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Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation„tapping mode…
force microscopy
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~Received 13 November 2000; published 25 October 2001!

Amplitude-modulation~tapping mode! atomic force microscopy is a technique for high resolution imaging
of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy
conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift,
and average tip-surface forces. We find that the average value of the interaction force and oscillation and the
average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction.
The agreement obtained between analytical and numerical results supports the analytical method.
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Amplitude-modulation force microscopy, usually know
as tapping mode AFM is the most extensively used dyna
force microscopy method for nanometer-scale character
tion and modification of surfaces in air and liquid enviro
ments. High resolution images of protein membranes,1 iso-
lated proteins,2 and polymers3 have been obtained as well a
true atomic resolution images of inorganic surfaces.4 In
amplitude-modulation force microscopy the tip is excited
a frequency close to its resonance value with a free osc
tion amplitude ranging between 5 and 100 nm. The t
cantilever ensemble is approached towards the sample
the oscillation amplitude reaches a set point value. An im
is formed by scanning the tip across the sample while
amplitude is kept at a set point value.

The experimental results have prompted a series of th
retical studies aiming to provide a framework to understa
the tip motion under the influence of an interacti
potential.5–12 However, the theoretical analysis of large am
plitude dynamic AFM is not straightforward. The force gr
dient may change considerably during an oscillation, wh
compromises the use of harmonic approximations.13 On the
other hand, the tip-surface force contains nonlinear te
which may introduce nonlinear features in the dynamics
the tip motion.14 Furthermore, dissipative processes such
surface adhesion hysteresis, viscoelasticity or electronic
sipation may also be involved. As a consequence most th
retical studies have involved some kind of numerical sim
lations. They have established the existence of two differ
interaction regimes,attractiveandrepulsive. In the attractive
regime, a negative average interaction force dominates
amplitude reduction while in the repulsive regime, the av
age interaction force is repulsive.11

In this paper we apply energy conservation principles a
the virial theorem to derive analytical expressions to desc
the amplitude and phase shift dependencies with the ave
value of the interaction force and oscillation and the aver
power dissipated by the tip-sample interaction. These exp
sions have been applied to study amplitude curves that s
a continuous transition between the attractive and repul
interaction regimes. We also discuss the operation
amplitude-modulation AFM for a tip-surface interactio
dominated by long range attractive van der Waals forces

The dynamics of the tip motion in amplitude-modulatio
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AFM can be approximately described by the different
equation

mz̈52kcz2
mv0

Q
ż1Fts1F0 cos~vt !. ~1!

The total force that governs the tip motion includes the el
tic response of the cantilever, the hydrodynamic damp
with the medium, the tip-sample interaction force and t
periodic driving force.Q, kc , andv0 are the quality factor,
spring constant, and angular resonance frequency of the
cantilever, respectively.F0 andv are the amplitude and an
gular frequency of the driving force. The approximatio
used to derive Eq.~1! as well as their justification can b
found elsewhere.11

The steady-state oscillation can be approximated b
sinusoidal oscillation,

z~zc ,t !5z0~zc!1A~zc!cos@vt2f~zc!#, ~2!

wherez0 , A, andf are the mean deflection, amplitude, a
phase shift of the oscillation, respectively. We denotezc as
the equilibrium tip-sample separation in absence of inter
tions. The above approximation has been applied succ
fully by several authors. Wang found a good agreement
tween theoretical and experimental amplitude ver
frequency curves on a polyethylene sample.9 Quantitative
agreement between phase shifts and energy dissipation
surements on biological membranes was also obtained
Tamayo and Garcı´a.15 Using an impact model for the tip
sample interaction Salapakaet al. found that for standard
operating conditions the tip evolves into a stable perio
orbit with a period equal to the period of the forcing.16

According to the virial theorem the time averaged kine
energy of the tip is equal to its virial,17

^K&5 1
2 m^ż2&52 1

2 ^F•z&. ~3!

The combination of Eqs.~1!, ~2!, and ~3! yields the fol-
lowing relationship:

cosf5
2Q

kcAA0
F ^Fts&

2

kc
2^Fts•z&1

1

2
kcA

2S 12
v2

v0
2D G ,

~4!
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where A05QF0 /kc is the free oscillation amplitude an
^Fts&5(1/T)rFtsdt.

On the other hand, it can be shown that

^Fts&5kc^z&5kcz0 . ~5!

In many experimental situations, the mean deflectionz0 is
negligible compared to the oscillation amplitudeA. Then,
A@z0 in combination with Eq.~5! implies

^Fts&
2

kc
5^Fts&•z0!^Fts•z&. ~6!

The above approximations andv5v0 turn Eq.~4! into

cosf'2
2Q^Fts•z&

kcAA0
. ~7!

An additional relationship betweenA, f, and the tip-
sample interaction force is obtained by assuming that
external excitation coincides with the energy dissipated
the oscillation15,18

sinf'
Av

A0v0
1

2QPts

kcAA0v
, ~8!

wherePts5^Fts• ż& is the power dissipated by the tip-samp
interaction.

The combination of Eqs.~7! and ~8! gives a relationship
between the amplitude,^Fts•z& andPts

A'
A0

&
X12

2Pts

Pmed
6A12

4Pts

Pmed
216S ^Fts•z&

F0A0
D 2C1/2

, ~9!

wherePmed is the power dissipated by hydrodynamic dam
ing

Pmed5
v0kcA0

2

2Q
. ~10!

The positive sign of the square root in Eq.~9! corresponds to
A/A0.(1/22Pts /Pmed)

1/2, while the negative sign corre
sponds toA/A0,(1/22Pts /Pmed)

1/2.
Equation~9! can be simplified for conservative intera

tions (Pts50) or negligible tip-sample power dissipatio
(Pts!Pmed),

A'
A0

&
X16A1216S ^Fts•z&

F0A0
D 2C1/2

. ~11!

For oscillations with small contact times~;0.2 T or less!
it can be shown that

^Fts•z&'2A^Fts&. ~12!

Small contact times and conservative interactions allow
to express the phase shift as

cosf'2
^Fts&
F0

, ~13!
19341
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sinf5
A

A0
. ~14!

Finally, the combination of Eqs.~13! and ~14! gives

A'A0X124S ^Fts&
F0

D 2C1/2

. ~15!

The amplitude and cosf dependence on̂Fts•z& are remi-
niscent of the relationship found by Giessibl19 to describe
frequency shifts in frequency modulation AFM. Based on t
Harmonic-Jacobi formalism it was found that the shift in t
resonance frequency wasD f }^Fts•z&. This points out the
close relationship between frequency and amplitu
modulation AFM modes.

Numerical calculations have extensively been used
simulate the tip motion in amplitude-modulation AFM. T
establish their range of applicability, the above expressi
are compared with numerical simulations. For a given t
surface interaction force the quantities^Fts&, ^Fts•z& andPts
are obtained by numerical integration. Those values are
troduced in the corresponding expressions for the amplit
and phase shift. The results obtained by the application of
analytical approximations are compared with those obtai
independently by direct numerical integration of the moti
equation.

Figure 1 shows the amplitude as a function of the t
surface distance for a compliant and viscoelastic mate
The solid line represents the numerical solution while
symbols are the results obtained with the different equatio
The tip-surface interaction force includes long-range attr
tive van der Waals force and short-range repulsive for
given by the JKR contact mechanics.20 The values used for
the resonance frequency, spring constant and quality fa
of the cantilever aref 05v0/2p5350 kHz, kc540 nm, and
Q5400, respectively. The sample is characterized by

FIG. 1. ~a! Amplitude curve for a compliant and viscoelast
material. The solid line represents the numerical simulation wh
the symbols correspond to the different analytical expressions~b!
Numerical determination of̂Fts•z&.
1-2
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Young’s modulus of 7 MPa, surface energy of 30 mJ/m2,
viscosity h of 1 Pa•s and a Hamaker constant of 6.1
31020J. The tip radius isR530 nm and the free amplitud
is A0560 nm.

An excellent agreement is obtained between Eq.~9! and
the numerical solution. In both cases the amplitude cur
show a local minimum and a local maximum. These lo
extremes are a consequence of the competition betwee
tractive and repulsive forces to control the amplitude red
tion. Mathematically the minimum is related to the existen
of a maximum in the quantitŷFts•z& @Fig. 1~b!#. The local
maximum happens when the argument of the square roo
Eq. ~9! achieves a maximum. For the parameters used he
approximately coincides witĥFts•z&50. The discrepancies
observed when Eqs.~11! and~15! are used are not surprisin
due to the conservative character of the interactions con
ered in both equations.

Figure 2~a! shows the amplitude curve for the same s
tem when inelastic processes are not allowed (h50 Pa•s).
Excellent agreements are obtained among numerical sim
tions and Eqs.~9! and~11!. The amplitude curve shows loca
extremes. Here the maximum reaches the free oscillation
plitude. This result is related to the absence of tip-sam
inelastic interactions. Equation~11! allows us to associate th
local minimum to a maximum in the dependence of^Fts
•z& on separation. The maximum happens when^Fts•z&
50. On the other hand, Eq.~15! does not reproduce th
observed amplitude curve~numerical solution! because the

FIG. 2. ~a! Amplitude curve for a compliant and elastic materia
The solid line represents the numerical simulation while the sy
bols correspond to the different analytical expressions.~b! Numeri-
cal determination of̂Fts•z&. ~c! Tip-sample contact time.
19341
s
l
at-
-

e

in
it

d-

-

l-

m-
le

contact time is a sizeable fraction of the oscillation peri
@Fig. 2~b!#.

For the same external parameters the contact time
creases with the stiffness of the sample.6 Then, good agree-
ments could be expected between numerical simulations
Eq. ~15! for stiff materials. Figure 3~a! shows the amplitude
curve for a material withE51 GPa and no viscosity. The
agreement is excellent except for very small tip-surface se
rations where the contact time shows a sharp increase@Fig.
3~b!#. In this case the DMT contact mechanics21 was used to
model the tip-surface repulsive forces~see Ref. 22 for dis-
cussion about the use of contact mechanics models in AF!.

It has been previously demonstrated the existence
steady state oscillations that do not involve tip-surfa
contact.23–25Assuming a sphere-plane geometry, the aver
value of the van der Waals force and oscillation can be c
culated analytically,

^FvdW•z&5
1

T R 2HRz

6~zc1z!2 dt5
HR

6A F S zc

A D 2

21G23/2

.

~16!

The combination of Eqs.~16! and~11! gives a relationship
between the amplitude and the equilibrium tip-surface se
ration

zc

A0
'

A

A0
F11CXS A

A0
D 4

2S A

A0
D 6C21/3G1/2

, ~17!

whereC is a dimensionless parameter given by

C5S HR

3F0A0
2D 2/3

. ~18!

SinceF0 is the maximum of the driving force, the term
F0A0

2 can be related to the strength of the driving force wh
HR can be related to the strength of the attractive interact
For a given tip geometry and Hamaker constant, high val
of C correspond to a high van der Waals interaction relat

-

FIG. 3. ~a! Amplitude curve for a stiff and elastic material. Soli
line is the numerical simulation while the symbols have been
tained by Eq.~15!. ~b! Tip-sample contact time.
1-3
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to the driving force.C ranges between 10 and 1024 for com-
mon experimental conditions, kcP@20– 50# N/m, H
;10219J, RP@5 – 50# nm, Q5400, andA0P@1 – 20# nm.

Amplitude vs distance curves forC52, C50.2, andC
50.02 are shown in Fig. 4. The above values ofC corre-
spond toA051.3 nm, 4 nm, and 12 nm, respectively@param-
eters as in Fig.~1!#. The symbols are the results obtained
Eq. ~17! while the numerical simulations are shown by so
lines. The agreement obtained between the above equ
and the numerical results is excellent.

The amplitude curve forC50.02 shows an abrupt chang
of slope atzc5A0 . For smaller separations, the slope take
constant value very close to unity. On the other hand,
slope of the amplitude curve forC50.2 varies smoothly
from zero at large separations to unity at intermediate se
rations, and then back to zero at small separations. The
linear dependence of the amplitude on tip-surface aver
distance is more evident for higher values ofC ~see curve for
C52!.

Equation~17! also suggests a procedure to determine
values of the Hamaker constant. This requires the meas
ment of amplitude curves, then Eq.~17! could be used to

FIG. 4. Reduced amplitude versus reduced tip-surface sep
tion for a tip oscillating without tip-surface mechanical contact.
.e
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determine theC value that produces the best fit to the expe
mental curve. The last step involves the use of Eq.~18! to
deduce the Hamaker constant.

In summary, we have deduced several analytical exp
sions to study the tip motion in amplitude-modulation atom
force microscopy. Those expressions have been derive
the application of the virial theorem and energy conserva
principles. Direct comparisons between numerical and a
lytical results have confirmed the validity of the analytic
approach. The analytical approach states that the averag
teraction force times the deflection and the tip-sample ene
dissipation are the quantities that control the amplitude
duction. The dependence on average quantities is a d
consequence of a tip motion that experiences different va
of the tip-surface force per cycle.

Those expressions have been applied to study sm
transitions between attractive and repulsive interaction
gimes. Those transitions are characterized by the presen
a local maximum in amplitude curves. In the absence
inelastic interactions the local maximum coincides with t
value of the free oscillation amplitude. This rather surpris
result emphasizes the simultaneous contribution of attrac
and repulsive forces to the tip motion.

For a van der Waals interaction a relationship is obtain
between the oscillation amplitude and the tip-surface sep
tion. This relationship is parametrized by the ratio of t
strengths of attractive and external driving forces. For sm
ratios a one to one correspondence between the ampl
and average tip-surface separation is found. The above
pression also suggests a new method to determine the
maker constant.

This work has been supported by the Direccio´n General
de Investigacio´n Cientı́fica y Técnica ~PB98-0471! and the
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