence 

angle depending on the rotation speed. Leakage flow characteristics inside the tip gap are similar between Baseline 
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and Case 3 (12500 RPM) (Figs. 14a, b). However, when the rotor runs with a negative incidence (Case 4), the 

leakage flow structures and heat transfer distribution are very different from those in other cases. 

To look into the effect of turbine rotational speed on its operating conditions, Table 4 is presented. It is seen that 

the change of speed causing the flow velocity and temperature change is obvious. However, it is important to check 

whether it has significant effect on the heat transfer and turbine performance. Effect of the increased turbine rotating 

speed on heat transfer into the blade tip and casing for the steady-state simulations can be seen in Table 5. When the 

turbine speed increases to 12500 RPM, the area-averaged heat fluxes on the casing decrease by 1.47%. However, 

there is a significant decrease of 12% of heat flux seen on the blade tip. As a result, blade material, more particularly 

the tip region, will require more cooling capacity to keep the same material temperature. Furthermore, the maximum 

heat flux on the casing is observed on the casing at 9500 RPM. The comparison of the turbine performance is also 

summarized in Table 6 for the cases of 9500 RPM and 12500 RPM. At a higher speed, both the total-to-total and 

total-to-static isentropic efficiency increased by 3.2% and 3.5%, respectively. 

The Nusselt number distributions along the casing circumference are presented in Fig. 15 for the different rotor 

speeds. The effect of RR and flow incidence on heat transfer onto the casing with varying rotation speeds is well 

shown in Fig. 15. BLL is shifting toward the trailing edge due to the increase of SSL with the rotor speed (Fig. 13). 

As a result, the critical region of high heat transfer rate, caused by BLL along the pressure side edge, moves toward 

downstream trailing edge with increasing rotor speed. In Case 4, RR takes more space inside the tip gap because the 

effect of the relative motion on the casing is significantly strengthened. Therefore, the low heat transfer rate region 

due to RR coverage near the suction side is enlarged with the rotor speed. At 25% axial chord, the maximum Nusselt 

number of Baseline case (positive incidence) increases 20% from that of Case 3 (design speed). For a higher rotation 

speed (Case 4, negative incidence), the Nusselt number distribution at 25% axial chord is flattened, because the 

entire area is covered by the negative incidence flow (SSL) and RR (see Figs. 13c and 14c). In Case 4, Nusselt 

number is reduced by 20% from that of Case 3. The critical region of high heat transfer in Case 4 appears near the 

trailing edge where the Nusselt number increases 3% and 32% from Case 3 and Baseline, respectively. 

Nusselt number distributions on the blade tip surface for different rotor speeds are presented in Fig. 16. In Case 

3, there is a low Nusselt number region near the pressure side edge and trailing edge due to SB, and a high Nusselt 

number region because of LR (Figs. 10b and 16a). In Case 4, the heat transfer distribution is different from those of 

lower speed conditions due to different leakage flow structure. A higher Nusselt number region is presented near the 
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leading edge (Fig. 16b). A low Nusselt number region occurs in the intermediate region between 20% to 40% axial 

chord. This is attributed to the complex flow field and SRLV mixing of BLL from the pressure side, upstream SSL, 

and RR. Point A is located near the leading edge and has a higher Nusselt number, Point B is about 30% axial chord 

and near the pressure side (Fig. 16b). As mentioned earlier, in Case 4, a small recirculation zone in the streamwise 

direction occurs near the leading edge due to SSL, (negative u of A in Fig. 17). This inlet flow of SSL has a higher 

temperature profile (at point A in Fig. 18). The leakage flow of BLL from the pressure side starts occurring beyond 

20% axial chord (Fig. 17). Eventually, SRLV is formed around 20% to 40% axial chord region, and leaves toward 

the blade suction side. It results in a low Nusselt number region along this SRLV passage. Beyond this region, the 

BLL occupies the tip surface. The tip leakage flow structure variations with the rotation speed have been observed 

with the heat transfer characteristics on the tip surface and the casing. As the incidence angle decreases from 

positive to negative values, the dominant tip leakage flow is changed from BLL to SSL. It contributes not only to the 

change in position and size of SB, RR and SRLV, but also to the variation of the critical heat transfer region. The 

relation between the heat transfer distribution and the incidence angle should be considered in turbine blade twist 

angle optimization. 

V. Conclusions 

Steady simulations were performed to investigate the relation between tip leakage flow pattern and the heat 

transfer distributions on the casing and blade tip surface. A high pressure ratio single stage turbine model was 

adopted in this study. The effect of different clearance heights and rotation rates of the blade were studied for both 

leakage flow aerodynamics and heat transfer. This work will assist the designer to identify the region of high 

thermal load on the tip surface and the casing with two major parameters such as tip clearance height and rotor 

rotation speed. The current analysis findings could be summarized as follows: 

1. Tip leakage flow structure is highly dependent on the heights of the tip gap as well as rotor speeds. Flow 

separation (SB) occurs near the pressure side edge of the blade tip for all clearance heights. Low heat transfer 

rate is observed in the SB region. 

2. The tip leakage flow reattachment (LR) on the tip surface tends to move towards the suction side as the 

clearance height increases. This LR contributes to the blade tip surface heat transfer enhancement. 

3. The critical region of high heat transfer on the casing exists above the blade tip leading edge and along the 

pressure side edge at all clearance heights. However, at high rotation speeds it tends to move downstream 
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towards the trailing edge due to the change in flow incidence and the enhanced effect of casing relative 

motion. 

4. The maximum Nusselt number on the casing, in the Baseline case (24% lower speed), increases by 20% 

compared to Case 3 (design speed). For Case 4 (24% higher speed), the Nusselt distribution is flattened, 

because the entire area is covered by the relative reverse flow (RR). The maximum Nusselt number reduction 

is about 22% of that in Case 3 at 25% axial chord plane. The critical region of high heat transfer for Case 4 

appears close to the trailing edge where the Nusselt number on the casing at 75% axial chord plane increases 

3% than Baseline case. 

5. When the rotor speed increases, the suction side tip leakage from leading edge incidence flow (SSL) results 

in a higher Nusselt number in the blade tip leading edge region. The blade loading driven tip leakage flow 

(BLL) occurs in the middle region and then SRLV is formed. The lower Nusselt number distribution on the 

blade tip surface appears due to the SRLV mixing of SSL, BLL and RR.  
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Table 1  Modeled turbine geometry and test conditions 

 Baseline case 
Experiments 

(Chana and Jones, 2003) 

Turbine inlet temperature, K 444 444 

Stator inlet total pressure, bar 4.6 4.6 

Rotor exit static pressure, bar 1.43 
1.428 (hub) 

1.435 (casing) 

Rotor rotation speed, RPM 9500 9500 

Blade tip geometry Flat tip Flat tip 

Number of stator vanes 30 32 

Number of rotor blades 60 60 

 

 

 

 

Table 2  Comparison with the experimental data 

Parameter, Location Present (adiabatic) 
Experiments 

(Chana and Jones, 2003) 

Isentropic Mach number at NGV 

exit (hub) 
1.24 1.034 

Isentropic Mach number at NGV 

exit (casing) 
1.0665 0.925 

Relative total pressure at rotor inlet, 

bar 
2.571 2.7 

 

 

 

Table 3  Test matrix of parametric study 

Test matrix Case number 
Tip clearance, mm 

(% of blade span) 
Rotor speed, RPM 

Effect of tip clearance 

height 

Baseline 1.2 (3) 9500 (24% lower) 

1 0.6 (1.5) 9500 

2 2 (5) 9500 

Effect of rotor rotation 

speed 

3 1.2 12500 (design speed) 

4 1.2 15500 (24% higher) 

 

 

 

 

 



19 

 

 

Table 4  Change of operating conditions due to speed change 

Cases T_inlet 
Pressure 

Ratio 

Rotor speed, 

RPM 

Av. Vel. 

Stator exit 

Av. Temp. 

Stator exit 
Mass flow 

Case 3 (12500 RPM) 444 K 3.15 12500 394 m/s 359.6 K 0.3902 kg/s 

Baseline (9500 RPM) 444 K 3.15 9500 412 m/s 352.5 K 0.3909 kg/s 

 

 

 

 

Table 5  The turbine heat transfer characteristics 

Cases 
Steady area-av. q, 

casing 

Steady area-av. q, 

tip 

Steady max q, 

casing 
Steady max q, tip 

Baseline (9500 RPM)  203,655 W/m
2
 285,716 W/m

2
 722,528 W/m

2
 565,396 W/m

2
 

Case 3 (12500 RPM) 206,688 W/m
2
 254,626 W/m

2
 709,133 W/m

2
 576,566 W/m

2
 

Cases 
Steady area-av. h, 

casing 

Steady area-av. h, 

tip 

Steady max h, 

casing 
Steady max h, tip 

Baseline (9500 RPM) 7,364 W/m
2
K 3,896 W/m

2
K 8,357 W/m

2
K 5,677 W/m

2
K 

Case 3 (12500 RPM) 7,385 W/m
2
K 3,901 W/m

2
K 8,404 W/m

2
K 5,579 W/m

2
K 

 

 

 

 

Table 6  The turbine performance characteristics 

Cases Power output T-T isentropic efficiency T-S isentropic efficiency 

Case 3 (12500 RPM) 1.128 MW 0.967 0.886 

Baseline (9500 RPM) 1.086 MW 0.935 0.851 
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Figure 1. Computational domain with one stator and two rotor blades. 
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(a) 

 
(b) 

 

Figure 2. Computational grid at (a) rotor mid span. (b) stream wise location showing grid resolution in the tip 

clearance region. 
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Figure 3. Comparison of averaged adiabatic wall temperature on the casing from blade tip leading to trailing 

edge (Baseline case). 
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Figure 4. Comparison of predicted static pressure distribution at (a) the stator and (b) the rotor mid span 

(Baseline case; 9500 RPM).  
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(b) 

Figure 5. Effect of number of cells in the tip clearance region on (a) V-velocity profile and (b) Static 

temperature profiles (Baseline case, 9500 RPM). 
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(a) Schematic of the typical tip leakage flow structure (flow observed from a rotating frame of reference) 

 

 

(b) Pathlines in the tip clearance region (Baseline case, 9500 RPM) 

Figure 6. The tip leakage flow structures. 
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(a) Case 1 (0.6 mm) 

 

 
(b) Baseline (1.2 mm) 

 

 
(c) Case 2 (2.0 mm) 

 

Figure 7. Streamlines for the tip leakage flow structures at the 25% axial chord plane. 
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Figure 8. Tangential velocity profiles along the thickness at the 25% axial chord for different clearance 

heights. 
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 (a) Case 1 (0.6 mm) 

 (b) Baseline (1.2mm) 

(c) Case 2 (2 mm) 

Figure 9. Contours of predicted Nusselt number on the shroud for three different clearance heights. 
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(a) Case 1 (0.6 mm) 

(b) Baseline (1.2 mm) 

 

(c) Case 2 (2.0 mm) 

 

Figure 10. Contour of predicted Nusselt number on the blade tip surface for different height of the clearance. 

LR 

Leakage Flow 

Lift off and SB 

Coverage 



30 

 

Pitch angle, degree

N
u

s
s
e

lt
N

u
m

b
e

r

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

0.6 mm
1.2 mm
2.0 mm

PS SS

 

Figure 11. Nusselt number distributions along the casing circumference at the 25% axial chord plane for 

different clearance heights. 
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Figure 12. static temperature profile along the y-direction at the 25% axial chord for different clearance 

heights. 
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                                                                              (a) Velocity triangle and incidence angle 

(b) Baseline (9500 RPM) 

(c) Case 3 (12500 RPM) 

(d) Case 4 (15500 RPM) 

Figure 13. Streamlines over the blade tip for three different speeds. 
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Figure 14. 2D velocity vectors at the quarter axial chord plane.  
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(c) Case 4 (15500 RPM) 
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Figure 15. Nusselt number distribution along casing circumference from line of projections of blade tip 

pressure to suction. 
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(a) Case 3 (12500 RPM) 

(b) Case 4 (15500 RPM) 

Figure 16. Contour of Nusselt number on the blade tip surface for different speeds. 
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Figure 17. U and V velocity profile in the locations indicated in Fig. 16b. 
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Figure 18. Temperature profile in the locations indicated in Fig. 16b. 

 
 


