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Tipping points induced 
by parameter drift in an excitable 
ocean model
Stefano Pierini1,2* & Michael Ghil3,4

Numerous systems in the climate sciences and elsewhere are excitable, exhibiting coexistence of 
and transitions between a basic and an excited state. We examine the role of tipping between two 
such states in an excitable low-order ocean model. Ensemble simulations are used to obtain the 
model’s pullback attractor (PBA) and its properties, as a function of a forcing parameter γ and of the 
steepness δ of a climatological drift in the forcing. The tipping time ttp is defined as the time at which 
the transition to relaxation oscillations (ROs) arises: at constant forcing this occurs at γ = γc . As 
the steepness δ decreases, ttp is delayed and the corresponding forcing amplitude decreases, while 
remaining always above γc . With periodic perturbations, that amplitude depends solely on δ over 
a significant range of parameters: this provides an example of rate-induced tipping in an excitable 
system. Nonlinear resonance occurs for periods comparable to the RO time scale. Coexisting PBAs and 
total independence from initial states are found for subsets of parameter space. In the broader context 
of climate dynamics, the parameter drift herein stands for the role of anthropogenic forcing.

Sudden changes in behavior of a physical system have played an important role in the geosciences since the early 
 1950s1–4; see also Ghil et al.5. �e study of such changes was systematically described, under the name of bifurca-
tions and associated regime  changes6,7. More recently, the term “tipping points” has been introduced from the 
social  sciences8 into the climate sciences by Lenton et al.9 and has attracted considerable attention.

A useful distinction between bifurcations and tipping points (TPs), beyond the rhetorical e�ect of the latter, 
does arise in the theory of dynamical systems with explicit time dependence in the forcing or coe�cients. Such 
systems are opposed to those without explicit time dependence, that can o�en be treated within the framework 
of classical di�erentiable dynamical  systems10,11. �e latter are referred to as autonomous, the former in general 
as nonautonomous. For nonautonomous systems one o�en makes also the distinction between random forc-
ing, which leads to random dynamical  systems12,13, and purely deterministic forcing, which leads to dynamical 
systems that are also termed simply as  nonautonomous14. A more general theory that combines the deterministic 
and random cases is also  emerging15; Ghil &  Lucarini16 provide a discussion of the latter in the climate context.

Kuehn17, among others, has shown how TPs generalize bifurcations in the broader setting of nonautonomous 
and random dynamical systems, by considering the detailed evolution of the system in the neighborhood of a 
TP, while Ashwin et al.18 have classi�ed this behavior into three broad classes: 

(1) B-tipping or Bifurcation-due tipping—slow change in a parameter leads to the system’s passage through a 
classical bifurcation;

(2) N-tipping or Noise-induced tipping—random �uctuations lead to the system’s crossing an attractor basin 
boundary; and

(3) R-tipping or Rate-induced tipping—rapid changes lead to the system’s losing track of a slow change in its 
attractors.

Further perspective is provided by Feudel et al.19 and  Ghil20 on climate applications and by Ashwin, Feudel, 
Wieczorek and  coauthors21–24.

�e autonomous di�erentiable dynamical system’s framework has served the climate sciences well for sev-
eral  decades1–4,6,25. It is mainly the recent interest in anthropogenic climate change and its interaction with the 
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climate system’s natural variability that have led the research groups of Ghil and of Tél26–30, followed rapidly by 
others, to introduce the framework of nonautonomous and random dynamical systems into the climate sciences.

In the context of nonautonomous dynamical systems, we analyze in the present study a problem that has 
received relatively little attention to date: the tipping induced by a parameter dri� in an excitable system, mark-
ing the transition from a stable basic state to self-sustained relaxation oscillations (ROs). Wieczorek et al.31 
investigated such an e�ect in connection with the so-called compost-bomb instability, i.e., an explosive release 
of soil carbon from peatlands into the atmosphere. Kiers and  Jones32 and Wieczorek et al.33 analyzed conditions 
for the occurrence of such R-tipping in excitable systems; see also applications of R-tipping to  ecosystems21,23,24.

Before introducing in more detail the subject of the investigation and the model used, we brie�y summarize 
the concepts of multistability and excitability in climate dynamics. Multistability is one of the main paradigms 
of climate  dynamics6,16,25, in which the system possesses multiple equilibria, typically arising via saddle-node or 
pitchfork bifurcations. Transitions from one equlibrium state to another can occur spontaneously if a threshold 
is crossed, and subsequent bifurcations can lead to limit cycles, tori and strange attractors. Slow, quasi-adiabatic 
changes in a parameter o�en lead to hysteresis between two stable equilibria. �e transition from a nearly ice-free 
climate to a snowball Earth and  back16,34–36 is just one striking example of such behavior. �e tipping induced by 
parameter dri� in multistable climate systems was studied, for example, by Drótos et al.28 and by Kaszás et al.37.

Another key paradigm of climate dynamics is provided by ROs and their  excitability7,38,39. ROs are self-
sustained if a given threshold is passed, otherwise the system is said to be excitable, in which case ROs can be 
excited by a stochastic  process40 through the so-called coherence resonance  mechanism41. An excitable system 
need not have multiple equilibria but must have a basic state that can be an equilibrium point, a small-amplitude 
limit cycle or even a strange attractor occupying a small fraction of the phase space volume visited ultimately by 
the trajectories. Whatever this basic state, the RO is composed of a rapid, large-amplitude transition that leads 
the system to an unstable excited state and is followed by a spontaneous, slow return to the original basic state. 
Relevant examples of paleoclimate and current climate phenomena that have been interpreted in terms of ROs 
in excitable systems are: the ice ages over the late  Pleistocene42, the Dansgaard-Oeschger  events43–47, the Heinrich 
 events34,48,49, the multidecadal variability of the Atlantic Meridional Overturning Circulation  (AMOC50–53), and 
the interannual variability of the Gulf Stream and Kuroshio  Extension54–61.

None of the studies above examined the phenomena under consideration from the unifying viewpoint of TPs 
being crossed due to the gradual change in a key control parameter. Given the previously mentioned pervasive 
e�ects of global warming, it is important to shed further light on its potential impact upon the interannual and 
interdecadal variability of the Kuroshio Extension and AMOC, among other relevant manifestations of intrinsic 
climate variability.

In this spirit, we study herein the four-variable wind-driven ocean model of  Pierini62 and systematically 
investigate its TPs under the action of a smooth dri� in the external forcing. �is low-order, spectrally truncated 
quasigeostrophic model is nonlinear and excitable and the TPs mark its transition from an excitable to a self-
sustained RO regime. In our analysis, ensemble simulations (ESs) will be carried out to estimate the system’s 
pullback attractors (PBAs) and to capture therewith its internal variability.

�e model was originally developed to study aspects of the Kuroshio Extension dynamics that could not be 
investigated with the much more realistic models based on the partial di�erential equations of geophysical �uid 
dynamics because of the prohibitive computational cost required to do so. In fact, the a�ordable computational 
cost of this low-order model did allow stochastic TPs to be  studied63 and the system’s PBAs to be obtained in 
several interesting  cases64–67. Apart from its original oceanographic application, the model should be seen here 
as a mathematical tool used to investigate basic aspects of excitable systems, and the results so obtained could 
be helpful in the broader context of the climate sciences and elsewhere.

�e main issues addressed in the present study are: (a) �nding the forcing amplitude at the TP and its depar-
ture from the corresponding frozen-in bifurcation value; (b) the analysis of the dependence of the TP on the 
forcing’s dri� rate; and (c) the sensitivity of the TP to the period and amplitude of periodic perturbations in the 
forcing.

�e paper is organized as follows. In the next section the mathematical model is described, an operational 
de�nition of TPs is introduced, and the ES approach is discussed. In the subsequent sections, a basic numerical 
experiment is presented and analyzed, several sensitivity experiments are discussed and, �nally, the results are 
summarized and conclusions are drawn.

Model and methods
The model and the experimental setup. �e model used herein describes the wind-driven ocean cir-
culation in midlatitude basins, such as the North Atlantic or North Paci�c. In such a circulation, a western 
boundary current jet, such as the Gulf Stream in the North Atlantic, forms the common boundary of an anti-
cyclonic (i.e., clockwise in the northern hemisphere) subtropical gyre and a cyclonic (i.e., anticlockwise in the 
northern hemisphere) subpolar  gyre7,26,68. �e analysis here is based on the highly truncated spectral double-
gyre model of  Pierini62. �e �ow is two-dimensional and it is con�ned to a rectangular domain; it is described 
by the streamfunction ψ(x, t) , with ψ and the cartesian coordinates x = (x, y) being dimensionless. �e time t 
in the equations below is also dimensionless but we shall use in the text dimensional time, still denoted by t, to 
emphasize the typical time scales of the oceanic phenomena that have inspired the model, namely the bimodal 
decadal variability of the Kuroshio  Extension55,69.

Our quasigeostrophic model is governed by four coupled nonlinear ordinary di�erential equations, written 
here in vector–matrix notation as:
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here the vector �(t) = (�1,�2,�3,�4) contains the coe�cients in the truncated Galerkin expansion of the 
streamfunction with respect to the orthonormal modes {Ei(x, y) : i = 1, . . . , 4} , with ψ(x, t) =

∑4
i=1 �i(t)Ei(x, y) . 

Please see  Pierini62 for the full evolution equation of ψ(x, t) , the de�nition of the matrix operators J and L , the 
wind stress forcing vector w , the orthonormal basis {Ei(x, y)} , as well as for all the technical details and values 
of the model parameters not mentioned here.

Moreover,  Pierini62 noticed that �2 and �4 play a role similar to that of variables that are conjugate to �1 and 
�3 , respectively; see, for instance, Fig. 4 in  Pierini62. Hence, the initial data in all the forward time integrations 
are chosen to satisfy �1 = �2 and �3 = �4

64–66. Moreover, for the sake of convenience, the scaling 10−5
� → � 

is adopted throughout.
�e scalar factor G(t) in the external forcing of Eq. (1) is chosen as a linear combination of a normalized 

climatological, time-independent component γ , a monotonic ramp, and a periodic perturbation:

Here γ , α and β are positive dimensionless constants, ω = 2π/T , while Rτ (t) is the ramp function shown 
in Fig. 1, with τ = t2 − t1 and t1 = 200 year throughout the analysis; the explicit formula for Rτ (t) is given in 
Supplementary Equation (S1). A similar ramp — with a sigmoid, hyperbolic-tangent shape, rather than the 
trigonometric shape given by Equation (S1) herein — was used by Daruka and  Dietlevsen70 in the study of the 
mid-Pleistocene transition (MPT) in the amplitude and mean period of the Quaternary era’s glacial–intergla-
cial cycles. �e MPT and the various approaches used to simulate and explain it are discussed in Section 4 and 
Appendix A of Riechers et al.71

�is ramp is approximately linear near its midpoint and it varies smoothly towards the endpoints t1 and t2 . 
In our analysis, we will characterize the ramp by its steepness δ calculated at its midpoint:

Keeping in mind the original application of model (1) to the Kuroshio Extension dynamics, the monotonically 
increasing component in (2) stands for the e�ect of ampli�cation in the midlatitude winds due to anthropogenic 
warming, while the periodic perturbation can be thought of as the seasonal-to-interannual variability in the 
westerly winds.

�e behavior of the model’s autonomous version, in which α = β = 0 , is discussed in the Supplementary 
Information. �e critical value γ = γc = 1 corresponds to a TP that marks the abrupt transition from small-
amplitude limit cycles to large-amplitude, nonlinear, self-sustained ROs; see Supplementary Figures S1, S2 and 
discussion thereof. In particular, this sudden jump from a small- to a large-amplitude oscillation might be 
associated with a canard-type  transition72.

As an example of the two types of autonomous behavior, for γ < 1.0 and γ > 1.0 , Fig. 2b, d illustrate the 
evolution of �3(t) , initialized at the point marked by the red �lled circle in Fig. 4 below. A very small-amplitude 
periodic solution is plotted, for γ = 0.9 , in panel (b) and a large-amplitude RO, for γ = 1.2 , in panel (d) of 
Fig. 2. In this autonomous case, the value γc = 1 that characterizes transition from small-amplitude oscillations 
to large-amplitude ROs is identi�ed by the light, black dashed line in panels (a, c).

It is worth stressing that ROs can emerge even for γ < γc : a suitable additive noise in G(t) can excite them and 
thus activate coherence  resonance62; hence, γc = 1 identi�es the upper bound of the so-called excitable regime. 
 Pierini63 introduced a stochastic TP γs to de�ne the lower bound of this regime. A similar phenomenon was 
described by  Sutera73 in the Lorenz convection  model3, where it is associated with the existence of a subcritical 
Hopf bifurcation; see Sec. 5.4 in ref.6 and Fig. 5.9 therein. In this earlier work, the role of the unstable RO here 
is played by an unstable limit cycle.

In Supplementary Figure S3 and the related discussion, it is shown that our model possesses the fundamental 
property of excitability when subjected to noisy forcing. �is property is common to the excitable systems rele-
vant to the climate sciences mentioned in the introduction, ranging from  paleoclimatic34,42–49 to  multidecadal50–53 
and down to interannual time  scales54–61.

Tipping point definition for time-dependent forcing. �e question we want to answer in the present 
study is: how does the transition from small-amplitude limit cycles to large-amplitude ROs occur if G(t) is 

(1)
d�

dt
+ �J� + L� = G(t)w;

(2)G(t) = γ + αRτ (t) + β sin(ωt).

(3)δ = αR′
τ |t=(t1+t2)/2.

Figure 1.  De�nition of the ramp function Rτ (t) ; its duration is de�ned as τ = t2 − t1.
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increased gradually from a subcritical value G < γc = 1 to a supercritical value G > 1 ? More speci�cally, at what 
time and for what value of G does the abrupt transition occur? Figure 3 helps clarify this question.

Figure 3a shows the time dependence of G(t) for γ = 0.9 . �us, G passes gradually from its value in Fig. 2a to 
that in Fig. 2c. �e corresponding response is shown in Fig. 3b: the transition does not occur for G = 1 , as one 
might expect it; such a transition would require an in�nitely slow increase of G(t), so as to take the system from 
the excitable regime to the RO regime adiabatically through a sequence of quasi-autonomous states. In fact, if 
we choose to identify the transition time—denoted here as the TP time ttp—as the one at which �3 is less than 
the threshold value �3,c = −50 for the �rst time, then the transition takes place at t = ttp = 707 year, which 
corresponds to G(ttp) ≡ Gttp = 1.11 and is appreciably greater than γc = 1 , cf. Fig. 3a, b.

One might then wonder how robust this TP is. �e simplest way to address this question is to add a sinusoidal 
perturbation to the ramp. In this case, i.e., if β  = 0 , we will use

to characterize the forcing amplitude at the TP. �e example plotted in Fig. 3c, d di�ers from that of Fig. 3a, b 
only by the presence of such a perturbation in Eq. (2), with β = 0.05 and T = 5 year. As a result, ttp occurs earlier, 
at ttp = 563.5 < 707 year, whereas the amplitude is reduced to G∗

tp = 1.029 < 1.11.
�e methodology illustrated in Figs. 2 and 3 will be followed throughout our analysis, but the ESs mentioned 

in the introduction will be used to capture the system’s internal variability, as described in the next section.

(4)G
∗(ttp) ≡ G

∗

tp = γ + αRτ (ttp)

Figure 2.  Typical solutions in the two regimes of the model’s autonomous version, cf. Eq. (1), with α = β = 0 
in the forcing given by Eq. (2). �e constant values γ of the factor G(t) in the forcing are shown in the upper 
panels by a solid purple line, with (a) γ = 0.9 and (c) γ = 1.2 . �e corresponding model solutions are plotted 
for �3(t) in the lower panels (b) and (d); see text and Fig. 4 for the initialization of the trajectories in the lower 
panels.

Figure 3.  Transition from the excitable regime to the RO regime for a ramp forcing in Eq. (2). (a) Time 
dependence of the factor G(t) in the forcing for γ = 0.9 < γc = 1 , α = 0.3 , τ = 800 year, and β = 0 ; (b) 
corresponding response of �3(t) ; see text for the choice of initial states. (c, d) Same as panels (a, b) but for 
β = 0.05 and perturbation period T = 5 year.
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Ensemble simulations. For each time-dependent forcing G(t) used in this study, a 1500-year-long ES 
composed of N = 168 members will be carried out: this will provide an estimate of the system’s PBA. �e initial 
points corresponding to the ensemble members will be regularly distributed at t = 0 in the four-dimensional 
hypercube � ≡ { −70 ≤ �1,�2 ≤ 150; −150 ≤ �3,�4 ≤ 120} . For the sake of graphical representation,we 
will refer to the rectangle Ŵ ≡ { −70 ≤ �1 ≤ 150; −150 ≤ �3 ≤ 120} ⊂ � lying in the (�1,�3)-plane, as 
done in  Pierini64 and in subsequent analyses of model (1). Moreover, in the discussion of the results, we will refer 
to the model’s trajectories as being de�ned in the (�1,�3)-plane but, naturally, the actual trajectories evolve in 
the full four-dimensional phase space.

Figure 4 shows the ESs corresponding to the simulation of Fig. 3a, b, whose single integration is initialized 
at the red point in the upper-le� corner of Ŵ ; the regular grid in Ŵ indicates the 168 initial points for the ES. �e 
de�nition of a TP for the time-dependent forcing introduced above is extended to an ES as follows: ttp is the time 
at which, for the �rst time in any of the ES members, �3 < �3,c.

Results: the basic numerical experiment
In this section, a numerical experiment composed of 80 ESs is presented and discussed; it is denoted as Exp1 
in Table 1 and it serves to study the TP’s dependence on the ramp steepness δ . For this study, we let τ take on 
80 distinct values that range from very abrupt change in the forcing, with τ = 32.5 year, to very gradual, with 
τ = 1316.25 year. Except for τ , all the other forcing parameter values in Eq. (2) here are the same as used for 
the simulations in Figs. 3a, b and 4, namely γ = 0.9 , α = 0.3 and β = 0 . Moreover, for each τ-value, an ES with 
168 initial data—such as that shown in Fig. 4—is carried out in order to simulate the irreducible uncertainty 
associated with the system’s internal  variability74–76. �e ramps in G(t) for the two extreme values of τ are plotted 
in Supplementary Figure S4.

Figure 5 summarizes the results of Exp1–Exp6, but we only discuss here those of Exp1; the results of 
Exp2–Exp6 will be discussed in the following section. �e blue line in Fig. 5a shows the dependence of ttp on τ 
in Exp1: ttp increases monotonically and almost linearly with τ ; the anomalous jumps and �uctuations appearing 

Figure 4.  ES subject to the same forcing used in the single forward time integrations of Fig. 3a, b. �e �lled red 
circle in the oval indicates the initial state used to initialize the four simulations of Figs. 2 and 3. A�er an initial 
transient, it is visually obvious that the ES converges to a stable cylinder-shaped PBA, obtained by the translation 
in time of an autonomous limit cycle.

Table 1.  List of the numerical experiments; see Eq. (2) for the de�nition of the parameters. In experiments 
Exp1–Exp6, the duration τ = t2 − t1 of the ramp takes on 80 di�erent values that range from 32.5 to 
1316.25 year. In experiments Exp7 and Exp8, the period T ranges from 1 to 100 year. For each value of τ or T, 
an ES with 168 initial states is carried out. Quotation marks in the table indicate identical entries.

Numerical experiment γ α τ (year) β T (year)

Exp1 0.9 0.3 32.5–1316.25 0 −

Exp2 0.8 0.4 ” ” −

Exp3 0.9 0.3 ” 0.025 5

Exp4 ” ” ” 0.050 ”

Exp5 0.8 0.4 ” 0.025 ”

Exp6 ” ” ” 0.050 ”

Exp7 0.9 0.3 800 0.050 1–100

Exp8 ” ” ” 0.100 ”
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a�er t ≃ 1100 year will be explained below. �e monotonically increasing trend is obviously due to the fact that 
the greater τ the longer it takes to reach a given value of G.

�e blue line in Fig. 5b shows that Gtp decreases almost linearly up to τ ∼
= 900 year as τ increases. Such a 

negative trend is also expected because, as already observed, the slower the variation of the forcing strength the 
closer the forcing at the TP will be to the autonomous critical value G = 1 , i.e., we expect Gtp → 1 as τ → ∞.

It is important, though, to stress that the range of variability of the ramp’s duration τ considered herein spans 
time intervals that range from roughly 3 to roughly 130 times the typical time scale of the ROs; hence Gtp is 
always substantially greater than unity. Note that the initial plateau for τ ≤ 130 year in Fig. 5b is present because 
for those values the TP is reached at t > t2 , i.e., when G = 1.2.

�us, in the range 130 year < τ < 900 year, as τ increases—and therefore the forcing’s dri� rate δ decreases—
the TP is delayed and the corresponding G-value decreases, but it remains well above the autonomous critical 
value G = 1 . For τ > 900 year, a sudden increase of Gtp occurs in Fig. 5b, followed by a gradual decrease and 

Figure 5.  Dependence of key results on the ramp duration τ in experiments Exp1–Exp6. (a) TP timing ttp 
versus τ ; when a line portion lies in the grey area the tipping occurs a�er the end of the ramp. �e �lled circles 
on the red line indicate the presence of data; their absence indicates that no TP is reached. (b) Forcing values 
G(ttp) at the TP (for Exp1 and Exp2) or G∗

tp (for Exp3–Exp6) versus τ ; the �lled blue circles P1−P3 correspond 
to the ESs for Exp1 shown in Supplementary Figure S5, while the �lled circle P4 corresponds to the orange ES of 
Supplementary Figure S6.

Figure 6.  Same as Fig. 5b but shown as a function of the ramp steepness δ de�ned in Eq. (3). �e solid black 
vertical line in the zoomed inset indicates the ramp steepness δ corresponding to the two ESs of Exp1 (blue line) 
and Exp2 (red line) shown in Fig. 8.
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another sharp increase. We investigate these anomalous behaviors in the Supplementary Information (see Sup-
plementary Figures S5, S6 and S7).

According to Fig. 5a, as τ increases, the TP is delayed and the corresponding value of Gtp in Fig. 5b decreases. 
It follows that, since increasing τ the ramp steepness δ decreases, Gtp must increase with δ . �is increase is shown 
in Fig. 6 for Exp1 by the blue line: the forcing amplitude Gtp at the TP increases steeply and monotonically with 
the dri� rate, except for the anomalous behavior found for δ < 0.0005 and δ > 0.004 . �e latter nonmonotonici-
ties are associated with the appearance and disappearance of local PBAs (see the Supplementary Information).

To complete the analysis of Exp1 we investigate the sensitivity to initial data of the ES members. Supple-
mentary Figures S5, S6 and S7 show that the RO phases tend to cluster in groups or may even exhibit total 
independence from the initial data (TIID), as occurs in Supplementary Figure S5(b) for some of the N trajec-
tories. To obtain information about the phase dependence of the ensemble members, we rely on the parameter 
C introduced by  Pierini64:

here H is the Heaviside step function and r is a prescribed distance. �is functional C gives the number of tra-
jectory pairs whose distance is less than r, normalized by N2 . In general, if the N available trajectories reduce to 
n clusters, each one containing trajectories within the maximum distance r, then 1/n ≤ C ≤ 1 . In the present 
analysis each of these clusters will be denoted as “single trajectory” if r ≤ r0 = 0.5 ; r0 is in fact much smaller than 
the projection of the PBA onto the Ŵ-plane. Note that the extreme case C = 1/n occurs if the N trajectories are 
equally distributed among n single trajectories.

�e particularly interesting case C = 1 ( n = 1 ) implies TIID and is usually referred to as generalized synchro-
nization when the forcing is periodic, because then the unique single trajectory is necessarily synchronized with 
the forcing (e.g.,64,77,78). More generally, the existence of a small number of single trajectories is clearly a case of 
phase  synchronization79–81.

A time-independent parameter can be obtained by averaging C over an interval T0 starting from the tipping 
time ttp:

Figure 7 shows C̄(r, τ) with r = r0 = 0.5 and T0 = 50 year. See Supplementary Figure S8 for a discussion of 
the four red bars. As τ is increased further in Fig. 7, the C̄-values for the ESs reported in Supplementary Fig-
ures S5 and S6 are plotted as the magenta and green bars, respectively. In particular, the unstable trajectories 
corresponding to τ = 1300 year (cyan lines in Supplementary Figures S6 and S7(b)) yield a value of C̄ = 0.96 
close to TIID, as expected.

Results: sensitivity experiments
In this section, we study the experiments Exp2–Exp8 summarized in Table 1, focusing on the changes in TPs 
induced by the changes in the parameters γ ,α,β and τ of the forcing in Eq. (2).

Sensitivity of tipping to the system’s past history (Exp2). In Exp1, we saw that the TP depends cru-
cially on the ramp steepness δ of the forcing G(t), which one can also think of as the dri� rate; see again Figs. 5 
and 6. Ashwin et al.18 de�ned rate-induced tipping for systems possessing multiple steady  states16,82; the blue line 
of Fig. 6 illustrates a similar phenomenon occurring in our excitable system for Exp1.

(5)C(r, t, τ) =
1

N2

N
∑

i,j

H
[

r −

∣

∣

∣
�(i)

τ (t) − �
(j)
τ (t)

∣

∣

∣

]

;

(6)C̄(r, τ) =
1

T0

∫
ttp(τ )+T0

ttp(τ )

C(r, t, τ)dt.

Figure 7.  Dependence of the number C̄ of trajectory clusters on τ for Exp1, with T0 = 50 year and r = 0.5 
in Eq. (6). �e magenta, green and red bars refer to the ESs shown in Supplementary Figures S5, S6 and S8, 
respectively.
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However, a natural question arises: does the TP depend solely on δ , as the R-tipping terminology suggests, or 
does it dependent also—and perhaps crucially—on other parameters, too? To clarify this issue, we designed and 
performed Exp2: it di�ers from Exp1 in that the climatological amplitude in Eq. (2) is reduced from γ = 0.9 to 
γ = 0.8 , while the ramp factor is increased from α = 0.3 to α = 0.4 . As a consequence, Exp1 and Exp2 share the 
same Gmax while, for a given τ , δ is larger in Exp2 then in Exp1. We will therefore be able to compare ESs with 
the same δ but with a di�erent past history.

In Fig. 8, the details of an ES that is part of Exp1 are thus compared with those of an ES within Exp2. �e 
two are chosen so that δ is the same in both, as shown by the vertical solid line in the zoomed inset of Fig. 6, but 
their past histories di�er. In Exp2, both ttp and Gtp are found to be greater than in Exp1. More generally, the red 
solid lines of Exp2 are quite distinct from, and lie well above, the blue solid lines for Exp1 in both Figs. 5 and 6, 
where the dependence of ttp and Gtp on τ and δ , respectively, is plotted.

�us, in the case of forcing that increases monotonically, the transition is not determined by the dri� rate 
δ alone but by both δ and the initial forcing amplitude. More precisely, based on the comparison between the 
dependence of Gtp on past history at given δ for Exp1 and Exp2, as shown in Fig. 6, we can conclude that the 
smaller the forcing amplitude γ < 1 at the beginning of the ramp, the greater the forcing amplitude at the TP 
has to be.

�is result clearly implies a long memory of the past. For example, let us consider the ESs of Exp1 and Exp2 
shown in Fig. 8. Suppose that, in Exp1, at t = ta the model has not yet reached the TP for G(ta) = Ga ; then sup-
pose that, in Exp2, at t = tb the model has not yet reached the TP either for the same G(tb) = Gb = Ga . Still, 
Fig. 8b, d show that, shortly before the TP, the state of the system is virtually the same in both ESs.

In summary, at t = ta in Exp1 and at t = tb in Exp2, the state of the system is virtually the same, δ is the same, 
while the value of the external forcing and its future evolution are the same as well. Yet the TP is reached at very 
di�erent times with respect to the beginning t1 of the changes in the forcing. Since the only di�erence between 
Exp1 and Exp2 is the temporal evolution prior to ta and tb , respectively, this e�ect can only occur if the system 
keeps track of the previous evolution for su�ciently long times. One might expect that, if the system is perturbed, 
such an anomalous behavior would no longer occur.

We will see in the next subsection that, in fact, if the forcing is perturbed by a periodic component, the sce-
nario just discussed changes drastically. Namely, over a wide range of δ-values, the TP depends solely on δ . �e 
latter behavior represents, therefore, a case of R-tipping in an excitable system.

Finally, notice that, unlike in Exp1, C̄ ≃ 1 in Exp2, and thus the latter exhibits TIID for many more values 
of τ , as seen by comparing Supplementary Figure S9 with Fig. 7. An example is provided by the ES of Fig. 8d, 
in which the N ensemble members are well synchronized. �e reason for such a di�erence in behavior deserves 
to be analyzed in detail in a future study. In the next subsection, we will at least investigate whether the TIID 
observed in Exp2 is stable or not.

Sensitivity to periodic perturbations (Exp3–Exp6). It is important to assess the robustness of the 
results obtained in Exp1 and Exp2 with respect to perturbations of the forcing. We saw that a small-amplitude 
periodic perturbation added to the forcing can a�ect considerably ttp and G∗

tp , cf. Figs. 3c, d, while Supplementary 
Figure S7 shows that even when such a periodic perturbation acts only over a short duration it may trigger an 
instability in the solution. �erefore, we now repeat Exp1 and Exp2 by adding periodic perturbations in G, with 
β  = 0 in Eq. (2). �e perturbation period is 5 year and we use two amplitudes, β = 0.025 and 0.05. Exp3 and 
Exp4 correspond to Exp1, while Exp5 and Exp6 correspond to Exp2; see Table 1.

Compare now in Fig. 5 (1) the curve of Exp1 (blue) with those of Exp3 (green) and Exp4 (orange) and (2) 
that of Exp2 (red) with those of Exp5 (brown) and Exp6 (magenta). From panel (a) it is immediately clear that, 
as a result of the perturbation, ttp occurs notably earlier, while panel (b) clearly shows that the forcing amplitude 

Figure 8.  Dependence of the TP on ramp length for two ESs belonging to Exp1 and Exp2 and having the same 
dri� rate δ . (a) Time dependence of the factor G(t) for Exp1 with τ = 600 year. (b) �3(t) of the corresponding 
ES. (c) Time dependence of the factor G(t) for Exp2 with τ = 835 year. (d) �3(t) of the corresponding ES.
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G
∗

tp is notably reduced. Note also that the di�erence (1) between Exp3 and Exp4 and (2) between Exp5 and Exp6 
is quite small, despite their perturbation amplitudes di�ering by a factor of 2.

�ese two �ndings suggest that the TPs that are due to a dri� in the forcing, as in Exp1 and Exp2, are unsta-
ble: a small periodic perturbation shi�s the TPs to values that are then robust with respect to changes in the 
perturbation’s amplitude. �is result will be analyzed in greater depth in a future study and we strongly suspect 
that similar sensitivity to random, rather than periodic, perturbations will be also detected.

Another signi�cant example of the instability of the unperturbed Exp1 and Exp2 concerns the dependence 
of Gtp on δ . We saw big di�erences between Exp1 and Exp2 (blue and red lines in Fig. 6) in this dependence. On 
the other hand, we argued there that, since such di�erences seem to be associated with the system’s full history, 
the same value G∗

tp(δ) could result if the two histories of the forcing were subjected to a periodic perturbation.
�is is in fact what occurs for a signi�cant range of δ-values. Let us focus on δ ≥ 0.0013 in Fig. 6, which is 

beyond the range of anomalous behaviors discussed in connection with the basic numerical experiment. �e 
lines showing Gtp(δ) for the unperturbed Exp1 and Exp2 and the lines showing G∗

tp(δ) for the corresponding 
perturbed Exp3 and Exp5 with β = 0.025 are again reported, for 0.0013 ≤ δ ≤ 0.004, in Fig. 9. For the sake of 
clarity, Exp4 and Exp6, with β = 0.05 , are not plotted, since they yield basically the same behavior.

�e �rst striking di�erence between the unperturbed and perturbed cases concerns the substantially smaller 
values attained by the forcing amplitude at the TP for the perturbed cases, as just discussed. For values of the dri� 
rate approaching δ ≃ 0.004 , the blue and red lines of Exp1 and Exp 2 both tend to the constant value Gtp = 1.2 
because, as already noted, in this limit the TP is reached at t > t2 when G = 1.2 . For decreasing δ the di�erence 
between the two curves increases, as already discussed.

On the contrary, the lines (green and brown) showing G∗

tp(δ) for Exp3 and Exp5 essentially coincide in this 
range. �e memory of the remote past states of the perturbed system is lost, and the same forcing amplitude at 
the TP is reached in Exp3 and Exp5—which, like Exp1 and Exp2, share the same mean dri� rate. In conclusion, 
the green and brown lines of Fig. 9 show a case of R-tipping in an excitable system.

In the Supplementary Information, interesting results are presented concerning the dependence of the phase 
distribution of ROs on the presence and amplitude of periodic forcing (see Supplementary Figures S10 and S11).

Sensitivity to forcing period (Exp7 and Exp8). In the preceding subsection, we have studied the e�ect 
of a periodic perturbation of �xed period T = 5 year on the TPs induced by a dri� in the forcing for varying τ . In 
order to analyze the sensitivity to forcing period, Exp1 is modi�ed in Exp7 and Exp8 to include a periodic forc-
ing in which τ = 800 year is �xed, while the period T varies from 1 to 100 year; see again Table 1. �e depend-
ence of the TP on T in these two numerical experiments is shown in Fig. 10. Like in the previous numerical 
experiments we compute 80 ESs—in this case with T-values regularly distributed in the range 1–100 year—to 
construct the graphs of Fig. 10. Many additional ESs are also computed for T = 1–25 year so as to capture the 
strong variability of ttp and G∗

tp in this range.
Let us �rst focus on Exp7 (light blue lines), which shares the forcing amplitude β = 0.05 with Exp4. For high 

values of T, ranging between 25 and 100 year, ttp and G∗

tp are close to the corresponding value of Exp1, with no 
periodically perturbed forcing (black dashed line). For T ≃ 10–25 year the TP occurs somewhat earlier, while 
for T < 10 year abrupt drops in ttp do occur. �e biggest drop is at T ∼

= 6 year and it corresponds to an earlier 
occurrence of the TP by about 200 year with respect to the periodically unperturbed case. For even smaller 
T, ttp and G∗

tp return to their unperturbed values, while passing through the values that correspond to Exp4 at 
T = 5 year; the latter values are indicated by a red �lled circle.

A similarly anomalous behavior is found in Exp8 for the perturbation’s amplitude β being doubled (brown 
lines in Fig. 10); in this case the sensitive dependence on the period T is even more striking. Chekroun et al.83 
studied such a rough parameter dependence in a truncated version of a periodically driven, intermediate coupled 

Figure 9.  Rate-induced tipping in the presence of periodic perturbations. Same as Fig. 6 but for a limited range 
of δ-values for the unperturbed (Exp1 and Exp2) and corresponding perturbed (Exp3 and Exp5) cases with 
β = 0.025 and T = 5 year.
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ENSO  model84,85 by using the Ruelle–Pollicott resonances of the model’s associated Perron–Frobenius or transfer 
 operator86,87.

In the ENSO case of Chekroun et al.83, the period of the forcing was �xed and given by the seasonal cycle, 
while the parameter δ of interest a�ected the travel time of the equatorially trapped waves and hence the intrinsic 
model periodicity. On the other hand, in the present case the intrinsic period of the ROs is determined by the 
system’s dynamics, while the external-forcing period is being modi�ed. But it is really the ratio of the external-
to-internal frequency that matters, as illustrated in the highly simpli�ed case of Arnold tongues in the standard 
circle  map88,89.

Returning to Fig. 10 (brown line), two peaks at T ∼
= 7 year and T ∼

= 11.2 year are found in Exp8 and, in both 
cases, G∗

tp < 1 : that is, the ROs arise for a time-averaged forcing amplitude that is appreciably smaller than the 
value required for the autonomous system to transit from the excitable to the self-sustained RO regime.

�e abrupt reduction of ttp and G∗

tp occurs for periods T that are comparable to the RO’s typical time scale; 
thus, we are in the presence of a nonlinear-resonance–like behavior. �ese results deserve further investigation 
by relying on some of the tools discussed in connection with the ENSO case above.

Summary and conclusions
Excitable dynamical systems are characterized by large-amplitude relaxation oscillations (ROs), which are self-
sustained once a control parameter exceeds a given threshold, given by γ = 1 in our case. In such a setting, the 
system leaves a basic state—e.g., a small-amplitude limit cycle—visits one or more very distinct states, and then 
returns spontaneously to the basic state. Alternatively, if the control parameter is below that threshold, ROs can 
be excited by a suitable time-dependent external forcing, in which case the ROs are very similar to those aris-
ing in the self-sustained regime. �e excitable-system paradigm plays an important role in climate dynamics in 
general and in paleoclimatology in particular, as discussed in the introduction.

In this paper, we have studied the transition from the excitable to the self-sustained regime subject to the 
action of a smooth parameter dri�. If the dri� is in�nitely slow, the transition will occur at the same threshold 
as for the corresponding autonomous system, but for �nite dri� times the tipping point (TP) marking such a 
transition could be very di�erent. Investigating this problem is, for example, very important for understanding 
how internal modes of climate variability could undergo abrupt transitions in amplitude or character as a con-
sequence of the present smooth increase of atmospheric greenhouse gas  concentrations9,16,74.

We have explored this problem herein by making use of a low-order quasigeostrophic  model62 originally 
developed to study the wind-driven ocean circulation; see Eq. (1). �e model was used in the present paper as 
a prototype of an excitable system, given its RO dynamics and its excitability. �e various forms of the forcing 
were given by Eqs. (2)–(3).

In the basic numerical experiment Exp1, the subcritical climatological amplitude γ = 0.9 was connected to 
the supercritical value γ = 1.2 through 80 ramps di�ering by their duration τ . �e corresponding ramp steep-
ness δ varies essentially in inverse proportion to τ , cf. Eq. (3). For each ramp, an ensemble simulation (ES) was 
performed to obtain an approximate description of the corresponding pullback attractor (PBA).

Note that Pierini et al.65 rigorously demonstrated the existence of a global PBA for the weakly dissipative 
nonlinear model governed by Eq. (1). �e ESs carried out in the present paper provide us with much more 
detailed information on the irreducible uncertainty associated with this excitable system’s internal variability.

Figure 10.  Dependence of the TP on period T in Exp7 and Exp8. (a) TP timing ttp versus period T. �e 
horizontal dashed line indicates the value corresponding to Exp1 for τ = 800 year. (b) G∗

tp versus T. Black 
dashed line as in panel (a), while the gray dashed line corresponds to the critical value of the autonomous 
system. �e red �lled circles in both (a) and (b) indicate the value that is common to Exp7 and Exp4.
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We performed a detailed analysis of the time ttp at which tipping occurs and the ROs arise, as well as of 
the corresponding forcing amplitude Gtp , as a function of τ . �e results were summarized in Fig. 5 and in the 
companion Fig. 6, in which Gtp—or G∗

tp for the periodically perturbed cases, with β  = 0 in Eq. (2)—is plotted 
against the ramp steepness δ.

�e main result is that—as τ increases, and therefore δ decreases—ttp is delayed and Gtp decreases, while 
remaining well above the autonomous critical value G = γc = 1 . �ere are, however, important departures from 
this behavior. For example, in an anomalous dependence of Gtp upon τ , two clusters suddenly appear in the PBA 
and, for a small increase of τ , the �rst cluster disappears, leading to an abrupt forward shi� of the TP; see again 
Supplementary Figure S5. Besides, we found PBAs for which total independence from the initial data (TIID) 
occurs and no ROs appear; such �lamentary PBAs, however, were shown to be unstable, cf. Supplementary 
Figure S7.

Rate-induced tipping or R-tipping (e.g.,18) has been extensively studied in the literature for systems possessing 
multiple steady  states16,22,24,82. �e latter is, however, not the case of system (1) herein. Still, in our Exp1, we saw 
that, in fact, the tipping does depend on the forcing’s dri� rate δ (blue line of Fig. 6).

To investigate whether other conditions contribute to the tipping besides the dri� rate, we studied Exp2 to 
compare ESs with the same δ but with di�erent forcing histories. Figure 6 shows that the tipping does depend 
crucially on the temporal evolution of the forcing prior to the autonomous critical value Gtp = 1 being attained. 
�is implies a long memory of the system’s forcing history under certain circumstances. We found, though, 
that when the forcing is periodically perturbed (i.e., when β  = 0 in Eq. (2)) tipping induced solely by the dri� 
rate—that is, R-tipping—does occur, as found for an extended range of dri� rates.

Other interesting features were found in Exp2. Unlike in Exp1, TIID behavior is present for many values of 
τ , as shown in Supplementary Figure S9 in terms of the clustering parameter C̄ de�ned in Eqs. (5) and (6). �is 
prevalence of TIID behavior suggests that approaching the TP from smaller initial values of the forcing amplitude 
G(t) and with a larger δ facilitates the appearance of phase coherence. Disjoint local PBAs also coexist for some 
ramp steepness values; see, for instance, Supplementary Figure S11 (panels (a, b)). Moreover, for some ESs in 
Exp2, the TP is reached only well a�er the forcing amplitude has achieved a constant value, cf. Supplementary 
Figure S11 (panels (a–d)).

In the four numerical experiments Exp3–Exp6, we have investigated how robust the results obtained so far 
are with respect to small-amplitude periodic perturbations superimposed on the ramp; see again Table 1. As 
a consequence of these perturbations, ttp occurs noticeably earlier and the forcing amplitude G∗

tp at the TP is 
substantially reduced, cf. Figs. 5 and 6. On the other hand, the amplitude β of the periodic perturbation does 
not seem to play a decisive role: doubling β from a value of 0.025 to 0.050 does not a�ect the TP substantially.

Other intriguing features emerge in these periodically perturbed numerical experiments: (1) the disjoint PBAs 
and the �lamentary PBAs found in Exp2 for β = 0 disappear in Exp5 and Exp6, cf. Supplementary Figure S11 
(panels (e–l)); (2) in Exp6, during the long-term evolution a�er the TP and while subject to time-independent 
forcing, phase coherence is suddenly lost, cf. Supplementary Figure S11 (panels (i–l)); and (3) the TIID found 
in many cases in Exp2 is preserved under periodic perturbations, cf. Supplementary Figure S10 (panels (c, d)). 
�ese latter results are particularly unexpected in view of the less robust character of the other features observed 
in Exp1 and Exp2.

Finally, in Exp7 and Exp8, sensitivity to forcing period T was investigated. Here, the parameters take on the 
Exp1 values and the ramp steepness is held constant, with τ = 800 year; two amplitudes of the forcing perturba-
tion were considered ( β = 0.05, 0.1) , while the period varied over a wide range of values, T = 1−100 year. For 
very large periods, the tipping occurs at values close to those found in Exp1.

On the other hand, for periods T in the forcing that are comparable to the ROs’ typical time scale, a dramatic 
drop in the TP timing ttp and corresponding forcing amplitude G∗

tp occurs, cf. Fig. 10. For two particular periods, 
the forcing amplitude at the tipping is well below the value required for the autonomous system to transition from 
the excitable to the self-sustained RO regime. �us, we are in the presence of nonlinear-resonance-like behavior.

�e strong possibility of rough parameter dependence raised by these results needs to be explored further 
by bringing to bear the tools needed to study the system’s associated transfer operator and its Ruelle–Pollicott 
resonances. More generally, the many interesting types of tipping e�ects obtained in this work should be further 
investigated.

Particularly intriguing is the dependence on model history, which seems to contradict the Markovian char-
acter of its governing equation (1). Memory e�ects have been studied with considerable attention in the climate 
sciences over the last decades (e.g.,90–92, and references therein). But in the present case, the memory seems to 
apply collectively to the single or multiple PBAs, and not so much to the individual trajectories. Some guidance 
for this situation may be available in the work of D. Mukhin and  colleagues93,94, who studied regime transitions 
in an ENSO model with memory. A complementary way of studying regime transitions, in a paleoclimate con-
text, can be found  in95.

In conclusion, a wealth of interesting information was obtained in the present investigation on the TPs 
induced by parameter dri� in an excitable system. We believe the results are of potential interest in several areas 
of climate dynamics. Earth system models of intermediate complexity or even more realistic climate models may 
experience tipping scenarios similar to those found herein; these scenarios could lend themselves to the kind 
of study exempli�ed in our work.

On the other hand, some scenarios found with the present simple model may not show up in more detailed 
models because of the many parameterizations needed to insure the numerical stability of the  latter16,96. Our 
simple model could, if so, at least suggest the possible existence of such hidden scenarios and stimulate their 
investigation.
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