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Tip motion in amplitude modulation  (tapping-mode ) atomic-force
microscopy: Comparison between continuous and point-mass models
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We discuss the influence of high-order frequency components in the operation of an amplitude
modulation atomic-force microscogdFM). A comparative study of point-mass and continuous
models is performed to describe the tip motion. The tip—surface interaction force excites high-order
frequency components whenever a higher harmonic of the excitation force is close to an eigenmode
of the cantilever beam. The strength of those components depends on the set point amplitude and the
fundamental resonance frequency of the cantilever. However, for standard operating conditions with
quality factors in the 19-10° range, higher-order components are about three orders of magnitude
smaller than the component at the excitation frequency. We conclude that point-mass models are
suitable to describe the operation of a tapping-mode AFM in air environment2002 American
Institute of Physics.[DOI: 10.1063/1.1456543

Amplitude modulation atomic-force microscopsam-  dynamic deflection functiom(x,t) is described by#~1®
AFM), also known as a tapping-mode AFM, is the most used

4 2
scanning probe method for the characterization and modifi- E! 7" W(x,t)+a; IW(X,t) +bhp IW(x,t)
cation of a variety of materials such as DNA, antibodies, L* ox* ’ ot ¢ gt
polymers, and silicon surfaces. Several theoretical models = F (X1 + Fragt Fre(,t). 1)

have been proposed to explain and understand the tip
motion!~® Those models considered the cantilever—tip enx is the coordinate along the beafjs the Young modulel,
semble as a point-mass spring with a single resonant frds the moment of inertia for a rectangular beapyp,is the
guency. The above models were successfully applied to exnass density, and; is the internal damping of the cantile-
plain some of the observed experimental behaviors such agr. L, b, and h are, respectively, the length, width, and
the discontinuous transitions in amplitude cur¥8§,en-  height of the cantilever. The boundary conditions consider
hanced resolution with single proteihdiquid layers® or  that one end of the cantilever is clamped and the other is
phase contrast in heterogeneous samptéfRecently, sev- free. Foy, Freg, @andFy s are the excitation, hydrodynamic
eral experimental contributions have emphasized the role glamping with the medium, and interaction forces, respec-
higher cantilever modes to obtain some materialtively. The excitation force and the tip—surface force are ap-
contrastt’~** Those experiments have suggested that mor®lied at the free end of the beam. The dimensions of the
than one resonance should be considered to describe the #§amai, Fex, andFyeqare established in such a way that
motion in amplitude modulation AFM. Simultaneously, a the amplitude versus frequency curve for the first mode is
few theoretical descriptions based on a continuous modditted to a Lorentzian for a single-harmonic oscillator with
have been developed to describe the higher oscillation modds: k Ao, andQ of 30 nm, 350 kHz, 40 N/m, 18.22 nm, and
of the cantilever? 400, respectively. Those values represent some of the most
To shed more light into the relevance of higher oscilla-COMmon cases for tapping-mode cantilevers and also the op-

tion modes in amplitude modulation AFM we have per-timum conditions to minimize tip—sample damage while
formed a comparative study between point-mass and cof@Ximizing resolution in stiff materials.

tinuous models. Some of the most common observables in To solve the gbove equation, the deflect'ion is expressed
am-AFM, such as cantilever—tip oscillation, its Fourier trans-1 & base of the_ glgen_modes of the free can_tllever. The above
form, and amplitude curves, have been calculated and co oundary conditions imply that the deflection can be sepa-
pare'd ' rated into spatial and temporal components. Then, the initial

The description of the tip motion with a point-mass equation is equivalent to a system of coupled anharmonic

. . . “>> oscillators, one equation for each eigenmdbti@hen, we
model is performed with the theoretical framework provided | ically th - for the first th
by Garca and San PaulbThe continuous model considers sove numerica y the system of equations for t © |rs_tt ree
y . . ' . . .~ ejgenmodeg350.6, 2197, and 6153 kHz, respectivelyith
the cantilever—tip ensemble simulated as a one-dimension

b ith spherical tip at th d L 4 short ree coupled fourth-order Runge—Kutta algorithms.
eam with a semispherical tip at the end. Long- and short- ;.6 1 shows the dependence of low- and high-

range intergctign forc'es are included in the model fOHOWingamplitude branches on the rest tip—surface separation for the
the approxmatlons given in Re_f. 1. ] continuous and point-mass models. At the scale of the image,
The continuous model considers that the equation for thgoth models provide identical results. The oscillation signal
for low- and high-amplitude branches at a fixed tip—surface
¥Electronic mail: rgarcia@imm.cnm.csic.es separatiore,=14.5 nm is also plotte@nsej. The oscillation
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FIG. 3. Spectra of the oscillation signal calculated with the continuous
model. The contributions of higher harmonics are modulated by the eigen-

FIG. 1. Amplitude vs tip—surface distance curves for continutines) and ~ Modes of the cantilevera) Low-oscillation state andb) high-oscillation
point-mass(symbolg models. Two different branches coexist. At this scale, state. The vertical dashed lines show the rectangular bandpass filter applied

both models give identical amplitude curves. The inset shows the deflectioff 9enerate Fig. 4.
signal (high- and low-amplitude solutiopss a function of time for a fixed
tip—surface separatiar,=14.5 nm(continuous modg! the result of attractive and repulsive forces while in the
branch only attractive forces are present. Nevertheless, in
signal is almost sinusoidal for both solutions. Again, at theboth cases the second maximum i$ filhes smaller than the
scale of the image no differences are observed. one corresponding to the fundamental mode.

The almost sinusoidal behavior given by the point-mass It is important to observe that the most relevant experi-
model is better appreciated if the signal is discomposed in itsnental quantity, the oscillation amplitude, is effectively in-
frequency component$ig. 2). A monotonous decay of the cluded in the amplitude of the fundamental peak. This result
components of the amplitude with frequency is observedconfirms the validity of point-mass models to describe am-
The peak corresponding to the first harmonic is about 170@litude modulation AFM experiments with relatively high-
times larger than the one corresponding to the second haguality factors,Q~10°—1C°.
monic. No major differences are observed betweeand H Hillenbrand, Stark, and Guckenberfehave suggested
solutions. The presence of higher harmonic peaks is due tthat information about the sample properties could be ex-
the strength of the tip—surface interaction force. tracted from analysis of the higher harmonic components of

The continuous model reveals a qualitatively differentthe oscillation. To examine in more detail this aspect, in Fig.
result(Fig. 3). Although the oscillation signal shows an ap- 4 we have plotted the result of applying a rectangular band-
parently sinusoidal behavidinset, Fig. 1, the frequency pass filter centered around the sixth harmonics to the oscil-
domain shows a nonmonotonous decay. In addition to théations shown in Fig. 3. A beat pattern is observed for both
peak at the excitation frequency, another local maximum apsolutions(L and H). The differences in the beat pattern re-
pears atw=6w,. Other peaks appear ab=17w, and flect the strength of the interaction forces. However, this re-
18w, respectively(not shown. Those peaks are a conse- sult only gives partial support to the Hillenbrand, Stark, and
qguence of the existence of several oscillation modes of th&uckenberger claims. For one thing, in théranch there is
cantilever. Whenever a higher harmonic of the excitation signot a tip—sample mechanical contact, so only information
nal is close to the frequency of an eigenmode of the cantileabout force gradients could be extracted. On the other hand,
ver a local peak will be observed. for the above operating conditions, the values of the high-

The strength of the interaction force enhances the effectfequency components are of the order of a few pm, barely in
of the eigenmodes of the cantilever. The peakag & twice  the measurable level.
higher in theH branch than in thé& branch. TheH branch is The relative importance of higher harmonics in the tip

motion depends on the value of the fundamental resonance

1 frequency and the set point amplitude. The oscillation signal
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FIG. 2. Spectra of the oscillation signal calculated with the point-massFIG. 4. Filtered oscillation signal obtained by the application of the rectan-
model. A monotonous decay of amplitude of higher harmonics is observedular bandpass filter shown in Fig. @) low-amplitude solution andb)

in both cases(a) Low-oscillation state angb) high-oscillation state. high-amplitude solution. )
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