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Abstract— When predicting trajectories of road agents, mo-
tion predictors usually approximate the future distribution by
a limited number of samples. This constraint requires the
predictors to generate samples that best support the task
given task specifications. However, existing predictors are often
optimized and evaluated via task-agnostic measures without
accounting for the use of predictions in downstream tasks, and
thus could result in sub-optimal task performance.

In this paper, we propose a task-informed motion prediction
model that better supports the tasks through its predictions, by
jointly reasoning about prediction accuracy and the utility of
the downstream tasks, which is commonly used to evaluate the
task performance. The task utility function does not require the
full task information, but rather a specification of the utility
of the task, resulting in predictors that serve a wide range
of downstream tasks. We demonstrate our approach on two
use cases of common decision making tasks and their utility
functions, in the context of autonomous driving and parallel
autonomy. Experiment results show that our predictor produces
accurate predictions that improve the task performance by a
large margin in both tasks when compared to task-agnostic
baselines on the Waymo Open Motion dataset.

I. INTRODUCTION

Motion prediction is crucial for intelligent systems. It
captures the distribution of future behavior of nearby road
agents, and allows intelligent systems to plan and act.
The output distribution is often approximated via a set of
weighted samples [1]–[4]. The samples allow the down-
stream tasks to evaluate the predictions for risk assessment
more efficiently, compared to complicated spatial distribu-
tions [5]; the weights are necessary to provide an accurate
estimate of the risk. In many cases, a predictor only affords
a small set of trajectory samples, due to the time complexity
of processing the predictions. For instance, evaluating one
prediction sample for risk assessment may take up to a few
milliseconds [5], making it impractical to evaluate a large
number of samples for real-time decision making.

Traditionally, distance-based measures, such as displace-
ment errors, are used to optimize and evaluate the prediction
samples, and have proved tremendously useful for reducing
and gauging prediction errors. However, they do not account
for the relevant downstream task, such as a planner that
selects safe and efficient plans by reasoning about the pre-
dictions, and a driver assistance system that warns the driver
when detecting risky behaviors.

Consider a motivating example in Fig. 1, where the object
agent, defined as a nearby road agent of interest, may follow
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Fig. 1: A motivating example for task-informed prediction,
where three equally likely future trajectories for the object
agent are illustrated on the left. Given a sample limit of two,
a task-informed predictor supports the task by outputting
different sets of prediction samples weighted by their impor-
tance to the task, depending on the task information, such
as the future plan of the ego agent, as illustrated in the two
scenarios on the right. In contrast, a task-agnostic predictor
tells no difference between these two sample sets and may
generate predictions leading to unsafe events.

three possible future trajectories with an equal chance, as
shown on the left. Due to the sample constraint, a predic-
tor in this simplified example is only allowed to generate
two trajectory samples1. We present two possible prediction
outcomes on the right, denoted by the colored dashed lines.
There are no differences between these two outcomes when
evaluated by a task-agnostic distance-based metric, such
as displacement error. However, when the predictions are
used in a planning system for the ego agent that aims to
navigate safely with the object agent, one outcome may be
favored over the other, depending on the ego plan. In the top
right scenario, the green and the orange samples are more
informative as they help the ego agent identify a potential
near collision, whereas generating the purple and the orange
predictions in this scenario may lead to an unsafe ego plan.
The purple and the orange samples are, however, favored
in the bottom right scenario, given a different ego plan.
Therefore, it is important to reason about the downstream
task when providing a limited set of prediction samples. The
predictor should also provide an accurate estimate of the
importance (or weight) of each sample with respect to the
task. As we show in both scenarios, the predictor estimates

1In practice, a predictor affords more than two samples, but from a much
larger prediction space.
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the weight of each sample to help the planner accurately
compute the probability of collision with the object agent.

In short, a predictor should provide a faithful estimate of
the future trajectories of nearby road agents through a limited
number of weighted samples. These predictions should assist
decision making by characterizing nearby road agents and
their future actions [6], providing an approximate sufficient
statistics [7] for the task. Furthermore, its design should
accommodate a variety of decision making tasks as opposed
to a specific task, for flexibility in broader applications.

With this rationale in mind, we propose TIP, a Task-
Informed motion Predictor, which is learned by jointly op-
timizing prediction accuracy and the performance of down-
stream tasks. The training loss leverages a specification of
the task, such as its utility function, instead of ignoring
the task or requiring the task itself to be co-trained (e.g.
optimizing a specific planner with the predictor). Compared
to existing prediction methods, TIP generates predictions
that improve the downstream task performance by providing
relevant information to the task given limited samples. In
addition, it accommodates a variety of decision making tasks
within intelligent systems, through different utility functions
that characterize the tasks, compared to models that are
constrained to a specific task and require that task to be
differentiable [8]. While TIP is designed to support an arbi-
trary decision making task given their utility functions, we
present two common decision making tasks, in the context of
autonomous driving and parallel autonomy, to demonstrate
the effectiveness of our proposed model.

Our contributions are as follows: i) We present a task-
informed motion prediction model for intelligent systems that
can be used to improve the performance of downstream tasks.
Our approach covers a wide range of tasks, through utility
function surrogates that characterize the tasks. ii) We show
two case studies of our predictor being used in a planning
task and a warning task, which are commonly used by state-
of-the-art intelligent systems such as autonomous driving and
parallel autonomy. iii) We demonstrate that our system helps
achieve better task performance across both tasks through
detailed quantitative and qualitative comparisons to task-
agnostic baselines in a large-scale motion prediction dataset.

II. RELATED WORK
A. Motion Prediction

Motion prediction has been studied extensively in the
last few years, from predicting vehicles [9]–[11] to vul-
nerable road users such as pedestrians and cyclists [4],
[12], [13]. Due to the complexity in multi-modal future
trajectory distributions, motion predictors often approximate
the output distribution through simplified representations,
such as a weighted set of samples [3], [4], Gaussian mixture
models [1], [9], and occupancy maps [10]. We refer to [14]
for a more comprehensive list of literature. In this work,
we focus on sampling-based predictors, which offer a good
balance between retaining enough continuous information
and allowing the downstream tasks to efficiently process the
predictions as deterministic positions.

Despite the recent efforts on supplying additional labels
to improve prediction accuracy [1], [15], [16], most existing
literature quantifies prediction performance through task-
agnostic measures, including distance-based metrics such
as minimum average displacement error (ADE) [12] and
distribution-based metrics such as negative log-likelihood
(NLL) [9]. However, such metrics do not account for the
use of predictions in the downstream task. In other words,
predictions with the same accuracy may lead to different
outcomes for tasks such as planning, as illustrated in Fig. 1.
Therefore, we propose a prediction model that accounts
for not only prediction accuracy, but also the utility of
the downstream task given the predictions, to allow better
integration between predictions and the task.

A concurrent work [17] is proposing task-aware metrics to
evaluate the performance of motion predictors. It presents a
proof-of-concept metric that favors the prediction samples
based on the sensitivity to the ego agent’s plan. Results
show that the proposed metric better provides a measure
of planner performance compared to distance-based metrics.
Different from [17] that focuses on proposing task-aware
metrics to evaluate predictor performance, our method goes
beyond by leveraging task-specific information to train a
motion predictor. This allows us to maximize the value
of predictions for downstream tasks, as we demonstrate in
realistic driving scenarios. More importantly, by training
with a task-informed loss, our predictions cover approximate
sufficient statistics [7], [18] of the nearby road agents, and
leverage even imperfect information of downstream tasks.

B. Prediction for Tasks

Existing works leverage a learned motion predictor to
support a variety of tasks, including risk assessment [5],
driver safety detection [11], and most commonly, planning
for autonomous systems [19]–[24]. They often decouple the
optimization of the predictor and the optimization of the task.
As a result, the predictor is unaware of its influence on the
downstream task and its predictions may not be informative
for the downstream task. In this work, we present a more
effective predictor that is optimized directly through the
utility of the downstream task.

A prior work [11] proposes a multi-task predictor that
approximates the utility and its uncertainties of the down-
stream driver safety detection task, yet the predictor is still
learned with a single objective of optimizing the accuracy.
In contrast, our model integrates the task utility into the
trajectory prediction directly, allowing the prediction results
to better support the task.

Our work is closely related to prediction and planning
(P&P) literature [8], which jointly optimizes the prediction
module and the planning module. Compared to end-to-end
planning models [25]–[27] that generate planning results
from raw sensor inputs, P&P, as a more structured approach,
provides better interpretability in its decision making pro-
cess, and achieves better planning performance [8]. One
limitation of P&P is that it requires a fully differentiable
pipeline that includes a differentiable planner. In many



practical planning systems that involve black-box modules
or off-the-shelf components [28], [29], it is a nontrivial
task to differentiate the planner. In contrast, our prediction
model only requires the utility function that characterizes
the task. The utility function is planner-agnostic, allowing
the predictor to support a family of planning algorithms,
instead of a specific planner as in P&P. Furthermore, a
differentiable utility function is usually easier to acquire than
a differentiable planner. This makes our model more broadly
applicable to non-differentiable planners and tasks that are
more than planners, as we show in our experiments.

Instead of assuming a specific differentiable planner, [30]
generates joint predictions for both the ego agent and the
object agents, and uses the ego prediction for planning. Such
approach offers a great advantage by simply imitating the
future behavior of the ego agent without requiring a specific
planner, yet the predicted trajectory for the ego agent is prune
to input noise and modeling error, making it less reliable to
be used for planning in practice.

III. PROBLEM FORMULATION
Motion Prediction The prediction system takes input as

i) task-specific input information V and ii) observed agent
trajectories O = {ot}0t=−Tp+1 over a fixed past horizon Tp,
where ot = [o1,t, . . . , oN,t] includes continuous positions at
time step t for up to N agents. The positions are normalized
with respect to the center of the last observed positions
of all agents. The task input V depends on the specific
information from the task, such as an ego planned trajectory,
as customary in conditional prediction approaches [31]–
[34]. The output is a weighted set of K joint trajectory
samples S = {(w(k),x(k))}Kk=1 for all agents, where x(k) =

{x(k)
t }

Tf

t=1 denotes future trajectory sequences of all agents,
i.e. x(k)

t = [x
(k)
1,t , . . . , x

(k)
N,t], up to a fixed future horizon Tf .

Utility-Based Decision Making The task-informed pre-
diction aims to allow accurate estimates of task utility for
an arbitrary downstream decision making task. The utility
(or reward) serves as a quantitative measurement of task
performance and is commonly used in modern decision
making tasks. In this work, we define the task specification
as a tuple (I, u), where I is a set of candidate decisions for
the task, such as plans of the ego agent; u is a task-specific
differentiable utility function mapping a decision I ∈ I and
the task-informed predictions S to a scalar that quantitatively
measures the performance of the decision. For the sake of
simplicity, we define uI = u(I,S) in the rest of the paper.
This specification allows us to optimize our model to support
different tasks through their task-specific surrogate utility
functions, without requiring a specific task pipeline.

Finally, we define the task objective to obtain the optimal
decision that maximizes the utility among all candidate
decisions:

IO = argmax
I∈I

uI . (1)

At training time, we can obtain the utilities of all can-
didates and find the optimal decision using Eq. (1) given
ground truth future trajectories. We optimize the model by

State 
Encoder

Trajectory 
Decoder

Accuracy 
Loss

Task Loss
Task Info 
Encoder

Fig. 2: Diagram of the proposed task-informed prediction
model, which includes a state encoder that encodes observed
past agent states, a task information encoder that encodes
additional task input, and a trajectory decoder that decodes
future trajectory predictions. The model is trained through
an accuracy loss term that optimizes prediction accuracy and
a task loss term that guides the model to favor predictions
supporting the downstream task.

maximizing the following softmax over the decision utilities:

Rtask =
exp(uIO )∑
I′∈I exp(uI′)

, (2)

which is widely used in reinforcement learning [35] to en-
courage the optimal decision to have higher utility compared
to the other decisions.

IV. APPROACH

Our predictor leverages an encoder-decoder model, as
depicted in Fig. 2, following a standard architecture in [36].
The state encoder encodes the observed trajectory for up to
N agents. For each agent i, an MLP is used to encode the
position at each time step, and an LSTM is used to encode the
position encodings from time step −TP+1 to 0 into a hidden
state hSi . The hidden states of each agent are concatenated
into a joint hidden state hS . If there are fewer than N agents
in a scene or there exist invalid positions for any agent,
we zero-mask the encodings of missing positions. The task
information encoder encodes task-specific inputs V , such as
the future plan of the ego agent, through a separate model
into a separate hidden state hV . The structure of the task
information encoder depends on the input representation,
and we defer a detailed description in our experiments. The
trajectory decoder model takes the concatenated encoded
states from both encoders, i.e. h = hS ⊕ hV , and predicts a
set of K joint trajectory samples S and their weights.

We train the model by jointly optimizing prediction accu-
racy and task performance,

L = Lacc + αLtask, (3)

where α determines the relative weight between two terms.
In the experiments, we present the trade-off between predic-
tion accuracy and task performance, by varying α values.

The accuracy loss Lacc measures the accuracy of the
prediction samples compared to the ground truth future
trajectory Ŝ. We follow the standard motion prediction
literature, i.e. [1], [37], based on a variant of variety loss



proposed in [12]:

Lacc =

K∑
k=1

1(k = k̂)(− logw(k) + ||x(k) − Ŝ||2), (4)

where k̂ is the index of the best prediction sample, in terms
of L2 distance to the ground truth trajectory.

The task term Ltask minimizes the negation of Eq. (2) so
that the optimal decision would have higher utility compared
to other candidate decisions given the predictions.

Ltask = −Rtask. (5)

While TIP can be used for an arbitrary decision making
task that requires behavior prediction given its task spec-
ifications, in the rest of this section, we present two use
cases of tasks and their utility functions to demonstrate the
flexibility of our approach over different tasks. We defer
implementation details on both tasks in Section V.

A. Example Task 1: Planning for Autonomous Systems

In the planning task, we assume that the ego agent is
equipped with an arbitrary planner that generates a set of M
motion plan candidates IP = {τ1, . . . , τM}. The planning
utility function is defined to capture safety and efficiency:

uP (τ,S) = uefficiency(τ) + βusafety(τ,S), (6)

where τ is an ego plan candidate, and S =

{(w(k), x
(k)
object)}Kk=1 is a weighted set of object prediction

samples generated from our predictor. In this task, the
predictor takes the input2 of the observed agent states and
the ego plan τ as the task input V to produce the prediction
samples S. The efficiency term uefficiency measures the
travelled distance of the ego plan. The safety term usafety
measures the expected closest distance between the ego
plan and the object predictions, computed as follows:

usafety(τ,S) =
K∑

k=1

w(k) min
t=1...Tf

||τt − x(k)object,t||2. (7)

In practice, the improvement of the safety utility dimin-
ishes if the agents are far away from each other. Therefore,
we upper bound the utility by a safety threshold dsafe:

usafety(τ,S) = min(dsafe,

K∑
k=1

w(k) min
t=1...Tf

||τt − x(k)object,t||2).

(8)
B. Example Task 2: Warning for Parallel Autonomy

A pre-collision warning system is widely adopted in
parallel autonomy (or shared autonomy), as a vehicle shared-
control framework [11], [40], [41] that monitors driver
actions and warns before an unsafe event could happen. The
warning system differs from the planning system in a few
ways. First, it requires a joint predictor for both ego agent

2We follow existing conditional behavior prediction literature [31], [33]
to generate predictions conditioning on the future ego plan. Such predictors
have demonstrated to predict reactive agent behaviors and improve accuracy,
and are useful for a wide range of planners that generate initial candidate
plans using simplified prediction models, such as [38], [39].

and object agent, as the ego agent is controlled by a driver
and the future path is unknown to the predictor. This requires
predicting the joint behavior in the future to determine if a
near collision is likely. Second, it provides no task-specific
input to the predictor, as it only sends a warning to the driver
and does not induce any actual interactions with the world.
As a result, the predictor produces prediction samples S by
taking only the observed agent states as inputs.

The warning system is a binary decision making system
that chooses an action from IW = {warn,¬warn}. The
utility of a warning action is equivalent to the likelihood
of near collision between the object agent and the ego
agent. To compute the near collision likelihood, we follow
the two-step procedure given the joint prediction samples
S = {(w(k), x

(k)
ego , x

(k)
object)}Kk=1 for the ago agent and the

object agent. First, the system computes the collision score
r(k) ∈ {0, 1} as a Boolean value for each trajectory sample:

r(k) =
(

min
t=1...Tf

||x(k)ego,t − x
(k)
object,t||2 < dwarn

)
, (9)

where dwarn is the minimum safety distance threshold al-
lowed. The collision score is 1 if the closest distance between
two agents is smaller than this threshold, and 0 otherwise.

Next, we compute the overall collision likelihood by tak-
ing the expected collision score r as the weighted sum of in-
dividual warning scores: uW (warn) = r =

∑K
k=1 w

(k)r(k).
Intuitively, the utility of ¬warn is the likelihood of no near
collision, i.e. uW (¬warn) = 1− uW (warn).

To compute the ground truth optimal decision, we compute
the likelihood of near collision from the observed future tra-
jectories following the same procedure in Eq. (9). Since the
observed future trajectories are deterministic, the resulting
likelihood is either 0 or 1.

V. EXPERIMENTS

In this section, we show experimental results in two
different tasks to demonstrate the advantage of our proposed
task-informed predictor on a naturalistic driving dataset.

A. Dataset

We train and validate our model in the Waymo Open
Motion dataset [36]. It is one of the largest motion predic-
tion datasets in terms of the number of scenes, total time,
and prediction horizon, i.e. 8 seconds with 80 time steps.
More specifically, we focus on the interactive dataset that
is mined to cover interesting interactions. This allows us
to demonstrate the effectiveness of our model in compli-
cated long-term interacting scenarios. We follow the standard
train/validation split from the dataset.

B. Example Task 1: Planning for Autonomous Systems

1) Model Details: The MLP in the state encoder has 32
neurons, followed by ReLU and dropout layers with a rate
of 0.1. The LSTM has a hidden size of 32 and an output
dimension of 32. The task information encoder encodes the
planned trajectory of the ego agent, as the task-specific input
V , through an MLP with 32 neurons, followed by ReLU and
dropout layers with a rate of 0.1. The trajectory decoder uses



a two-layer MLP with 32 neurons to output S that includes
the predicted trajectory samples and their weights. We choose
α = 20 to keep the two loss magnitudes on the same scale,
and β = 5 to prioritize safe driving. The model is trained for
20 epochs and is optimized using Adam [42], with a batch
size of 32 and a learning rate of 10−3. It takes approximately
2 milliseconds to generate all samples in each example.

2) Task Details: To simulate the planning task, we se-
lect the ego agent and the object agent randomly from
the interactive pair in the Waymo data. The ego planner
simulates three planned trajectories based on the observed
future trajectory of the ego agent. It interpolates and scales
the trajectory coordinates by 0.8x, 1.0x, and 1.2x at each time
step to simulate conservative driving, normal driving, and
aggressive driving, while imposing limits on acceleration and
speed following [43]. This simple approach provides multiple
driving options while ensuring the plans are realistic and
closely follow the agent intention from data (see examples
in Fig. 3), yet one can use an arbitrary planner to supply the
plan candidates in practice.

In order to find the ground truth optimal plan, we also
have to simulate the reactive behavior of the object agent in
the future, which depends on the interaction type between
two agents. When the object agent is yielding to the ego
agent in the data, we modify its future trajectory with an
equal chance to either speed up to pass or slow down to
keep yielding, in response to the conservative ego plan. We
keep its future trajectory unchanged in response to the other
two ego plans. In contrast, when the object agent is being
yielded by the ego agent in the data, we modify its future
trajectory with an equal chance to either slow down to yield
or speed up to maintain the lead, in response to the aggressive
ego plan. Simulating realistic object agent behavior for
simulation purposes is a topic of ongoing research [44]. In
our experiments, we follow a simple heuristic based on how
humans normally react to others and find it to be realistic
and effective. In addition, to validate the representativeness
of our simulation model, we have experimented with an
additional simulation model based on IDM, as in [45], and
observed consistent improvements in task performance using
our proposed approach. Full results are available in Table IV.

We choose the threshold dsafe to be 3.64 meters as the 10%
percentile of the pairwise closest distances in the Waymo
dataset. This value is smaller than the radius of a regular car
with a length of approximately 4.5 meters and a width of
approximately 2.0 meters [46].

3) Quantitative Results: We compare our proposed model
TIPP , with a Task-Agnostic Predictor (we refer to it as
TAP in the rest of the experiments) that uses the same
model as ours, but is trained with only the accuracy loss
in Eq. (4). This baseline is equivalent to the baseline model
proposed in [36] and represents a broad prediction literature
that ignores predictions in downstream tasks or decouples
prediction and the tasks. In addition, we demonstrate that
our proposed approach can be applied to a different utility
function, TIPPa, that is trained for the same planning task

Model minADE↓ minFDE↓ AUC-ROCP ↑ AUC-ROCPa↑
TAP 2.80 6.44 0.594 0.616
TIPP 2.89 6.54 0.667 0.586

TIPPa 2.93 6.51 0.555 0.697

TABLE I: Comparison between our TIP and the baseline
model, in terms of prediction accuracy and task performance,
on two tasks P and Pa. The task-informed predictors trade
off little accuracy to much better task performance. Our
approach supports multiple utility functions, as suggested by
the relevant metrics highlighted in the colored cells.

α minADE↓ minFDE↓ wADE↓ wFDE↓ AUC-ROC↑
0 2.80 6.44 5.76 14.32 0.594
1 2.83 6.47 5.82 14.46 0.613
5 2.85 6.52 5.89 15.07 0.623
20 2.89 6.54 6.66 16.69 0.667

100 4.01 8.67 9.72 23.14 0.676

TABLE II: Performance of TIPP as a function of the task
loss coefficient α.

but represents a drastically different altruistic planner (Pa):

uPa(τ,S) = uefficiency(τobject) + βusafety(τ,S), (10)

where τobject is the simulated trajectory of the object agent
that reacts to the ego plan τ . This utility function models an
altruistic planner that favors the object agent as opposed to
the ego agent. Such a planner is commonly seen in robotics
social navigation that minimally interferes with humans [21].

We evaluate each model on prediction accuracy and task
performance. The prediction accuracy is measured by mi-
nADE/minFDE metrics [12], as standard in motion predic-
tion benchmarks [36], [47]. In addition, we present weighted
ADE (wADE) and weighted FDE (wFDE) metrics that
measure the expected errors given the predicted weights. The
unit of all accuracy metrics is in meters. We measure the task
performance through recall and fall-out. Recall measures the
percentage of optimal plans that are successfully recognized.
Fall-out measures the percentage of false alarms, i.e. sub-
optimal plans that are wrongly recognized as optimal. We
plot the recall and fall-out at various thresholds, as receiver
operating characteristic (ROC) curve [48], and compute its
area under the curve (AUC) score to determine the task
performance. As our planner is dealing with a multi-class
decision making problem, we compute the AUC-ROC score
using the one-vs-one methodology, which is insensitive to
data balance [48].

We report two separate AUC-ROC metrics, AUC-ROCP

and AUC-ROCPa, depending on which utility function is
used to determine the ground truth optimal plan. The results
are summarized in Table I, where we color the cell to
highlight the results measured by their relevant metrics.

Trade off accuracy for better task performance While
the task-agnostic model (TAP) achieves the best prediction
accuracy, our model achieves much better task performance
at the cost of little accuracy. More specifically, compared
to TAP, TIPP improves the task performance by 12.29%
at the cost of 1.55% accuracy loss in terms of minFDE,
and TIPPa improves the task performance by 13.15% at



the cost of 1.09% accuracy loss. In most cases, the task
performance matters more than the prediction accuracy, as
the planner interacts directly with the world and a small error
may lead to undesirable outcomes. We present the trade-
off between prediction accuracy and task performance by
varying α values, as in Table II.

Adapt to multiple utility functions We show that our
model can be adapted to multiple utility functions within
the same planner task, through results highlighted by the
yellow cell. For instance, when training with a different
utility function uPa that favors altruistic behavior, our model
achieves good task performance on the relevant metric (e.g.
TIPPa achieves a high AUC-ROCPa score), although it tends
to perform poorly on the drastically different task, as these
two tasks adopt competing objectives on being “selfish”
versus being “altruistic”. In practice, given a specific task,
the user can specify the utility function that best describes
the task objective to serve their own need.

4) Qualitative Results: In Fig. 3, we present a represen-
tative scenario to demonstrate the advantage of our model
compared to the task-agnostic baseline. In this scenario,
the planner proposes two candidate plans3 (in magenta)
for the ego agent, whose observed trajectory is in red:
one normal plan that yields to the object agent, and one
aggressive plan that speeds up. For each plan, we visualize
the simulated reactive future trajectories of the object agent
in cyan and its observed trajectory in blue. In this example,
the normal plan is favored over the aggressive plan, as the
latter leads to a near collision. The predictions (in olive) of
our predictor and the baseline are visualized in Fig. 3(a) and
(b), respectively. In Fig. 3(b), the task-agnostic predictor TAP
generates predictions that indicate near collisions for both
plans, which lead to a higher utility for the aggressive plan
as it travels further. In contrast, in Fig. 3(a), our predictor
TIPP generates predictions that help better approximate the
utility for each plan – the normal plan comes with a higher
utility as no near collision is detected, and the aggressive
plan results in a lower utility due to a near collision indicated
by the predictions. As a result, TIPP helps find the correct
decision to choose the normal plan.

C. Example Task 2: Warning for Parallel Autonomy

1) Model Details: The task-informed predictor model for
the warning task leverages the same structure as described in
Sec. V-B.1, except that it does not include a task information
encoder (e.g. the predictions are conditioned only on past
observations). In addition, the utility defined in Eq. (9) is not
differentiable due to the Boolean comparison operation. So
we utilize a soft warning score using the sigmoid function:

r(k) = sigmoid
(
dwarn − min

t=1...Tf

||x(k)ego,t − x
(k)
object,t||2

)
. (11)

The soft score is close to 1 when the closest distance is
smaller than the safety distance threshold, and close to 0
otherwise. We use the same distance threshold of 3.64 meters
as in the planning task.

3We omit the conservative plan in the discussion for the sake of simplicity.

(a) Our proposed method TIPP

(b) Task-agnostic baseline TAP

Fig. 3: Predictions from TIPP (a) and TAP (b) in a rep-
resentative example, where the aggressive plan (colored in
magenta on the bottom of each subfigure) is less favorable
than the normal plan (colored in magenta on the top of each
sub-figure), as it leads to a near collision with the object
agent, as indicated by the diamond markers. TIPP generates
predictions (in olive), which indicate a near collision for the
aggressive plan and no collisions for the normal plan, to
help the planner choose the correct decision. TAP generates
predictions that indicate higher utility for the aggressive plan,
leading to the wrong decision.

2) Quantitative Results: We evaluate the performance of
our model using the same accuracy and task metrics as in
the planning task. In the following, we present a series of
experiments to validate the advantage of our model.

Trade off accuracy for better task performance We
perform a study on the trade-off between prediction accuracy
and task performance, by tuning the coefficient of the task
loss α in Eq. (3). The results are reported in Table III. When
α is 0, the model is equivalent to the Waymo baseline [36]
as a task-agnostic predictor (TAP) that is optimized only
for accuracy. This model achieves the best accuracy metrics.
As α increases, the task performance improves at the cost
of prediction accuracy. We use α = 20 in the rest of the
experiments, as it achieves a good balance between accuracy
and task performance. In practice, the choice of α depends
on the specific task requirement.

We further compare the performance of our model to an
interactive prediction model M2I [13] that achieves the state-
of-the-art performance in the Waymo benchmark, which
yields a minADE of 3.79 meters, a minFDE of 8.40 meters,
and an AUC-ROC score of 0.362. The comparison shows that
our model is able to achieve much better task performance,
i.e. at α = 20, despite using a simple prediction backbone.

Support task with limited samples We examine the per-
formance of our model by varying the number of prediction
samples. As depicted in Fig. 4, our proposed model TIPW

achieves much better task performance, by sacrificing little
accuracy at different numbers of samples. For instance, at
4 samples, it improves the AUC-ROC score by more than
3 times at the cost of 8.13% minFDE (and 5.00% wFDE)
loss compared to TAP, which produces predictions without



α minADE↓ minFDE↓ wADE↓ wFDE↓ AUC-ROC↑
0 4.00 10.57 7.06 20.24 0.165
1 4.05 10.68 7.13 20.46 0.299
5 4.19 10.98 7.32 20.92 0.449
20 4.65 11.43 7.87 21.25 0.655

100 5.29 12.01 12.42 26.46 0.776

TABLE III: Performance of TIPW as a function of the task
loss coefficient α. Task performance significantly improves
at the cost of prediction accuracy.

Fig. 4: Prediction accuracy (minFDE and wFDE) and warn-
ing task performance (AUC-ROC) as a function of the
number of prediction samples K from TIPW (solid lines) and
the baseline TAP (dashed lines). Compared to TAP, TIPW

achieves much better task performance across all samples at
the cost of little accuracy. The task performance for TIPW

converges at K = 4, indicating its predictions serve as
approximate sufficient statistics for the warning task with
only a few samples.

considering the effects on downstream tasks. Besides, the
task performance for TIPW stabilizes at 4 samples. This
demonstrates that TIPW provides predictions that summarize
the influence by nearby agents as approximate sufficient
statistics for the warning task using only a few samples.

Robust to noisy utility estimates We further investi-
gate how robust our predictor is when trained with noisy
utility estimates, to probe our approach under imperfect
information about the task. At training time, we add to
the estimated utilities a random Gaussian noise with zero
mean and increasing variance levels and observe that the
task performance decreases slightly by 3.08%, within a noise
level of 25% of the magnitude of the utility, compared
to a standard TIPW model that is trained without noise.
The observation demonstrates that our approach is robust
to perturbations in the utility estimates during training, as
an example of imperfect task information, or an example of
adapting to a task with a slightly different utility function.

Handle multiple object agents We performed additional
experiments by training TIPW to predict joint future trajec-
tories of up to 4 agents, including 3 object agents. Compared
to the TAP baseline that has a minFDE of 10.03 meters and
an AUC-ROC score of 0.226, TIPW achieves a much higher

Fig. 5: Comparison between TAP (left) and TIPW (right) in a
warning scenario, where the closest distance is indicated by
the diamond markers. The sample indices are annotated to
help associate joint predictions. Our model TIPW generates
predictions (in olive and orange) that help identify multiple
instances of near collisions, especially through joint samples
#2 that match with the observed future trajectories.

task score of 0.314 with a slightly worse minFDE of 10.57.
This demonstrates that our predictor works well for more
than two agents. Full results are available in Table V.

3) Qualitative Results: We present a representative warn-
ing example in Fig. 5, where the two agents are getting
too close according to their observed future trajectories. The
closest distance is indicated by the diamond markers. The
sample index k is labelled to help identify joint predictions.
From the left plot, we see that the task-agnostic baseline
fails to identify a likely near collision. Although it predicts
a near collision with joint samples #3, they are predicted
with a very low probability, i.e. smaller than 1%. In contrast,
our predictor on the right identifies multiple near collision
instances, especially through samples #2 that successfully
predicts the object agent is going to cross the ego agent’s
path, which matches with what happens in the data. As a
result, its predictions indicate a high likelihood of collision
and lead to the correct warning decision. This example also
verifies that in the downstream task, it is usually not required
to generate perfect predictions, as long as the predictions
cover sufficient statistics for the task (e.g. the predictions
indicate a collision).

VI. CONCLUSION
We propose a task-informed motion prediction system, in

which predictors are trained to both make accurate predic-
tions and support correct decision making in a downstream
task. By leveraging a specification of the task, we allow the
predicted samples to provide approximate sufficient statistics
of the environment for the task and support a variety of tasks,



without requiring a full differentiable task for co-training. We
demonstrate our predictor in two tasks on the Waymo dataset,
and show its advantage through quantitative and qualitative
experiments. Future work includes further improving the
task performance through a stronger backbone model and
performing experiments in additional benchmarks.
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Model AUC-ROCP ↑ AUC-ROCPa↑
TAP 0.732 0.680
TIPP 0.802 0.620

TIPPa 0.623 0.825

TABLE IV: Comparison between our TIPP and the baseline
model TAP, in terms of the task performance, by using an
IDM model as in BARK to simulate realistic ado agent
behaviors. We observe consistent improvements in task per-
formance with a different simulation model.

α minADE↓ minFDE↓ wADE↓ wFDE↓ AUC-ROC↑
0 6.16 10.03 7.34 13.48 0.226
1 6.21 10.18 7.43 13.60 0.232
5 6.44 10.46 7.57 13.81 0.251
20 6.59 10.57 8.52 15.07 0.314

100 7.32 11.52 14.51 22.48 0.477

TABLE V: Performance of TIPW as a function of the
task loss coefficient α when predicting for 4 agents. Task
performance significantly improves at the cost of prediction
accuracy.

APPENDIX

A. Additional Experiments in Planning Task

In this section, we present additional experiments in the
planning task that demonstrate our model works with an
additional simulation system.

1) IDM Simulation Model: We performed additional ex-
periments by adopting the IDM model used in BARK [45]
to simulate ado agent behaviors. The results are summarized
in Table IV. We observe that our proposed approach shows
improved performance in the task performance under a
different simulation model, which is consistent with what
we observe in Table I.

B. Additional Experiments in Warning Task

In this section, we present additional experiments in the
warning task that demonstrate our model works for more
than two agents.

1) Multiple Object Agents: We performed additional ex-
periments in the warning task by using our proposed predic-
tor to predict joint future trajectories for 4 agents, including
the ego agent and 3 closest object agents in each scenario.
The warning signal is triggered if any of the object agents
is getting too close to the ego vehicle trajectory, using the
same criteria as in Eq. (9). The comparison is summarized
in Table V. The results show that our proposed predictor
is able to improve the task performance by a large margin
(39%), at the cost of little accuracy (5.4% for minFDE), with
a reasonable α value of 20, compared to the task-agnostic
baseline (α = 0).
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