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Tip motion in amplitude modulation „tapping-mode … atomic-force
microscopy: Comparison between continuous and point-mass models

Tomás R. Rodrı́guez and Ricardo Garcı́aa)

Instituto de Microelectro´nica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain

~Received 9 October 2001; accepted for publication 2 January 2002!

We discuss the influence of high-order frequency components in the operation of an amplitude
modulation atomic-force microscope~AFM!. A comparative study of point-mass and continuous
models is performed to describe the tip motion. The tip–surface interaction force excites high-order
frequency components whenever a higher harmonic of the excitation force is close to an eigenmode
of the cantilever beam. The strength of those components depends on the set point amplitude and the
fundamental resonance frequency of the cantilever. However, for standard operating conditions with
quality factors in the 102– 103 range, higher-order components are about three orders of magnitude
smaller than the component at the excitation frequency. We conclude that point-mass models are
suitable to describe the operation of a tapping-mode AFM in air environments. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1456543#
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Amplitude modulation atomic-force microscopy~am-
AFM!, also known as a tapping-mode AFM, is the most us
scanning probe method for the characterization and mo
cation of a variety of materials such as DNA, antibodi
polymers, and silicon surfaces. Several theoretical mo
have been proposed to explain and understand the
motion.1–5 Those models considered the cantilever–tip
semble as a point-mass spring with a single resonant
quency. The above models were successfully applied to
plain some of the observed experimental behaviors suc
the discontinuous transitions in amplitude curves,1,4,6 en-
hanced resolution with single proteins,7 liquid layers,8 or
phase contrast in heterogeneous samples.9,10 Recently, sev-
eral experimental contributions have emphasized the rol
higher cantilever modes to obtain some mate
contrast.11–13 Those experiments have suggested that m
than one resonance should be considered to describe th
motion in amplitude modulation AFM. Simultaneously,
few theoretical descriptions based on a continuous mo
have been developed to describe the higher oscillation mo
of the cantilever.14

To shed more light into the relevance of higher oscil
tion modes in amplitude modulation AFM we have pe
formed a comparative study between point-mass and c
tinuous models. Some of the most common observable
am-AFM, such as cantilever–tip oscillation, its Fourier tran
form, and amplitude curves, have been calculated and c
pared.

The description of the tip motion with a point-ma
model is performed with the theoretical framework provid
by Garcı´a and San Paulo.1 The continuous model conside
the cantilever–tip ensemble simulated as a one-dimensi
beam with a semispherical tip at the end. Long- and sh
range interaction forces are included in the model follow
the approximations given in Ref. 1.

The continuous model considers that the equation for
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dynamic deflection functionw(x,t) is described by14–16

EI

L4

]4

]x4 Fw~x,t !1a1

]w~x,t !

]t G1bhrc

]2w~x,t !

]t2

5Fext~x,t !1Fmed1Ft-s~x,t !. ~1!

x is the coordinate along the beam,E is the Young module,I
is the moment of inertia for a rectangular beam,rc is the
mass density, anda1 is the internal damping of the cantile
ver. L, b, and h are, respectively, the length, width, an
height of the cantilever. The boundary conditions consi
that one end of the cantilever is clamped and the othe
free. Fext, Fmed, andFt-s are the excitation, hydrodynami
damping with the medium, and interaction forces, resp
tively. The excitation force and the tip–surface force are
plied at the free end of the beam. The dimensions of
beama1 , Fext, andFmed are established in such a way th
the amplitude versus frequency curve for the first mode
fitted to a Lorentzian for a single-harmonic oscillator withR,
f 0 , k, A0 , andQ of 30 nm, 350 kHz, 40 N/m, 18.22 nm, an
400, respectively. Those values represent some of the m
common cases for tapping-mode cantilevers and also the
timum conditions to minimize tip–sample damage wh
maximizing resolution in stiff materials.

To solve the above equation, the deflection is expres
in a base of the eigenmodes of the free cantilever. The ab
boundary conditions imply that the deflection can be se
rated into spatial and temporal components. Then, the in
equation is equivalent to a system of coupled anharmo
oscillators, one equation for each eigenmode.14 Then, we
solve numerically the system of equations for the first th
eigenmodes~350.6, 2197, and 6153 kHz, respectively! with
three coupled fourth-order Runge–Kutta algorithms.

Figure 1 shows the dependence of low- and hig
amplitude branches on the rest tip–surface separation fo
continuous and point-mass models. At the scale of the ima
both models provide identical results. The oscillation sig
for low- and high-amplitude branches at a fixed tip–surfa
separationzc514.5 nm is also plotted~inset!. The oscillation
6 © 2002 American Institute of Physics
IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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signal is almost sinusoidal for both solutions. Again, at
scale of the image no differences are observed.

The almost sinusoidal behavior given by the point-m
model is better appreciated if the signal is discomposed in
frequency components~Fig. 2!. A monotonous decay of the
components of the amplitude with frequency is observ
The peak corresponding to the first harmonic is about 1
times larger than the one corresponding to the second
monic. No major differences are observed betweenL andH
solutions. The presence of higher harmonic peaks is du
the strength of the tip–surface interaction force.

The continuous model reveals a qualitatively differe
result ~Fig. 3!. Although the oscillation signal shows an a
parently sinusoidal behavior~inset, Fig. 1!, the frequency
domain shows a nonmonotonous decay. In addition to
peak at the excitation frequency, another local maximum
pears atv56v0 . Other peaks appear atv517v0 and
18v0 , respectively~not shown!. Those peaks are a cons
quence of the existence of several oscillation modes of
cantilever. Whenever a higher harmonic of the excitation s
nal is close to the frequency of an eigenmode of the can
ver a local peak will be observed.

The strength of the interaction force enhances the eff
of the eigenmodes of the cantilever. The peak at 6v0 is twice
higher in theH branch than in theL branch. TheH branch is

FIG. 1. Amplitude vs tip–surface distance curves for continuous~lines! and
point-mass~symbols! models. Two different branches coexist. At this sca
both models give identical amplitude curves. The inset shows the defle
signal~high- and low-amplitude solutions! as a function of time for a fixed
tip–surface separationzc514.5 nm~continuous model!.

FIG. 2. Spectra of the oscillation signal calculated with the point-m
model. A monotonous decay of amplitude of higher harmonics is obse
in both cases.~a! Low-oscillation state and~b! high-oscillation state.
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the result of attractive and repulsive forces while in theL
branch only attractive forces are present. Nevertheless
both cases the second maximum is 103 times smaller than the
one corresponding to the fundamental mode.

It is important to observe that the most relevant expe
mental quantity, the oscillation amplitude, is effectively i
cluded in the amplitude of the fundamental peak. This res
confirms the validity of point-mass models to describe a
plitude modulation AFM experiments with relatively high
quality factors,Q;102– 103.

Hillenbrand, Stark, and Guckenberger11 have suggested
that information about the sample properties could be
tracted from analysis of the higher harmonic components
the oscillation. To examine in more detail this aspect, in F
4 we have plotted the result of applying a rectangular ba
pass filter centered around the sixth harmonics to the os
lations shown in Fig. 3. A beat pattern is observed for b
solutions~L and H!. The differences in the beat pattern r
flect the strength of the interaction forces. However, this
sult only gives partial support to the Hillenbrand, Stark, a
Guckenberger claims. For one thing, in theL branch there is
not a tip–sample mechanical contact, so only informat
about force gradients could be extracted. On the other h
for the above operating conditions, the values of the hi
frequency components are of the order of a few pm, barel
the measurable level.

The relative importance of higher harmonics in the
motion depends on the value of the fundamental resona
frequency and the set point amplitude. The oscillation sig

on

s
d

FIG. 3. Spectra of the oscillation signal calculated with the continuo
model. The contributions of higher harmonics are modulated by the eig
modes of the cantilever.~a! Low-oscillation state and~b! high-oscillation
state. The vertical dashed lines show the rectangular bandpass filter ap
to generate Fig. 4.

FIG. 4. Filtered oscillation signal obtained by the application of the rect
gular bandpass filter shown in Fig. 3.~a! low-amplitude solution and~b!
high-amplitude solution.
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of a point-mass oscillator in the presence of a parabolic fo
(F/m52ez2) can be approximated by

z~ t !5A cos~v0t !2
eA2

v0
2 S 1

2
2

1

6
cos~2v0t ! D1O~e2!,

~2!

wheree is a measure of the interaction. Equation~2! shows
that increasing the fundamental frequency decreases the
tribution of higher harmonics, in this case, the second h
monic. This explains why for a 350 kHz cantilever high
harmonic contributions are in the pm range while a 40 k
cantilever will give components in the 0.1 nm range for a
point amplitude of 20 nm.

In short, the above results confirm and generalize
attractive and repulsive forces previous theoretical calc
tions ~Ref. 14!, which show that tip–surface interactions e
cite higher harmonics in the tip motion. Whenever a high
harmonic is close to an eigenmode of the cantilever an
crease of the corresponding frequency component shoul
expected. However, in air environments (Q;100– 1000)
and f 0>105 Hz higher frequency components are abo
three orders of magnitude smaller than the component of
fundamental frequency. As a consequence, simulations b
on point-mass models are suitable to describe the cantil
tip motion in air. Higher harmonics contributions are e
pected to play a dominant role in low-Q environments, i.e.,
in liquids where the cantilever spectra present broader
closer resonances.
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