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Abstract

Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces
the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and
more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and
disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA.
Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response
generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function;
as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated
transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a
reducing environment in host cells that suppress host defense responses including the oxidative burst and callose
deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the
generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a
non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like
features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These
results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic
fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this
mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish
infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve
pathogenic success.
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Introduction

Sclerotinia sclerotiorum is a devastating and economically important

necrotrophic fungal pathogen capable of infecting more than 400

species of dicotyledonous plants worldwide [1,2] causing annual

crop losses exceeding $200 million in the United States alone [2].

Diseases caused by S. sclerotiorum are responsible for considerable

damage, have proven difficult to control (culturally or chemically),

and host genetic resistance to this fungus has been inadequate

(http://www.ars.usda.gov/Research/docs.htm?docid = 20320&

page = 1). Necrotrophic plant pathogens require dead host tissue in

order to obtain nourishment. Traditionally, the resulting disease

symptoms have been attributed to direct killing of host tissue via

secretion of toxic metabolites by the pathogen. Recently however,

emerging data from several pathosystems have suggested that

necrotrophic fungi are tactically more subtle in the manner by

which pathogenic success is achieved, though the mechanistic

details are not known. Consistent with other necrotrophs, S.

sclerotiorum produces a wide array of degradative lytic enzymes (e.g.

endo, exo-pectinase, cellulase, hemicellulase, protease), which are

believed to facilitate colonization and host cell wall degradation

[3,4]. We have been investigating the role of fungal secreted oxalic

acid (OA) in pathogenicity of S. sclerotiorum [5–9]. OA (dicarboxylic

acid) is remarkably multifunctional and contributes to numerous

physiological processes (e.g. reduction in pH, acidity-induced

activation of enzymes, elevation of Ca2+, guard cell regulation,

vascular plugging with oxalate crystals) that augment fungal

colonization of host plants (reviewed in [10]). Additionally, studies

with OA-deficient mutants strongly suggest that OA is an essential

pathogenicity determinant and a key factor governing the broad

pathogenic success of this fungus [2,5,11]. We have shown that OA

is a fungal elicitor that induces cell death in host plant tissue

resulting in hallmark apoptotic-like features including cell shrink-

age, DNA laddering, and TUNEL reactive cells in a time and dose

dependent manner. Oxalic acid also aids Sclerotinia pathogenicity

indirectly acting as a signaling molecule, via manipulation of host

ROS [12].

Reactive oxygen species have long been considered detrimental

to cells since they can be toxic; causing damage to proteins, lipids

(membranes) and nucleic acids. Recent data however suggests a

more subtle and versatile role for these small molecules. When

present at low levels, ROS may actually be beneficial, serving as

PLoS Pathogens | www.plospathogens.org 1 June 2011 | Volume 7 | Issue 6 | e1002107



secondary messengers in intra and inter-cellular signaling

pathways. Regulation of redox homeostasis is now an active area

of research, particularly within pathogen/host interactions (e.g.

hypersensitive response and the oxidative burst) and adaptation to

abiotic stress (e.g. drought, salt), all of which have strong

correlations with ROS signaling.

One of the earliest and most universal resistance responses

mounted by plant tissues against an invading microbe is the

oxidative burst, a controlled release of O2
2 and H2O2 at the point

of pathogen challenge. Once triggered, the oxidative burst is

believed to be required for pathogen defense and is expressed in

almost all plant species [13]. Additionally, the oxidative burst also

occurs during compatible interactions, but the timing and

magnitude differ. Previous studies have shown that the oxidative

burst can be suppressed at low pH [14]. As such, the release of

oxalate could enhance fungal pathogenicity by acidifying host cells

and dampening the oxidative burst. In this paper, we provide real-

time evidence that this potent necrotroph modulates host-PCD

pathways through secretion of OA, by a mechanism independent

of acidification. Surprisingly, this process is initiated by a reducing

environment generated by the fungus in host cells. As a direct

consequence of this redox manipulation, the fungus subverts host

defense responses, inhibits the oxidative burst, and prepares the

infection court for the establishment of disease. Moreover, OA2

(non-pathogenic) mutants are unable to suppress plant defense

resulting in active recognition of the fungus by the plant that is

accompanied by delimited cell death and callose formation

suggestive of an HR-like response.

Results

Plants challenged with an OA-deficient Sclerotinia
mutant (A2) exhibit a phenotype reminiscent of a plant
hypersensitive response
Previously we showed that OA, secreted by Sclerotinia, is a

pathogenicity determinant and elicitor of plant programmed cell

death [12]. Consistent with these observations, we noted an

intriguing difference between the disease phenotypes of wild type

and OA-deficient A2 Sclerotinia infected plants (Figure 1). In

contrast to wild type Sclerotinia, which causes overwhelming disease

and runaway cell death. Challenge with the non-pathogenic OA-

deficient A2 mutant resulted in restricted growth, reminiscent of

an HR-like response (Figure 1A, 1B). To determine whether this

response had features consistent with the HR, we examined

several markers associated with the HR. Plant defense responses

involving HR are typified by the oxidative burst, a universal and

early response by the plant upon recognition of pathogens. Plants

were challenged with the wild type and A2 mutant; 8 hrs post-

inoculation leaves were stained with the ROS (hydrogen peroxide)

indicator stain, 3,39-diaminobenzidine (DAB). Interestingly, ROS

was virtually absent in DAB stained leaf tissue challenged with

wild type Sclerotinia, even though disease progression was observed

(Figure 1C). However, leaves inoculated with the A2 mutant

displayed strong DAB staining surrounding the infection point

(Figure 1D).

Plants protect themselves using both physical and chemical

defenses. Callose is an effective barrier induced at the site of attack

during the early stages of pathogen invasion and is an established

marker associated with incompatible (HR) responses. Aniline blue

staining was used to reveal callose structures in leaf tissue following

inoculation with wild type and the A2 mutant. Similarly to DAB,

callose deposition was observed following inoculation with the A2

mutant but not wild type (Figure 1E, 1F). Thus markers associated

with plant defense were observed specifically following mutant, but

not wild type inoculations; including the oxidative burst and

callose deposition. It is of interest to determine whether the

phenotype induced in response to the A2 mutant mechanistically

resembles an HR, as there are no known proteinaceous effectors or

corresponding resistance (R) proteins in this system. Such results

would suggest active recognition of the A2 strain by the host,

followed by an effective host defense response which does not

occur in response to challenge with the wild type fungus. In

contrast, the A2 mutant could be just physiologically compromised

in pathogenicity and thus incapable of causing disease indepen-

dent of plant involvement. Furthermore, these findings also suggest

that the wild type fungal strain suppresses this recognition process.

Existing models describing the mechanisms of recognition and

response to pathogens have been, for the most part, centered on

plant interactions with biotrophs.

Sclerotinia suppresses the host oxidative burst by
modulation of the host redox environment
Following these observations, we theorized that Sclerotinia may

alter the redox environment in the host to avoid detection. To

more accurately determine whether wild type Sclerotinia suppresses

the oxidative burst by modulation of the host redox environment,

we used a real-time plant-based redox sensitive GFP reporter, ro-

GFP [15]. In this system, the GFP chromophore has been altered

such that the excitation wavelength is influenced by the oxidation

state of the environment. The GFP is constitutively expressed;

however, the excitation wavelength (410 versus 470 nm) is reliant

upon the redox potential of the environment. During reducing

conditions the excitation occurs at 470 nm while under oxidizing

conditions excitation occurs at 410 nm and thus these environ-

ments can be differentiated using appropriate filters. Transgenic

Nicotiana benthamiana lines were generated containing a 35S driven

redox sensitive GFP cassette. Initial confocal microscopy analysis

supported GFP excitation at 410 nm filter but failed to detect GFP

excitation and fluorescence at 474 nm (Figure 2A and 2B). This

suggests that in the default state reducing conditions are not

detectable. To determine whether GFP fluorescence can be

observed under reducing conditions, we infiltrated leaves with the

Author Summary

Necrotrophic fungal pathogens need to kill plant cells to
establish disease and obtain nutrition. While such patho-
gens are economically important, they are relatively
understudied and mechanistic details important for
pathogenic success are limited. Sclerotinia sclerotiorum is
a necrotrophic ascomycete fungus that infects virtually all
dicotyledonous (.400 species) plants. Our data indicate
that oxalic acid production and modulation of reactive
oxygen species (ROS) are key components for the
successful interaction of this fungus with the host plant.
Here, we use a GFP regulated reporter system to analyze
the host redox status during infections with wild type and
a non-pathogenic oxalic acid (OA) deficient Sclerotinia
mutant. Additionally, we show that secreted OA enables
Sclerotinia to hijack the host cell redox machinery, initially
creating reducing conditions followed by an oxidizing
environment that is necessary for pathogenesis. We also
provide evidence that the OA-deficient mutants are
actively recognized by the plant resulting in the elicitation
of a hypersensitive-like response and resistance. Our study
provides insight into how Sclerotinia, and quite possibly
other necrotrophic pathogens, co-opt host redox and cell
death pathways for successful colonization of the host.

Cell Reduction Induced by Sclerotinia sclerotiorum
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established reducing agent, DTT. DTT created a reducing

environment within the cell and GFP fluorescence was successfully

observed with the 474 nm excitation filter (Figure 3D).

Since GFP fluorescence was not observed in the ro-GFP plants

under the 474 nm filter (excited only under reducing conditions),

this filter was used to evaluate the reductive state of host cells

following challenge with wild type Sclerotinia. The two strongest ro-

GFP expressing lines (2 and 6) from the initial confocal microscopy

analysis were chosen and challenged with the wild type and the

OA-deficient A2 mutant strains. As expected, and consistent with

our previous confocal analysis, GFP expression was not observed

under the 474 nm filter prior to infection; leaves challenged with

the wild type strain however revealed regions of strong

fluorescence at this wavelength (Figure 2C). Notably, the

Figure 1. The oxalic acid (OA) deficient mutant strain (A2) induces an HR-like response. Agar plugs containing actively growing cultures
of Sclerotinia sclerotiorum were inoculated onto tomato leaves. Wild-type (A) was pathogenic and induced runaway cell death; however, growth of
the A2 strain (B) was restricted by the plant. Pictures were taken 48 hours post-inoculation. Markers associated with the HR were observed specifically
following mutant, but not wild type inoculations. Using DAB staining, the oxidative burst was visible in response to the A2 strain (D), but not the wild-
type (C) 8 hours post-inoculation. Unlike the wild-type (E), the A2 strain also induced callose deposition (F). Callose deposition was evaluated after 2
days. Both callose deposition and DAB staining are shown at the leading edge of the lesions.
doi:10.1371/journal.ppat.1002107.g001

Cell Reduction Induced by Sclerotinia sclerotiorum
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Figure 2. Wild-type Sclerotinia, but not the OA-deficient (A2) mutant, reduces the host cellular environment. Transgenic Nicotiana
benthamiana leaves containing the redox sensitive GFP (roGFP) cassette were investigated by confocal microscopy using (A) 410 nm and (B) 474 nm
filters for observation of roGFP under oxidizing and reducing conditions, respectively. Two lines were chosen (line 2 shown here) for further analysis
and inoculated with agar plugs containing actively growing (C) Wild-type Sclerotinia, (D) oxalate deficient A2 mutant, (E) nox1 mutant, (F) nox2
mutant, (G) sod mutant, and (H) wild-type Botrytis cinerea. Eight hours post-inoculation leaves were visualized under a 474 nm filter for observation of
the reduced form of the roGFP.
doi:10.1371/journal.ppat.1002107.g002
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fluorescent region was distinct and located in advance of fungal

growth before becoming rapidly diffuse. Unlike its wild type

counterpart, but consistent with the disease phenotype and ROS

staining results, the A2 mutant failed to induce GFP fluorescence

(Figure 2D). These results suggest that the wild type strain, but not

the OA-deficient A2 mutant, is able to promote a reducing

environment within the host during the initial stages of infection,

possibly through the secretion of OA.

The necrotrophic fungal pathogen Botrytis cinerea was also

examined. B. cinerea is closely related to Sclerotinia but produces

lower quantities of OA; and as shown here, reduced flouerscence/

reduction (Figure 2H). The role of OA in B. cinerea pathogenesis

has been examined by several groups however, details are not

clear. To further study the relationship between cellular reduction

and oxalic acid production, we inoculated two NADPH oxidase

(Ssnox1, Ssnox2) and a superoxide dismutase (Sssod1) Sclerotinia

mutant strains generated in our lab. These mutants are altered in

redox capabilities as indicated by the observation that lower levels

of OA are produced compared to wild type (Figure S1 and S2).

These strains generated reducing conditions in the host to levels

that were intermediate between the wild type strain and the OA-

deficient A2 mutant (Figure 2E–2H). The ability to reduce the host

environment was related to the level of OA secreted by all of these

strains. Therefore, the secretion of OA, generation of reducing

conditions, and intra-/inter-cellular ROS signaling between

pathogen and host appear to be integral determinants for Sclerotinia

pathogenicity.

Sclerotinia-mediated modulation of host redox status
occurs via secretion of OA
To assess whether OA can modulate the host redox environ-

ment directly, we monitored the cellular redox state in OA

infiltrated leaves. The acidification of cells is known to dampen the

oxidative burst [14], therefore to examine acidification as a factor

Figure 3. Oxalic acid modulates the host redox environment. Transgenic redox sensitive GFP Nicotiana benthamiana leaves from line 2 were
infiltrated by a needle-less syringe with (A) 10 mM KOA pH 7, (B) 10 mM KOA pH 3, (C) 10 mM HCl, or (D) 10 mM DTT. Four hours post-infiltration,
leaves were visualized under a 474 nm filter for observation of the reduced form of the roGFP.
doi:10.1371/journal.ppat.1002107.g003

Cell Reduction Induced by Sclerotinia sclerotiorum
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we used the OA salt, KOA, buffered to pH 3 and pH 7. We

included 10 mM HCl as an additional control. Nicotiana

benthamiana ro-GFP leaves from lines 2 and 6 were infiltrated with

10 mM KOA (pH 3 and 7) and 10 mM HCl, (10–20 mM OA is

commonly found in diseased plant tissue [7]). Consistent with

previous reports showing OA induced host PCD was independent

of acidification [12], infiltration of KOA at pH 7, but not pH 3,

was able to reduce the host cellular environment and support GFP

fluorescence under the 474 nm excitation filter (Figure 3A and

3B). Further confirmation that OA induced reducing conditions

are independent of its ability to acidify the host cellular

environment was supported by HCl treatment, which also failed

to induce GFP fluorescence (Figure 3C). These results strongly

correlate with our previous studies [12] that show induction of

ROS and PCD occur independent of the acidification ability of

OA and demonstrate that OA alone is sufficient for mediating

reducing conditions in plant cells. Taken together, we suggest that

OA suppresses the oxidative burst, at least in part via the

generation of reducing conditions and subsequently triggers ROS

induced DNA fragmentation and PCD at neutral (pH 6–7) but not

acidic (pH 3) conditions. Our results provide further evidence

supporting the importance of OA as a key Sclerotinia pathogenicity

factor.

Chemical reduction of the host environment is sufficient
to aid Sclerotinia infection
If the induction of a reduced state in the cell via secretion of OA

is a necessary and sufficient component of Sclerotinia pathogenicity,

we reasoned that pathogenicity of the OA-deficient (A2) mutant

could be enhanced via the induction of an ‘‘artificial’’ reducing

environment. Exogenous application of DTT (and KOA)

enhanced disease development of the OA-deficient A2 mutant

(Figure 4). Trypan blue staining of fungal tissue verified that the

A2 mutant can now grow within the DTT and KOA infiltrated

areas (Figure 4). Thus, these observations are consistent with the

premise that Sclerotinia induces disease by initially triggering

reducing conditions in the cell during the early stages of infection.

Furthermore, these data also show that the ability of the A2

mutant to cause disease is restored under these conditions. The

non-pathogenic phenotype associated with OA deficiency is due,

at least in part, by the inability to create a reducing environment in

the host. Taken together, these data suggest that the host redox

environment, specifically cellular reduction, is an integral

pathogenicity component of Sclerotinia and may contribute to the

broad host range displayed by this necrotrophic fungus.

Sclerotinia rapidly creates reducing conditions prior to
oxidative stress and plant cell death
A conundrum of the Sclerotinia/OA system as noted by our

previous experiments, is that OA suppresses the generation of host

plant ROS [5], but is also capable of inducing plant ROS during

disease development culminating in PCD [12], both of which are

necessary for pathogenesis. Based on the available evidence, we

hypothesize that OA triggers a rapid, but transient reduced state in

the cell that is temporally followed by oxidation leading to host cell

death and disease. To investigate this possibility, we infiltrated

Figure 4. Artificial induction of reducing conditions reverts the A2 phenotype. Tomato leaves were pre-infiltrated with H20 (left), and either
10 mM KOA pH 7 (right) or 10 mM DTT (middle). The H2O, KOA, and DTT infiltrated regions were inoculated with agar plugs containing actively
growing OA-deficient A2 strain (top panel). Additionally, trypan blue was used to stain fungal mycelia within the infiltrated area (bottom panel). The
circles represent a close up of the stained area showing trypan blue stained mycelia.
doi:10.1371/journal.ppat.1002107.g004
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leaves from intact plants with water or KOA buffered to pH 7,

and examined GFP fluorescing regions over a 12 hour time

course, sampled every three hours. Additionally, we stained the

same leaves for superoxide production with nitro-blue tetrazolium

(NBT). Consistent with our earlier results, infiltration of KOA at

pH 7 induced reducing conditions and supported GFP expression

in leaf cells three hours post-infiltration (Figure 5). OA-mediated

reduction and excitation of ro-GFP (474 nm) was also observed six

hours post-infiltration but at lower levels than those observed three

hours-post infiltration (Figure 5). GFP excitation was not observed

in any of the water infiltrated controls or with KOA 12 hours post-

infiltration. The observation of reducing conditions as early as

three hours post-infiltration of OA suggests that Sclerotinia rapidly

induces strong reducing conditions during the initial stages of

infection. This correlates with the dampening of the host oxidative

burst, and provides further evidence that Sclerotinia ‘‘prepares’’ host

cells for infection via the induction of a reducing environment.

In contrast to GFP expression, NBT staining detected low levels

of superoxide at 0 hours post-infiltration, however, this also

occurred for the water control and is more likely a result of injury

during the infiltration process rather than elicitation of oxidizing

conditions. In comparison to the water controls, ROS levels in the

KOA infiltrated samples were reduced 3 hours post-infiltration.

These results are in agreement with the ro-GFP time-course that

demonstrated reducing conditions in leaf cells as early as three

hours post-infiltration (Figure 5). There were slight differences in

the ROS levels between the water controls and KOA samples

6 hours post-inoculation. However, 12 hours post-infiltration,

there was a consistent and reproducible increase in NBT staining

for the KOA infiltrated sample in comparison to the water control.

These observations are in accordance with our previous studies

that showed strong DAB staining in leaves 24 hours post OA

treatment [12]. The NBT-staining results suggest that following

the initial OA induced reducing environment, oxidizing conditions

prevail in the cell. We have previously shown that direct OA

treatment of plant tissue induces ROS and plant cell death; both of

which can be inhibited chemically [12].

Thus, OA secreted by Sclerotinia appears to have dual opposing

functions. During the early stages of infection, reducing conditions

are induced that may suppress the oxidative burst, host defenses,

and possibly other host processes. Once infection is established

however, oxidizing conditions are generated in response to the

Figure 5. Oxalic acid induces reducing conditions that correlates with the dampening of the host oxidative burst. Detached leaves of
roGFP plants were infiltrated with either H2O or 10 mM KOA buffered to pH 7, and were examined for GFP fluorescence (Top two panels) over a time-
course (0, 3, 6, and 12 hours). The same leaves were also stained for superoxide production (Bottom two panels) with nitro-blue tetrazolium (NBT).
doi:10.1371/journal.ppat.1002107.g005
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fungus and cell death occurs. In this manner Sclerotinia uses OA as

a signaling molecule to control the direction of the host redox

environment, plant defense responses, and cell death pathways.

Discussion

Traditionally, necrotrophs were thought to directly kill host

tissue via the secretion of toxins and degradative enzymes. Recent

studies with Cochliobolus, Botrytis and Sclerotinia however, suggest

that the infection process may be more subtle than originally

believed and that certain necrotrophs do not kill the cell directly

but instead commandeer plant PCD pathways for their own

benefit. Although the precise mechanism by which these

pathogens control host PCD is unknown, emerging evidence from

Sclerotinia suggests that ROS plays a significant role. As an

intermediary of PCD responses, low concentrations of ROS

function as signaling molecules during pathogen development [16]

and during pathogen-host interactions [17]. In this study we used a

plant-based redox sensing GFP expression system, histological

staining and reverse fungal genetics to demonstrate a role for

oxalate in the mediation of the host redox environment and

preparation of host cells for Sclerotinia infection.

Cells have a limited number of molecules and combinations that

can be deployed for various aspects of regulation, growth and

development. The use of a single molecule to perform several

seemingly unrelated tasks is a common strategy employed by

organisms to increase the range of functions using a defined and

limited repertoire of molecules. For example, the catabolic enzyme

mannitol dehydrogenase is also a pathogenesis related (PR) protein

that can be induced by pathogens even in mannitol non-

containing plants [18]. Proline is a non-essential amino acid that

functions as an osmolyte during stress. We have shown that proline

is also a potent anti-oxidant and is associated with such far ranging

stresses from mammalian diseases to plant drought responses as

well as nutrition [19]. In this study we show that fungal oxalic acid

is another such example. This ‘‘simple’’ organic (dicarboxylic)

acid, is efficiently used by Sclerotinia for a range of processes that

include, direct toxicity, development (sclerotia), pH signaling,

activation of cell wall degrading enzymes, plant guard cell

regulation, chelation of calcium, vascular plugging, elicitation of

programmed cell death [8,9,reviewed in 10,12] and in this report,

directing the redox environment in the host cell for pathogenesis.

Our accumulating evidence shows that OA generates reducing

conditions in the cell, correlating with the inhibition of the host

oxidative burst and other defense responses. This is followed by an

OA mediated plant programmed cell death and eventual

establishment of disease.

Several lines of evidence are consistent with these conclusions:

1) When OA is not present in the ‘‘infection court’’ as is the case

with the A2 strain, the plant oxidative burst is clearly evident and a

resistant response ensues 2) Sclerotinia rapidly induces reducing

conditions in host cells in advance of fungal growth, and this redox

manipulation is tightly associated with the onset of disease. 3) The

modulation of the host redox environment is subverted by OA;

OA-deficient mutants were unable to induce reducing conditions

and were unable to cause disease. 4) Temporally, this reduction

precedes ROS synthesis which is necessary for cell death. 5) The

optimum pH for OA induced reduction corresponds to the pH

conditions required for OA induced ROS and subsequent PCD. 6)

The addition of a potent reducing agent, DTT, generates transient

reducing conditions during initial infection that suppress host

defense and the oxidative burst to revert the OA-deficient mutant

phenotype and restore pathogenicity. Therefore OA appears to

have dual opposing roles in Sclerotinia pathogenesis; OA initially

inhibits ROS-mediated plant defense responses, but later pro-

motes ROS generation in the plant followed by programmed cell

death. These data address a long-standing issue in this system

involving the requirement for Sclerotinia/OA to both inhibit and

promote ROS to achieve pathogenic success.

In Monilinia fructicola, a stone fruit pathogen related to Sclerotinia,

intracellular antioxidant levels in the fungus are influenced by host

derived phenols, altering the fungal redox environment, though

not affecting fungal growth. However pathogen gene expression

and pathogen infection structure differentiation were directly

affected and were related to changes in electrochemical redox

potential. Monilinia also possesses a redox regulated cutinase gene,

which is upregulated during oxidative stress and when overex-

pressed, increases virulence [20,21]. Thus, the redox balance in

both the host and pathogen can be a key battlefield in determining

the outcome following pathogen challenge.

The mechanism by which OA triggers such conditions is a key

question, and could involve redox molecules such as thioredoxins.

Thioredoxins are ubiquitous redox proteins that act as antioxi-

dants by facilitating the reduction of proteins involved in a variety

of physiological roles within cells including the activation of plant

defense pathways. For example, the redox-sensitive Arabidopsis

thioredoxin-5 (TRX5) mediates a conformational change in the

non-expressor of PR genes (NPR1), which is necessary for the

activation of plant immunity [22]. NPR1 is a key transcriptional

regulator in the signaling pathways that lead to systemic acquired

resistance [23]. In unchallenged plants, NPR1 is maintained as an

inactive oligomer in the cytoplasm via redox-sensitive disulphide

bonds. During pathogen challenge however, the redox state of the

cell is altered via the plant hormone, salicylic acid. This change in

cellular redox leads to the reduction of disulphide bonds and

release of an NPR1 monomer that translocates to the nucleus

where it functions as transcription factor for defense signaling.

Although the outcome is different to that observed during

Sclerotinia interactions, the overall strategy of host redox alteration

during cell death regulation (in this case plant immunity) is

maintained. In the case of Sclerotinia, the pathogen is in control of

the redox environment and cell death pathways; the oxidative

burst does not occur and the pathogen directly benefits. In

contrast, during an immune response, the plant controls the redox

environment and cell death pathways to the detriment of the

pathogen. As observed following inoculation with the A2 mutant,

the host was able to mount an oxidative burst, as well as callose

deposition and thus effectively resist infection by mounting an HR-

like response.

Another potential link between thioredoxins and pathogenicity

involves the necrotrophic oat pathogen, Cochliobolus victoriae that

produces the host selective toxin victorin. Analogous to Sclerotinia,

victorin deficient Cochliobolus strains are non-pathogenic on

susceptible oat genotypes; exogenous application of victorin results

in disease symptoms, including features associated with apoptotic-

like programmed cell death such as DNA laddering and caspase-

like protease activity [24]. Of relevance to our work, this study has

shown that sensitivity to victorin also requires the activity of the

plant thioredoxin, TRX5. In this case, victorin may recruit TRX5

to alter the host cellular environment. Although the exact role for

TRX5 activity during sensitivity to victorin is unknown, the

observation that victorin sensitivity requires thioredoxin activity

suggests that pathogen mediation of the host redox environment

may also occur during C. victoriae challenge. Further evidence

supporting the key role of host redox manipulation for optimal

Sclerotinia infection is illustrated by work with oxalate oxidases.

Oxalate oxidases (‘‘germin’’ proteins) are members of the

oxidoreductase family found in all monocots and catalyze the
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breakdown of OA into CO2 and H202 [25]. Knowing that OA is a

pathogenicity determinant of Sclerotinia, several groups have

generated dicot plants over-expressing a monocot oxalate oxidase

and observed increased resistance to Sclerotinia [25–27]. Similarly,

our studies also demonstrated high levels of plant H202 and

delimited growth in response to infection with the oxalate deficient

A2 mutant. Therefore, removal of OA during infection, either by

expression of an oxalate oxidase in the plant or genetically,

through the use of OA-deficient Sclerotinia mutant strains (i.e. A2)

leads to oxidizing conditions controlled by the host and the

mounting of host defense responses. Additionally, Sclerotinia, while

possessing an impressively broad host-range, does not infect

monocots. We speculate that this inability to create reducing

conditions in the host explains at least in part, why Sclerotinia

diseases are essentially limited to dicotyledonous plants. In future

studies we will identify monocot germin knockout lines and

evaluate pathogenic behavior of Sclerotinia.

The host target(s) of OA are not known. Recently, we have

found that Arabidopsis plants lacking BIK1, were significantly

enhanced in susceptibility to A2 (Figure S3). BIK1 is an

Arabidopsis cytoplasmic receptor kinase (Botrytis induced kinase)

that mediates crosstalk between defense pathways in Arabidopsis

[28]. BIK1 was originally discovered as a component in plant

defense against the necrotroph Botrytis cinerea [29] and has

subsequently been shown to play an important role in defense

signaling to initiate MAMP triggered immunity [28,29]. Intrigu-

ingly, our initial studies have also shown that OA can modulate

the phosphorylation status of BIK (data not shown). Studies are in

progress to determine whether this is a direct or indirect

interaction, but regardless, OA appears to inhibit defense

signaling mediated by BIK. Thus, BIK represents a potential

host target for Sclerotinia. Moreover there may be shared

components of MAMP defense signaling and necrotrophic fungal

pathogenesis.

In summary, we show in real-time using a redox sensitive GFP

reporter that the earliest detectable host response to Sclerotinia

challenge is the creation of a fungal (OA) induced reducing

environment that is observed in advance of pathogenic fungal

growth. In contrast, the loss of oxalate in the fungus leads to the

failure of host colonization and induces strong plant defense

responses, as noted with the OA-deficient A2 mutant. This strain

failed to colonize the host and induced strong HR-like host

defenses (including an oxidative burst) similar to those commonly

observed during incompatible biotrophic infections. We suggest

that reducing the cellular environment directly or indirectly

suppresses the host-plant oxidative burst and defense mechanisms,

including callose formation. The net result provides Sclerotinia with

precious time for unimpeded establishment in host tissue and the

hijacking of host pathways to generate ROS and induce PCD; a

perfect environment for this necrotroph. Thus the initial

pathogenic phase of this well established necrotroph surprisingly,

displays features similar to those observed during compatible

biotrophic or early stage hemi-biotrophic interactions.

Materials and Methods

Plant and fungal materials
S. sclerotiorum isolate 1980 and an oxalate-deficient mutant (A-2)

of this strain were maintained at 24uC on potato dextrose agar as

previously described by [7]. NOX1, NOX2, and SOD strains

were generated for a different study using a split-marker-deletion

approach as described by [30]. Botrytis cinerea strain B05.10 was

provided by Dr. Jan van Kan. The c-roGFP1 was kindly donated

by Lewis Feldman. Wild type and transgenic Nicotiana benthamiana

plants expressing the ro-GFP constructs [15] were generated as

described below and maintained in tissue culture under a 16-h

light period.

Stable transformation of Nicotiana benthamiana plants
using Agrobacterium tumefaciens
Electro-competent Agrobacterium (strain LBA 4404) were trans-

formed with plasmids c-roGFP1 [15] by electroporation using an

EC100 electroporator (Thermo EC) based on the method of [31].

Wild type Nicotiana benthamiana leaf discs were transformed by

Agrobacterium as described by [32]. Following transformation, leaf

discs were sub-cultured every two weeks on MS104 media

containing timentin (200 mg/L) and hygromycin (50 mg/L). After

five weeks of culture, shoots of a suitable size were transferred to

MSO media containing timentin (200 mg/L) and hygromycin

(50 mg/L). Replicates were generated by nodal cutting and

culture on MSO media containing timentin (200 mg/L) and

hygromycin (50 mg/L).

Confocal microscopy
Emerging leaves of wild type and ro-GFP expressing Nicotiana

benthamiana were exicised and prepared on microscope slides in

distilled water. Redox GFP excitation and fluorescence were

viewed using an Olympus IX81 microscope with long and short

pass GFP filter sets, under a 106magnification.

Fungal challenge
Newly emerging leaves of wild type and ro-GFP expressing

benthamiana were excised and inoculated with 5 mm PDA plugs

containing actively growing wild type Sclerotinia isolate 1980, OA-

deficient (A2) mutant, NaDPH oxidase 1 and 2 (nox 1 and 2) and

superoxide dismutase (SOD) mutant Sclerotinia. Leaves were

analyzed over an eighteen hour time-course for GFP fluorescence

using an Olympus SZ610 and mGFPA long pass filter set (exc.

460–490 nm, emm, 510 nm). Botrytis cinerea strain B05.10 was

grown on Malt Agar, inoculation and GFP fluorescence analysis

was performed as described above.

Oxalic acid treatment
Newly emerging cyt-roGFP leaves were infiltrated with either

10 mM KOA buffered to pH 3 or 7, or 10 mM HCl and analyzed

over an eight hour time course for GFP fluorescence using an

Olympus SX-10 and the mGFPA filter set.

Histological assays
Callose. Aniline blue staining was performed as described by

Asselbergh and Höfte [33]. Briefly, two days post-inoculation

tomato leaves were incubated in lactophenol for 60 min at 65uC,

replacing lactophenol with fresh solution after 30 min. Samples

were then transferred to room temperature and incubated for a

further 12 hrs, washed in 50% ethanol for 5 min, and stained for

30 min in the dark with 0.01% aniline blue in 150 mM K2HPO4

(pH 9.5). Stained samples were observed under Olympus IX-81

microscope.

DAB staining. For detection of H2O2, eight hours post-

inoculation leaves were stained in 2 mg/ml 393-diaminobenzidine-

tetrahydrochloride (DAB) for 2–4 hr and then distained with 70%

ethanol at 70uC.

Trypan Blue Staining. Post-infection, Sclerotinia challenged

leaves were excised, stained with 0.05% Trypan blue for 45 min

at 25uC and washed with PBS. All samples were observed

for blue staining using white light and an Olympus SZ610

microscope.
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Oxalic time-course assay
For investigation of OA-mediated reduction, oxidation and

PCD, newly emerged roGFP leaves were infiltrated with either

10 mM KOA buffered to pH 7 or water as described above.

Infiltrated leaves were excised at time points of 0, 3, 6 and

12 hours post-treatment and analyzed for GFP expression using a

Olympus SX-10 microscope and a mGFPA long pass filter set

(exc. 460–490 nm, emm, 510 nm), DAB staining and Evans blue

staining, respectively.

Supporting Information

Figure S1 Oxalate level measurements in wild-type, sod

and A2 mutant strains. Oxalic acid concentrations in the wild-

type 1980 strain and the derived sod and A2 mutant strains were

determined using an oxalate detection kit according to manufac-

turer’s recommendations.

(TIF)

Figure S2 Oxalate level measurements in wild-type,

nox1, nox2 and A2 mutant strains. Oxalic acid concentra-

tions in the wild-type 1980 strain and the derived nox1, nox2, and

A2 mutant strains were determined using an oxalate detection kit

according to manufacturer’s recommendations.

(TIF)

Figure S3 Arabidopsis bik1 mutant plants are suscep-

tible to the OA-deficient mutant A2. Arabidopsis wild type and

bik1 mutant leaves were inoculated with agar plugs containing

actively growing OA-deficient A2 strain.

(TIF)

Acknowledgments

We thank Dr. Paul de Figueiredo for stimulating conversations and useful

comments.

Author Contributions

Conceived and designed the experiments: BW MBD. Performed the

experiments: BW MK HK RB. Analyzed the data: BW MK MBD. Wrote

the paper: BW MK MBD.

References

1. Boland GJ, Hall R (1994) Index of Plant Hosts of Sclerotinia-Sclerotiorum.
Can J Plant Pathol 16: 93–108.

2. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.)
de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant
Path 7: 1–16.

3. Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading
enzymes and pH in pathogenesis and their significance in the virulence of two
Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22: 339–345.

4. Riou C, Freyssinet G, Fevre M (1992) Purification and Characterization of
Extracellular Pectinolytic Enzymes Produced by Sclerotinia sclerotiorum. Appl
Environ Microbiol 58: 578–583.

5. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a
pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst
of the host plant. Plant Cell 12: 2191–2200.

6. Dickman MB, Mitra A (1992) Arabidopsis thaliana as a model for studying
Sclerotinia sclerotiorum pathogenesis. Physiol Mol Plant Pathol 41: 255–263.

7. Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to
demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum
on Phaseolus vulgaris. Physiol Mol Plant Pathol 37: 179–191.

8. Rollins JA, Dickman MB (1998) Increase in Endogenous and Exogenous Cyclic
AMP Levels Inhibits Sclerotial Development in Sclerotinia sclerotiorum. Appl
Environ Microbiol 64: 2539–2544.

9. Rollins JA, Dickman MB (2001) pH Signaling in Sclerotinia sclerotiorum:
Identification of a pacC/RIM1 Homolog. Appl Environ Microbiol 67: 75–81.

10. Dutton MV, Evans CS (1996) Oxalate production by fungi: Its role in
pathogenicity and ecology in the soil environment. Can J Microbiol 42:
881–895.

11. Lumsden RD (1979) Histology and Physiology of Pathogenesis in Plant-Diseases
Caused by Sclerotinia Species. Phytopathology 69: 890–896.

12. Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant
programmed cell death during Sclerotinia sclerotiorum disease development.
Mol Plant Microbe Interact 21: 605–612.

13. Bestwick C, Bolwell P, Mansfield J, Nicole M, Wojtaszek P (1999) Generation of
the oxidative burst - scavenging for the truth. Trends Plant Sci 4: 88–89.

14. Mathieu Y, Lapous D, Thomine S, Laurière C, Guern J (1996) Cytoplasmic
acidification as an early phosphorylation-dependent response of tobacco cells to
elicitors. Planta 199: 416–424.

15. Jiang K, Schwarzer C, Lally E, Zhang SB, Ruzin S, et al. (2006) Expression and
characterization of a redox-sensing green fluorescent protein (reduction-
oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol
141: 397–403.

16. Erental A, Dickman MB, Yarden O (2008) Sclerotial development in Sclerotinia
sclerotiorum: awakening molecular analysis of a ‘‘Dormant’’ structure. Fungal
Biol Rev 22: 6–16.

17. Torres MA, Jones JDG, Dangl JL (2006) Reactive Oxygen Species Signaling in
Response to Pathogens. Plant Physiol 141: 373–378.

18. Jennings DB, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for

mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense.
Proc Natl Acad Sci U S A 95: 15129–15133.

19. Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal

pathogen Colletotrichum trifolii. Proc Natl Acad Sci U S A 102: 3459–3464.

20. Lee MH, Bostock RM (2007) Fruit exocarp phenols in relation to quiescence

and development of Monilinia fructicola infections in Prunus spp.: A role for
cellular redox? Phytopathology 97: 269–277.

21. Lee MH, Chiu CM, Roubtsova T, Chou CM, Bostock RM (2010)

Overexpression of a Redox-Regulated Cutinase Gene, MfCUT1, Increases
Virulence of the Brown Rot Pathogen Monilinia fructicola on Prunus spp. Mol

Plant Microbe Interact 23: 176–186.

22. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou ZL, Song JQ, et al. (2008)
Plant immunity requires conformational charges of NPR1 via S-nitrosylation

and thioredoxins. Science 321: 952–956.

23. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required
for activation of PR gene expression. Plant Cell 12: 2339–2350.

24. Sweat TA, Wolpert TJ (2007) Thioredoxin h5 is required for victorin sensitivity

mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19: 673–687.

25. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, et al. (2003) Overexpression

of a Gene Encoding Hydrogen Peroxide-Generating Oxalate Oxidase Evokes

Defense Responses in Sunflower. Plant Physiol 133: 170–181.

26. Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH (2001)

Soybean plants expressing an active oligomeric oxalate oxidase from the wheat

gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina
sclerotiorum. Physiol Mol Plant Pathol 59: 297–307.

27. Dong X, Ji R, Guo X, Foster S, Chen H, et al. (2008) Expressing a gene

encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum
in oilseed rape. Planta 228: 331–340.

28. Lu DP, Wu SJ, Gao XQ, Zhang YL, Shan LB, et al. (2010) A receptor-like

cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate
plant innate immunity. Proc Natl Acad Sci U S A 107: 496–501.

29. Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, et al. (2006) The
membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in

Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:

257–273.

30. Catlett NL, Lee B, Yoder OC, Turgeon BG (2003) Split-marker recombination

for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50: 9–11.

31. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E.
coli by high voltage electroporation. Nucleic Acids Res 16: 6127–6145.

32. Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, et al. (1986) Analysis of

Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad
Sci U S A 83: 2571–2575.
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