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Highlights:  

 Adopting tipping-point theory to transcriptomes 

 Robust framework for the identification of critical-transition signal at tipping points  

 Statistics on a high probability space enables the tipping-point analysis of 

cross-sectional data  

 Application to gene expression of neuroblastoma reveals a gene regulatory 

network transition and underlying mechanisms  

Summary 

Abrupt and irreversible changes (or tipping points) are decisive in disease and normal 

phenotypic progress. Often, however, computational approaches detect critical-

transition signals (CTSs) indicating tipping points from longitudinal data – which often 

are not available for patient transcriptomes. Here we adopt historical tipping-point 

approaches to cross-sectional data by modeling high probability spaces of 

phenotypes. We formulate this task as a generalized CTS-searching problem and 

derive a robust algorithm to solve it. We construct a comprehensive scoring scheme 

and successfully apply the scheme to lymphoma, lung-injury, heart-development, and 

neuroblastoma systems. Thus, we identify a spatial gene-expression feature for 

systematic dynamics at phenotypic tipping points, which can be exploited to infer 

functional genetic variations and transcription factors. Our framework (‘BioTIP’) can 
analyze not only time-course but also cross-sectional transcriptomes and is compatible 

with noncoding RNA profiles. Additional knowledge discovery that explores the critical 

transition of a system can be tested using our approach. 

Introduction 

‘Tipping-point’ theory has historically been used to characterize critical transitions and 
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been widely applied to ecosystems, climates, and other complex systems in various 

fields (1). In this theory, complex system dynamics exhibit abrupt shifts between two 

distinct, stable states. Each stable state is characterized by a quick recovery rate 

from perturbations within a large basin of attraction maintained by specific attractors 

(e.g., steady gene interactions). Therefore, monitoring a system for increased 

oscillations and correlations can indicate a competition between two controlling factors 

of adjacent stable states, thus identifying critical-transition signals (CTSs) (2). 

Accurately modelling biological CTSs is of crucial importance, as they are associated 

with disease-phenotype transitions (Fig 1a). Phenotypic transitions are prevalent in 

disease progress, such as epithelial-mesenchymal transition, metabolic transition, 

and tumor-immune interactions (3-5). Because the first order for cellular function is to 

enable transcription, transcriptomic CTSs can shed light on disease mechanisms (6-8). 

However, there exists a gap between tipping-point theory and transcriptomic application 

(Fig 1b). Practically, the only available tool, the R package earlywarning (9), analyzes 

univariate data, while biological data is frequently multivariate. Biologically, all existing 

transcriptomic CTS studies ignored the effect of long-noncoding RNAs (lncRNA) whose 

expression has been recognized to be of importance in determining tissue and 

phenotype specificity (7, 8, 10-13). Computationally, existing methods for identifying 

CTSs have major limitations: one previous method can detect tipping points only if given 

pre-defined genes (8), and while other methods, such as DNB (dynamic network 

biomarker) and its variations (6), support both tipping-point and CTS identification, they 

require the user to specify the parameter to cluster genes. Furthermore, existing 

methods are designed for longitudinal cohort studies and thus cannot be efficiently 

applied to cross-sectional transcriptional data. 

Here, we introduce an advanced biological tipping-point (BioTIP) scoring scheme to 

characterize transcriptional CTS in a high probability space defined by phenotype, 

rather than an individual time-course space. The assumption is that slight 

perturbations of a hidden process (i.e., expression of a master regulator) could trigger 

a critical phenotypic transition through interrupting a gene regulatory network (GRN). 

As proof of concept, BioTIP was applied to three benchmarking datasets and 

compared with existing methods. Additionally, two CTSs identified from neuroblastoma 

(NB) transcriptomes repeatedly exposed potentially causative factors and epigenetic 

mechanisms for GRN transitions. This study demonstrates the broad utility of tipping-

point theory for a wide range of complex disease systems. 
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Results 

The BioTIP scoring system 

To fill the gap between theory and transcriptomic application, particularly for the CTS 

identification in widely available transcriptomes of complex disease, we designed a 

detailed five-step analytical scheme (Fig 1c).  

i) For data pre-procession, BioTIP inherits a concept of ‘phenotype-defined 

states,’ assuming the GRN within a state represents the probability distribution of the 

expression-configuration effects that maintain this state (6, 10, 14).  

ii) BioTIP can find increased variance without normal-control samples. When 

selected, this feature employs a relative transcript fluctuation (RTF)-score that assesses 

the variance of transcripts t𝑟 among patients in a state r, relative to its complement set t𝑐𝑟 of patients outside the state (i.e., a relative ‘control state’). This gives 

 𝑅𝑇𝐹(𝑡)|𝑟 = sd(t𝑟)sd(t𝑐𝑟)      (Formula 1)  

Given a large sample size, the empirical optimization of RTF by bootstrapping samples 

can pre-select robustly variable features (genes), therefore minimizing the error due to 

mislabeled samples or heterogeneity. 

iii) It is essential to cluster pre-selected features into ‘functional’ modules that 

will serve as the inputs of downstream scoring calculation. BioTIP constructs densely 

connected subnetworks (or modules) based on random walks on graphs (RW) (15). In 

contrast, hierarchical clustering (HC), requires prior knowledge to set either a 

partitioning threshold or a limit for the largest sub-cluster (6, 7). Alternative strategies, 

including semi-supervised Partitioning Around Medoids (PAM), prove challenging when 

trying to optimize a number of intended clusters -- the parameter of K (11). A simple 

partitional clustering by splitting (16) is too limited as it returns only two modules. RW 

avoids these pitfalls while generating results that generally agreed with four other 

clustering methods (Fig S1a) and constructing relatively concentrated modules with 

modest module size (Fig S1b). Therefore, RW is as efficient as conventional methods 

without requiring prior knowledge of the resultant clusters. 

iv) The two most essential indicators of an impending tipping point are 

increased transcript correlation and variance (2). BioTIP quantifies these indicators by 

first employing the DNB score (6), which we renamed as a module-criticality index 

(MCI). For a state r and its pre-selected transcript module m, comparing transcript 

deviation and correlation in this module t𝑚  relative to its complement set t𝑐𝑚, gives 

 𝑀𝐶𝐼(𝑚)|𝑟 = 𝐴𝑣𝑔(𝑠𝑑(t𝑚.)) × 𝐴𝑣𝑔( | 𝑃𝐶𝐶(t𝑚𝑖 ,t𝑚𝑗) | )𝐴𝑣𝑔(𝑃𝐶𝐶(t𝑚,t𝑐𝑚)) |𝑟            (Formula 2)  
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Taking the absolute value (|.|) is meaningful because both positive and negative 

feedbacks are indicative of a looped regulatory network. The module with the highest 

MCI is termed the dominating “biomodule” for each state. 

v) To further predict critical transitions and determine their significance, 

BioTIP employs a composite index of critical transitions (Ic) (8). Given a biomodule m^ 

defined from a state r with samples s𝑟., the Ic compares pair-wise correlations between 

samples (k, l) to that between transcripts (i, j) :    

 𝐼𝑐(𝑟)|𝑚^ = 𝐴𝑣𝑒( | 𝑃𝐶𝐶(t𝑚^𝑖,t𝑚^𝑗) | )𝐴𝑣𝑒(𝑃𝐶𝐶(s𝑟𝑘,s𝑟𝑙))              (Formula 3) 

Following the theoretical induction, Ic(r) reaches its maximum value at the estimated 

tipping point r^ when given a successful biomodule m^ (8). Therefore, BioTIP can 

assess empirical significance for any CTS identification. 

Lastly, an exploration in the biological relevance of CTS transcripts is introduced (Fig 

1d). Because co-regulated GRN can amplify the effect of an upstream transcription 

factor (TF), we reason that CTS identification will allow for novel predictions of master 

regulators at or near the top of the regulatory hierarchy including noncoding variants. 

These relevance analyses include (but are not limited to) DNA-binding enrichment 

analysis, NB-susceptibility loci scan from genome-wide association study (GWAS), and 

additional knowledge discovery from CTS on disease progress.  

Reproducibility, robustness, and empirical significance in transcriptomic data 

analysis  

In transcriptome analysis, feature-preselection leverages between dimension and 

information. We first examined whether BioTIP performs robustly to feature-preselection 

choices, using a benchmarking dataset (GSE6136). In this dataset, murine lymphomas 

were originally grouped into five states according to their clinical presentation, pathology 

and flow cytometry (17), and the normal-tumor-transitional ‘activated B cell’ (P2) state 

was previously defined as a tipping point (6). BioTIP recaptured this critical transition, 

regardless of its parameter of feature-preselection with empirical significance (Fig 2, a-

b). 

Using the same dataset, we then tested whether BioTIP is sensitive to the way 

phenotypic states are defined. Note that global gene expression patterns of aggressive 

lymphomas (P5) are more similar to activated B cells (P2) than resting B cells (P1), and 

one P5 and one P3 sample showed the most similarity to P2 samples (Fig 2c) (17). 

Therefore, we re-assigned this margining P3 sample into P2 to generate a new but 

relative state definition; and instead re-assigned the clinically distinct P5 sample into P2 

to simulate a misclassified state definition. As expected, BioTIP recaptured the P2 state 
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from the relative but not the misclassified sample definition (Fig 2, d-e). The enriched 

TF-binding motifs were consistently stable among the promoters ([-500,+200]nt) of 

these different CTS genes (all with the P2-identification) (Fig 2f). A similar stability was 

observed with a larger promoter-window size ([-1k,+500] nt). Additionally, two simplified 

phenotypic definitions of samples indicated P5 as a tipping point with the same CTS 

identification (Fig S2, a-c). We conclude that BioTIP is stable when given clinically and 

transcriptionally related definitions of states, particularly with repeatable TF predictions.   

Next, we showed that BioTIP produces more significant CTS predictions than existing 

methods, having applications to both time-course and cross-sectional data. While DNB 

lacked empirical significance (Fig S2c), the BioTIP identification showed a global 

maximum specifically at the normal-disease transitional ‘activated B cell’ state (Fig 2a). 

We repeatedly observed this improvement in a time-course data analysis, in which 

temporal gene expression data of lung tissues collected from air-exposed (as control) or 

phosgene-exposed mice at nine time points (GSE2565, Fig S2d). Although CTSs at 8h 

had been reported by the DNB methods (6, 18), previous identifications lacked the 

global maximum (red dot vs. yellow boxes, Fig S2e) or focal empirical significance (Fig 

S2f). In contrast, BioTIP identification showed a global maximum significantly at 8h for 

the phosgene-exposed mice (solid red line, Figs 2g, S2g). We conclude that BioTIP 

outperforms three existing tipping-point scoring approaches for empirical significance. 

Biological applications  

We have demonstrated the CTS identification from gene expression profiles measured 

by microarray, although lncRNA transcriptome contributes significantly to the dynamics 

and diversity of cell specificity. Therefore, it is important to identify CTS from total RNA-

seq profiles that cover lncRNA transcriptome. We first tested BioTIP on available time-

course data of human embryonic stem cell differentiation to cardiomyocytes 

(GSE115575, S Method) (19). We identified 237 CTS transcripts containing important 

cardiac or neural developmental regulating genes, e.g., CACNA1D, CDH13 (30, 31). 

Although more functional evaluations are required, the identification of the cardiac 

progenitor stage could be a meaningful tipping point (Fig 2h) because, in a similar 

cardiac differentiation system, early beating cardiomyocytes were observed only 

afterwards (20).  

Then, a focused application to cross-sectional NB transcriptomes demonstrates three 

impacts on computational genomics. First, NB represents complex disease systems 

that require a data-driven model because there is limited knowledge on its 

heterogeneous mechanisms (e.g., few common variants with modest effect size) (21, 

22). Second, regardless of distinct risk-stratifications between which no transition has 

been reported on individual level, high Myc-pathway activity and low neuronal 
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differentiation associate with poor outcome (23), suggesting an underexplored GRN 

trajectory. The availability of multi-omics data (24) (Table S1) allows for a systematic 

integration to understand GRN transitions. Lastly, transcriptomic profiles of NB had 

been collected not only from large populations (n=498, GSE49711, Table S2) (25) but 

also been sequenced for not only coding but also noncoding RNAs.     

We identified a critical transition appearing at the Low-or-Intermediate-Risk (LIR) state 

in both event-free (EF) and event-occurring (E) populations (Fig S3). The ‘tipping-point’ 
character was verified by an increased variability and transcript correlation among the 

CTS transcripts at the LIR state (Fig 3a). Derived from independent cohorts, the two 

CTSs at the LIR-state significantly overlapped, sharing 65 transcripts including lncRNAs 

(Fig 3b, P<2e-16), thus indicating a common transcriptional configuration committing to 

phenotype-defined states in NB.  

To understand how lncRNAs impact GRN, we evaluated the network-degrees of 

lncRNA-gene links. In both identified CTSs, lncRNAs and genes exhibited a significantly 

higher proportion of connections than gene-gene or lncRNA-lncRNA connections did 

(P<1.4e-7, Fig S4, a-b, S Method). Over 90% of these co-expressed lncRNA-gene 

pairs resided on different chromosomes (Fig S4c), agreeing with the fact that most 

heritability of gene expression is due to remote trans-regulation (26).  

It’s notable that both CTSs were significantly depleted with differentially expressed 

transcripts (Fig 3c, yellow box), confirming that a CTS cannot be identified by 

conventional statistics on group difference in mean (6). We therefore asked whether 

CTS transcripts could disclose underappreciated genetic variants, given that most 

noncoding variants had modest effect size and thus need to define function with 

transcriptomic information (22). Overall, four lncRNAs and five genes (Figs 3c, S4d, red 

and blue dots, respectively) are CTS-marked with promising functional significance for 

future investigation (Table S3). One notable finding was gene DCDC2, whose copy-

number-gain presented in 6 out of 29 NB tumors studied (27) and lied adjacent to NB 

suppressive lncRNA pairs CASC14/15 (28). Note that eight suggestively (8e-5<P<5e-5) 

susceptibility loci  were overlooked in the previous GWAS (29), which all appear to have 

some connection with NB in the literature (Table S4). 

To infer the biological mechanisms underpinning a phenotypic transition through the 

identified CTS transcripts, we performed upstream regulator analysis (Fig 3d). TF-

binding motif analysis of the identified two sets of LIR-CTS promoters revealed known 

TFs implicating neurological development and disease, such as YY1 (30).   

In summary, BioTIP captures unique CTSs based on correlations and deviations among 

transcriptional dynamics, which are uncharacterized by traditional statistics for state 

averages, thus shedding light on potential causative mechanisms that tip the phenotypic 
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transitions alongside time-course or GRN transitions between stratified non-time-course 

states.  

A model of CTS-recognized GRN suggesting metabolic reprogramming 

We subsequently investigated the mechanisms underlying the GRN transition in NB by 

focusing on the 13 recurrently identified TFs (Fig 4a). In GRN, little malfunction of 

master regulators may have enlarged consequence, and network hubs often indicate 

master regulators. Using Ingenuity pathway analysis (IPA) (31), 11 TFs were involved in 

a disease-associated network in which NHF4A stood out as a hub (Fig 4b). HNF4A 

gene encodes HNF4α, a nuclear transcription factor that binds DNA as a homodimer, 

controls the expression of many genes, and interacts with over thousands of proteins 

(32). 

We tested the presumption that HNF4α may cooperate with the well-known NB-

associated myc-family to implicate NB tumor progression. In line with the significant 

number of shared target genes between HNF4α and N-myc (OR=3.4, Fig 4c), we 

further examined the transcriptional dependence (i.e., global fold changes between high 

HNF4A-expressing NBs versus low HNF4A-expressing NBs). This analysis presented a 

pattern strongest among the LIR samples -- a positive correlation between HNF4A- and 

MYCN-dependence, reverse correlation between HNF4A- and MYC-dependence, and 

reverse correlation between MYCN- and MYC-dependence (Fig S5a). Surprisingly, we 

recaptured this pattern across all samples, and also in three independent cohorts (Fig 

S5b). Furthermore, there were reports supporting transcriptomic MYC-HNF4A co-

regulation (33, 34). In NB, a recent study predicted HNF4α working together with N-myc 

as activated upstream regulators of proteins overexpressed in MYCN-amplified 

compared to non-amplified tumors (35). We conclude that HNF4α may involve a 

temporal transcriptional coordination underlying the GRN transition in NB. 

We then searched for the potential role of HNF4α in NB tumorigenesis. Confirming its 

leading enrichment among CTS promoters (Fig 3d), there were 39 HNF4α-targeted 

CTS genes (OR=12) in contrast to only 7 N-myc-targeted CTS genes (OR=0.2) (Fig 4c, 

Table S5). These 39 genes significantly over-represented the Reactome ‘lipoprotein 
metabolism’ pathway (GO:0042157, P<2e-16) and the biological process ‘protein-lipid 

complex’ (GO:0032994, Fig 4d). These results supported a notion of how metabolic 

stress makes trade-off between the endogenous synthesis and exogenous uptake of 

fatty acids that are essential for tumor energy production and protein modification (36).  

We next tested whether HNF4α-targeted lipid genes spotlight any metabolic features 

that derive the NB ontogenesis from its neuroectodermal origin. This was motivated by 

both the above observation and the report that lipids were particularly elevated in NB 

and associated with adverse clinical outcomes (37). Among human NB cell lines 
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(GSE89413, Table S6, Fig S5c), 8 of 9 HNF4α-targeted, lipid-related CTS genes were 

expressed more in tumorigenic N-type cells than in non-tumorigenic S-type cells (Wilcox 

t-test P=7e-6, Fig 4e). These results support a therapeutic potential of lipotoxicity for 

children with NB by influencing cancer metabolism (38). 

Since LR- and HR-NB have distinct phenotypes and no ‘transit’ has been reported on 

individuals, to explain our results, we propose a new model regulating the CTS-derived 

GRN (Fig 4f). In the model, a subtle but fine-tuning CTS network reshapes tumor 

microenvironmental potentials, which lead to distinct phenotypes that are irreversible 

and thus present strong, conventional core network signals.  

In summary, BioTIP provides a mathematical basis to identify the critical GRN transition 

from cross-sectional data by seeking a maximum score of probability distributions. On 

the one hand, the CTS-GRN identified from time-course data could be involved in 

pushing the system over the saddle-node tipping point towards stable points. On the 

other hand, the CTS-GRN identified from cross-sectional data could reprogram the 

shape of the epigenetic landscape. In either case, a critical-transition state reflects the 

vulnerable regime of the GRN that could be reversible (39). Therefore, CTS derives 

novel microenvironment insights in the context of phenotypic transitions beyond the 

specific context of neuroblastoma. Additional knowledge discovery that explores the 

critical transition of a system can be tested using our approach.  

Discussion 

This work introduced an advanced computational framework, BioTIP, which adopts 

tipping-point theory to identify CTSs among phenotypic states. Using BioTIP, we 

recaptured the known normal-lymphoma transitional state, the time-point just before 

critical lung injury, the stem-cell differentiating day just before heart beating, and the LIR 

state in NB. These signals were previously overlooked due to their insignificant 

expression change in group-mean tests. 

A broader significance of this study lies in the fact that applying pharmacological 

intervention during the fragile and reversible window of state transition has the most 

potential for halting disease progression (5, 12). For example, intermediate-risk NBs 

have been shown to have high cure rates and are susceptible to chemotherapy 

(reversible) (40). Thus, this study serves as proof-of-concept that transcriptional 

signatures can be indicators of a reversible state (or GRN) in disease progression 

and may help improve treatment strategies.  

It is worthwhile to point out three methodological contributions of BioTIP to aid new 

biological discoveries, thus having broad applications.  
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1) Given the underlying assumptions that critical transitions exist alongside a 

phenotypically defined progressive trajectory, BioTIP is robust, reproducible, 

and sensitive in CTS identification. 

2) BioTIP performs transcriptomic analysis on phenotypic units (sharing regulatory 

mechanism) by identifying the ‘probability-distribution transition’ and 
demonstrating its ability to reveal master regulators of disease phenotypes. Its 

application to cross-sectional data has the advantage of removing random noise 

that may also be present in CTS (2). Distribution-transition pinpoints 

transcriptomic changes whose individual effects are insignificant in static 

statistics, but whose coherent oscillation makes a unique dynamic signature of 

GRN. 

3) Transcriptomic architecture of complex traits may be dominated by lncRNA 

interactions where lncRNAs are controlled by upstream TFs and which in turn 

affect gene expression (26). However, the small effects of lncRNA expression 

are hard to detect. The CTS transcripts propose a new theoretical path for linking 

weak lncRNA signals to trans-regulatory GRNs and disease phenotypes. In this 

way, BioTIP provides immense value by spotlighting gene-lncRNA-shared TFs 

that may mark disease-state transitions. 

Certain limitations of the BioTIP approach must be addressed. This approach relies 

on sample-grouping, which is not always practical. When normal controls are 

unavailable, BioTIP uses a ‘relative control’ by comparing one state against the other 

complement states in the same disease. This requires a large sample size and 

enrollment of most states of a disease. Additionally, it remains unclear whether the 

current framework can correctly identify multiple critical-transition states that are 

postulated in some complex biological systems (41, 42).  

After applying BioTIP to NB transcriptomes, we reported four systems biology outlooks: 

1) The CTS analysis could facilitate the discovery of functional loci from GWAS-

findings, providing versatile perspectives for future biomarker research and the 
development of treatment. In this way, this model goes beyond the previous 

‘omnigenic’ hypotheses (26) by considering GRN dynamics. Because small-scale 

variants are able to escape natural selection’s strong constraints against large-

effect variants (43, 44), grouping individuals into phenotype-defined groups 
allows us to unveil the ‘distribution transition’ that is seemingly trivial at the 
individual level but significant alongside the population-wide windows. 

2) HNF4α may be a master regulator of the transcriptional regulatory hierarchy. The 

HNF4A GRN may engage in repressive histone modification and be affected by 

other genes’ expression, such as CTS member HNF4A-AS and known NB core 

pathway members MYC and MYCN (Figs 4f, S4d). A complex if not 
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contradictory role of HNF4α in tumor progression has recently emerged in cancer 

of multiple organs and embryonal cells (45-50). The role of HNF4α in tumor 

progression is complex because transcriptional regulation of HNF4A is likely to 

be temporal (51). 

3) Epigenetic regulation plays a role in phenotypical CTS. The presence of histone 

deacetylases (HDACs, Fig 4b) is of particular interest given that the HNF4α1 
(isoform 1) recruits HDAC activity to target promoters and thus mediates multiple 

interactions (52). In multiple cancer cell lines, a HDAC inhibitor has been shown 

to partially recover p53-mediated repression and target HNF4α modifications, 

thus seeming to serve as an effective treatment for advanced carcinomas (53, 

54). Furthermore, HDACs are known to control MYCN function and are 

upregulated in chemotherapy-resistant NB cells (55). Therefore, a functional 

interaction seems to exist among the key genetic regulators, epigenetic regulator 

HDAC, and the identified transcriptional CTS in NB tumorigenesis.  

4) Our prediction brings the lipoprotein-metabolism-associated neural cell 

microenvironment to the forefront of attention. Dynamic CTS-GRN may involve 

lipid metabolism that helps cancer cells thrive in a harsh tumor microenvironment 

(36). Indeed, increased lipid accumulation has been associated with NB 

suppression and adverse clinical outcome (37, 38). In this way, this application 

pokes a novel computational inference for understanding the epigenetic 

microenvironment impacted by temporal GRN dynamics. 

In conclusion, studying the perturbed connectivity in a transcriptional network between 
two equilibrium states can identify important CTS biomarkers (56, 57). The identified 

CTS and their upstream regulators are novel treatment targets for making use of a 

fragile and reversible state in disease progression. We expect future functional follow-

up on CTS genes to underscore many underappreciated mechanisms such as lipid-

metabolism alteration in cancer (58). We expect the CTS concept will have broad utility 

for computational analysis of gene-regulation networks and single-cell transcriptomes in 

a wide range of biological systems. 

STAR Methods 

CTS identification from NB transcriptomes 

NB samples were categorized into four states based on the phonotypic Children’s 
Oncology Group (COG) risk group criteria (59). Given the lower expression levels of 

lncRNA relative to coding genes (60), we applied a mild ‘expression’ cutoff that 
leveraged noise for lncRNAs’ transcriptional insights. 48.5k (80%) of transcripts 

remained after this cutoff (the cross-sample average expression level ≥1 on log2 scale). 
20.6k (57.5%) of these transcripts were lncRNAs. A robust RTF-score was calculated 

by bootstraping 80% of samples (n=100) in each state to decrease the impact of 
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individual heterogeneity. This bootstrapping pre-selected a variety of transcripts ranging 

from 27 to 274 at each state, and the LIR state showed increased and scattered 

transcript variance (Fig S3a). After employing a network partition strategy, each pre-

selected transcript set was further divided into 2-10 modules (Fig S3b). Then, a 

dominating module, herein the ‘biomodule,’ was identified by ranking the MCI for each 

state (Fig S3c). Again, the biomodule of the LIR stage showed the highest MCI-value, 

in both populations. This critical transition was confirmed by the pattern of Ic -- the Ic of 

the LIR-derived biomodule peaked at the LIR-state. Additionally, the observed Ic was 

significantly higher than the scores (Ic*) of any randomly combined transcripts at the 

LIR-state (black line versus grey lines in Fig S3d). Sample-size-controlled bootstrap 

analysis further confirmed a higher value for the observed Ic for the LIR patients than 

any randomly grouped patients (empirical P<0.001). 

Integration of GWAS findings with CTS identification in NB 

Seeing as GWAS rarely identifies single variant-trait associations but instead finds 

blocks of associated variants in linkage-disequilibrium (LD) blocks (61), we scanned 

163 NB-associated blocks hosting significant or suggestive NB-susceptibility SNP(s) 

(GWAS P<5e-5, S Method) (62). Because regulatory interactions are frequently 

observed within topologically associating domains (TADs) (63, 64), it was assumed that 

most NB-associated cis-actions would happen in the 151 TADs defined by the 163 LDs. 

Querying these 151 NB-associated TADs with the identified CTSs allowed for 

pinpointing nine TAD regions with susceptible SNPs and CTS transcripts. 

Motif-enrichment analysis 

A promoter was defined as the 2k-nt window ([-1,500, +500]) (NB study) and/or 700-nt 

window ([-500, +200]) (mouse lymphoma study) around the CTS transcription start site 

(TSS). The blacklist, an identification of problematic regions of the human and mouse 

genome, was removed for the downstream analysis (65). Enrichment was evaluated for 

1,571 known DNA binding motifs (S Method). The significance was considered with the 

criteria: FDR <0.05, average binding-affinity score >1; and the breadth of enrichment 

(using a 10% ranking threshold) >15%. 

Define TF-target genes in NB  

673 ‘HNF4α-target genes in NB’ (Fig 4c) are the intersection of 4,576 HNF4(α)-binding 

targets and 3,434 HNF4A-dependently expressed genes. HNF4(α)-binding targets were 

the union from two resources. In the first, over 1.1k targets were defined in the MSigDB 

database (v3.1) (66). In the second, 3.9k targets presented in vitro ChIP-seq signal at 

promoters, which was defined as [-1000, 500]nt around TSS, in both the GEO and 

ENCODE databases (Table S1). In parallel, the HNF4A-dependent genes in NB were 

detected from four independent cohorts of NB patients (E-MTAB-1781, E-MTAB-
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179, GSE3960, and GSE49711). A gene with significant dependence (FC>1.5, 

FDR<0.05) occurring in any one of the four cohorts was counted as ‘HNF4A-dependent 

in NB.’ Using the same methods, we defined 2,845 c-myc targets in NB and 2,381 N-

myc targets in NB. 

N- and S-type NB expression  

The Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of 26.8k 

transcripts in 41 human cell lines were downloaded from GEO (GSE89413), among 

which 39 were NB cell lines. From the literature (Table S6), we annotated ten 

neuroblastic (N-type) and three substrate-adherent (S-type) NB cells. Lowly expressed, 

and noncoding transcripts were excluded, leaving 16k ‘expressed’ coding genes with an 

average FPKM across all cells > 0.01. Normalized rank values were assigned to these 

expressed coding transcripts per cell, 𝑅 = rank(FPKM+a)N , where N is the number of all 

expressed transcripts and a=1e-6 is a parameter to adjust zero value for log-

transformation. 8 out of the 9 HNF4A-targeted lipid genes in the CTS identification were 

expressed. Therefore, their R values were compared between N-type and S-type cells 

using the Wilcox test (Fig 4e). 
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Figure 1. Tipping-point theory and adaption to gene expression data analysis.  

a, Schematic illustration of samples (balls) in a ‘tipping point” (red), where a tiny 

perturbation can trigger a critical transition from one stable state to another (green). In a 

stable state, the samples show lower gene-gene variation across their homogenous 

population (embedded panel, green balls). Therefore, increased gene expression 

variance and correlation are the detectable critical transition signal (CTS)-features 

(embedded panel, red balls). 

b, Comparing the functions of BioTIP to that of seven previous publications. BioTIP and 

these publications study biological critical transition signals (CTSs), and the modeled 

gene expression feature(s) are denoted by colored square(s) on top. Abbreviations are 

as follows. a: Feature selection requires a normal (or, time zero) control group; b: Used 

the previous-time point as a relative control; c: Empirical evaluation was conducted for 

gene biomarkers but not for the identified ‘tipping-point;’ #: Network partitioning requires 

prior knowledge on gene-gene interaction; **: Analysis was conducted on coding-gene 

methylation profiles. HC: Hierarchical clustering; PAM: Partitioning Around Medoids; 

PCC: Pearson Correlation Coefficient. 

c, A five-step analytics pipeline of the BioTIP method for identifying tipping points and 

the corresponding biomarkers (multiple CTS transcripts).  

d, Example of potential downstream implications of BioTIP to understand gene 

regulatory network dynamics. Abnormally expressed CTS genes might reprogram a 

normal epigenetic landscape by an amplified effect of local disease susceptibility or 

transcription factor activity.  
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Figure 2. Robustness of the BioTIP identifications and exemplified applications to 

benchmark datasets.  
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a, BioTIP results given an originally reported 5-state sample-definition, in which P2, the 

tipping point between normal B cells and lymphoma, is identified with a set of 35 genes 

presenting a significantly higher score at P2. Plot shows index of critical transition (Ic, y-

axis) against state (x-axis). Red line indicates score of observation against random 

genes (grey).  

b, Venn-diagram depicting two-thirds of the above original CTS identification was 

recaptured after setting an alternative parameter, the percentage of pre-selected genes. 

The P-value of enrichment was estimated using Fisher’s Exact test (FET) against 1134 

commonly selected probes. OR: Odds ratio.  

c, Principle component plot visualizing global gene expression patterns, based on all 

18k expressed mouse gene probes in this dataset (S Methods). Each node is one 

sample, and color denotes the phenotypical states. Dashed-circle spotlights two 

samples (GSM142409 in green and GSM142418 in yellow) whose gene expression 

patterns are similar to the transitional P2 samples.  

d, Left: BioTIP results given 1% probe selection and a related 5-state definition (i.e., 

grouping an early lymphoma sample (GSM142409) into the activated B cells)*. Right: 

Venn-diagram showing one-fifth of the original CTS identification was recaptured by this 

“related” CTS-identification (n=120). FET was used to estimate the P-value against 22k 

measured probes in this dataset. 

e, BioTIP results given 1% probe selection and a misclassified 5-state sample-definition 

(i.e., grouping an aggressive lymphoma sample (GSM142418) into the activated B 

cells)*. No overlap between the 35 original CTS probes and this misclassified CTS-

identification (n=51). 

f, Left: Venn-diagram showing overlap among the enriched transcription factor (TF)-

binding motifs among CTS-promoters of P2 in each category (original 5-state with 1% 

probes preselected; original 5-state with 5% probes preselected, and related 5-state 

with 1% probes preselected). Promoters ([-500, 200] around TSSs) were tested using 

the R-function PWMEnrich, and significance was considered with criteria: P<0.005, 

(average binding-affinity) score >1.1; and the breadth of enrichment (using a 10% 

ranking threshold) >15%. 

g, BioTIP results of time-course data of disease model (GSE2565). This dataset profiles 

the gene expression of two groups of CD-1 male mice after exposing to air (as control) 

and phosgene, respectively. The Ic-score of 172 identified genes significantly peaked at 

the 8 hour with phosgene-exposure (solid red line*), but not the air-exposure (dashed 

red line). The top horizontal dashed line indicates an empirical significance threshold 

which is 2-fold above the range of random scores.  

h, BioTIP results of time-course data of normal tissue development (GSE115575)*. This 

dataset profiles 7 different time-points (in triplicates), covering key stages of human 

embryonic stem cell differentiation to cardiomyocytes. Embedded histogram shows the 

empirical significance of identifying the cardiac progenitor as a tipping-point, the 
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observation score (red) sitting far higher than scores of random sample grouping 

(black). 

*: Plot shows Ic versus state, identifications (yellow), and random genes (grey); and the 

number of identified CTS transcripts (or probes) is given in parentheses on top. 
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Figure 3. Applying BioTIP to two neuroblastoma transcriptomes identifies two 

sets of CTS transcripts, both predicting a risk-transitional regulation at the Low-

or-Intermediate-risk (LI) state. L: low-risk; HI: High-or-Intermediate-risk; H: High-risk. 

a, Scaled expression levels of the CTS transcripts (lncRNAs in red and mRNAs in 

black) showing increased fluctuation at the identified tipping-point (yellow triangle). 

Vertical lines separate the samples into four risk states, with sample sizes listed below. 

b, Venn diagram comparing the CTS transcripts identified between two populations (EF 

and E). Between the two identified CTSs, there are 48 shared mRNAs and 17 shared 

lncRNAs. Enrichment was assessed using FET against its corresponding transcript 

background given on the bottom. OR: Odds Ratio. 

c, Manhattan plot showing the 379 suggestive NB-susceptibility SNPs extracted from 

publication (via the GRASP database) with a cutoff of P<5e-5. The dashed red line 

represents the conventional significance threshold of P<1e-8. Each SNP is marked by 

one dot, and the CTS transcript-localized SNPs are denoted in color. Embedded box 

shows the depletion (OR<0.5) between CTS transcripts and historically differentially 

expressed transcripts (FC>2, FDR<0.05, comparing high-risk patients to non-HR 

patients) in the same transcriptomic dataset.  

d, DNA-binding motifs overrepresented at the CTS-transcription promoters ([1500, 500] 

around TSS) in the event-free population (left) and the event-occurring population 

(right), respectively. TF-binding was tested using the R-function PWMEnrich, and 

significance was considered with criteria: FDR <0.05, Score >1, and the breadth of 

enrichment (i.e. top %) >15% using a 10% ranking threshold. TF motifs recaptured in 

both shown in red. PWM: position weight matrix. 
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Figure 4. HNF4A represents a master regulator of CTS genes that reveal metabolic 

reprogramming in the underlying GRN transitions. 

a, Venn-diagram comparing significant promoter-enriched DNA-binding motifs for the 

two CTS identifications. Gene symbols encoding the 13 commonly enriched 

transcription factors (TFs) are listed. The P-value of overlapping was tested using FET.  

b, Protein-protein-interaction network view of the 13 reproducibly CTS-overrepresented 

TFs (red nodes). Shown are 11 out of the 13 TFs that interact in a network related to 

endocrine system disorders in the Ingenuity Pathway Analysis. 

c, Venn-diagram showing the overlap of all 139 identified CTS genes with the target 

genes of the transcription factors Mycn, and with the targets of HNF4α. These 139 

genes were encoded by 140 CTS mRNA transcripts, in which 39 (=2+37) are HNF4α-

targeted CTS genes. ****: FET P-value<2e-16, given 21k human gene symbols. 

d, HNF4A-targeted CTS genes are over-represented in the Reactome ‘lipoprotein 
metabolism’ pathway (GO:0042157) and the ‘protein-lipid complex’ (GO:0032994). The 

gene symbols of the 9 HNF4A-targeted lipid genes are shown. 

e, Boxplot comparing the gene expression pattern of these HNF4α-targeted lipid genes 

between tumorigenic N-type and non-tumorigenic S-type cells (GSE89413, Table S6). 

The P-value of the Wilcoxon rank-sum test is indicated. One gene was not reported in 

the dataset and thus ignored. 

f, A model of CTS tuner. Left: The BioTIP-scoring system identifies the critical transition 

state and a CTS-mediated gene regulatory network (GRN) from gene expression 

features. Right: The GRN reveals a critical epigenetic landscape reprogramming 

moment in which the flat platform visualizes a relatively unstable state representing a 

vulnerable phenotype. In contrast, the core network of disease was historically identified 

by group-mean difference between later stable states (bottom right). 

 

Appendix 

Supporting Materials are available with this article online, which are a file of five 

Supplementary Figures and a file of other Supplementary Materials including 

Abbreviation, Supplementary Methods, and six Supplementary Tables. More details on 

benchmark data analyses are given at 

https://github.com/xyang2uchicago/BioTIP_application. 
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Figure S1. Random-walk and four transcriptional network partitioning methods in 

the existing CTS-scoring systems.   

a, Heatmap showing transcripts representing different subnetworks (modules, denoted 

in colors), using five different partitioning methods. Shown are 212 transcripts 

preselected in the gene expression variance analysis of neuroblastoma profiles 

(GSE49711, Event-free subpopulation, Low-or-Intermediate-risk state). The top red-blue 

bar indicates whether a transcript represents lncRNA (red) or mRNA (blue).  

b, Boxplots comparing isolated subnetworks derived from different approaches in three 

features: module size, density, and eigencentrality. Left: The number of isolated 

modules by each method is given in parentheses at the top. Middle: The edge density of 

a subnetwork is calculated from the proportion of present edges over the number of all 

possible edges in the subnetwork using the R-function edge_density in the igraph 

package. Note that PAM and HC received the highest density value of 1 because they 

considered all possible gene-gene correlations without filtering out insignificant edges. 

Right: To measure the influence of network nodes in a module, the average vertex 

centrality of each module is calculated using the R-function eigen_centrality.  
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Figure S2. Applying BioTIP to available benchmark gene expression datasets. 

a-b, BioTIP identifications given 1% probe selection and a simplified 4-state (a) or 3-

state (b) sample-definition. Both indicate a tipping point at P5 with the same set of 105 

identified CTS probes. In each panel, plot shows index of critical transition (Ic, y-axis) 
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against state (x-axis). Red line indicates score of observation against random genes 

(grey). No overlap of this misclassified identification with the 35 CTS probes identified 

based on the original 5-state definition (Fig 2a).  

c, Plot showing module-criticality index (y-axis, MCI) against state (x-axis). Red dot 

indicates MCI of 27 published CTS genes, previously identified by the MCI-scoring 

system, against random genes (black box). Although P2 was identified, this signature 

lacks empirical significance because it falls below the third quartile of random scores. 

d, Scheme of the experiment design of a publicly available time-course dataset 

(GSE2565). This dataset is unique because it measured the time-series of both case 

and control in parallel.    

e-f, Plot showing MCI of two sets of previously published CTS genes (y-axis) against 

state (x-axis). The observed MCI scores (red dot) is compared to its size-controlled 

random genes (yellow box) in phosgene-exposed; or in control mice (blue dot vs. grey 

box) per state. Both CTSs were published for a tipping-point identification at 8 hours. 

However, one observed score (right, red) falls into the range of random scores at 8 

hour, and both are lower than the maxim of random scores at other time points.  

g, Plot showing MCI (y-axis) of BioTIP-identified CTS genes against state (x-axis). The 

observed MCI-score (red dot) indicates a transitional state at 8 hour with empirical 

significance not only locally at 8 hour but also globally higher than the maximum random 

score of any time-points. In contrast, the MCI score calculated for control mice (blue 

dot) is the lowest. 
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Figure S3. Applying BioTIP to the gene expression profiles of two neuroblastoma 

populations: (Event-free, EF) and Event-occurring (E) 

a, Boxplot showing the standard deviation (s.d) of preselected transcripts, with transcript 

numbers in parenthesis on the top. In both populations, the LIR state presents the 

highest standard deviation. 

b, A graph view of network modulation determined by the random-walk approach for the 

preselected transcripts at the LIR state. Background colors represent different sub-

clusters (modules). The module size (number of transcripts) is listed in parentheses.    
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c, Bar plots illustrating the MCI scores (y-axis) calculated for each module per state (x-

axis). For each state, the dominating cluster (biomodule) is denoted in grey with module 

size in parentheses. In both populations, the MCI score peaked at the LIR state. 

d, Line plot compares the observed Ic-score (black) to 100 random scores (grey). The 

observed score was calculated for the LIR-state specific biomodule (herein the ‘CTS’) at 
every four states to be compared; the random scores (Ic*) were calculated in the same 

way used randomly-chosen transcripts (listed in parentheses) from the 48.5k-transcript 

background. In both populations, the observed Ic score peaked in the LIR state. 

Additionally, density histogram compares each observed Ic-score to the random results 

obtained from 1000 times of sample bootstraps.  
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Figure S4. Genomic features of the identified noncoding CTS transcripts. 

a, Boxplot comparing network-degree proportion in the two identified CTS from 

neuroblastoma subpopulations, event-free (EF) and event-occurring (E). In each 

network, nodes are CTS transcripts and links are the significant correlation (PCC, 

FDR<0.05). Comparison is between the proportion of only mRNAs (yellow) and the 

proportion of potential ci-regulation (i.e., the number of mRNA-lncRNA pairs over the 
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number of CTS mRNAs, blue). The P-value is calculated using the Wilcoxon rank-sum 

test. 

b, Boxplot comparing network-degree proportion in the two identified CTS from 

neuroblastoma subpopulations, EF and E respectively. Comparison is between the 

proportion of only lncRNAs (i.e., the number of mRNA-mRNA pairs over the number of 

CTS mRNAs, red) and the proportion of potential ci-regulation (i.e., the number of 

mRNA-lncRNA pairs over the number of CTS lncRNAs, orange). The P-value is 

calculated using the Wilcoxon rank-sum test. 

c, Stacked bars comparing all co-expressed (FDR<0.05) lncRNA-mRNA pairs for two 

sets of CTSs whose edge-to-edge distances fall within a certain nucleotide range of 

each other (denoted in colors). The cross-chromosomal pairs take the largest fraction in 

both CTSs. 

d, Genomic view of the CTS transcript HNF4A-AS identified (pink box) overlapping with 

the ENSEMBL-annotation HNF4A-AS1. The neuroblastoma-suggestive SNP (red 

vertical line) is 250k nt away from HNF4A-AS. The occupancy of repressive histone 

marker H3K27me and lack of enhancer marks at both loci suggests their inactivity in 

neuroblastoma cell lines. A shared cis-regulatory region TAD (topological associating 

domain, transparent bar) was obtained from the YUE lab at 

http://promoter.bx.psu.edu/hi-c/. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2020. ; https://doi.org/10.1101/668442doi: bioRxiv preprint 

https://doi.org/10.1101/668442


Supplementary Figures   Page 8/8 

 

 

 

Figure S5. CTS transcripts disclosing underappreciated HNF4α and its potential 

collaboration with MYC proteins N-myc and c-myc in NB progression. 

a, For each state, visualization of the pair-wise transcription co-regulation among five 

regulators after pooling the EF and E subpopulations to enlarge the sample size for a 

Pearson Correlation Coefficient (PCC) calculation. PCC was calculated for pairs of log2 

fold changes by comparing the transcription of the tumors within the upper-quarter of a 

gene (e.g. HNF4A) to the tumors within the lower-quarter levels. Circle size and color 

denote the strength of the correlation, with larger, more saturated colors signifying 

stronger correlations versus subdued, smaller circles. The filled circle indicates an 

empirical significance (P < 0.05, 100 bootstraps of transcripts).      

b, Visualization of the transcription co-regulation among all expressed transcripts for all 

patients in four independent datasets, set to display only significant correlations 

(Pearson correlation p-value < 0.05). Circle size and color denote the strength of the 

correlation, with larger, more saturated colors signifying stronger correlations versus 

subdued, smaller circles. A question mark denotes insignificant PCC. When multiple 

probes measuring the same gene, each probe was independently calculated and shown 

in a colored square. 
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