
TIPS: On Finding a
Tight Isothetic Polygonal Shape Covering a 2D Object

Arindam Biswas1, Partha Bhowmick1, and Bhargab B. Bhattacharya2

1 Computer Science and Technology Department,
Bengal Engineering and Science University, Shibpur, Howrah, India

{abiswas, partha}@becs.ac.in
2 Center for Soft Computing Research,

Indian Statistical Institute, Kolkata, India
bhargab@isical.ac.in

Abstract. The problem of constructing a tight isothetic outer (or inner)
polygon covering an arbitrarily shaped 2D object on a background grid,
is addressed in this paper, and a novel algorithm is proposed. Such cov-
ers have many applications to image mining, rough sets, computational
geometry, and robotics. Designing efficient algorithms for these cover
problems was an open problem in the literature. The elegance of the
proposed algorithm lies in utilizing the inherent combinatoral properties
of the relative arrangement of the object and the grid lines. The shape
and the relative error of the polygonal cover can be controlled by chang-
ing the granularity of the grid. Experimental results on various complex
objects with variable grid sizes have been reported to demonstrate the
versatility, correctness, and speed of the algorithm.

1 Introduction

The problem of finding an optimal outer (or inner) polygonal envelope, imposed
by isothetic grid lines, for an object, is a grave and critical one, and its solution
can be useful to many interesting applications, such as image mining [5], grasping
objects by a robot [2, 3, 6], deriving free configuration space (path-planner) for
robot navigation [4], lower and upper approximations in rough sets [8, 9], VLSI
layout design [7], etc.

The challenge of the problem lies in the fact that, at each grid point, a decision
has to be made for the next path to be followed. It may so happen that a current
decison based on the local arrangement, may eventually lead to a situation where
no further advancements can be made. As a result, it may become mandatory
to revoke the earlier decisions in order to backtrack and branch out iteratively
until the final solution is found, which would incur excessive computational cost.

Proposed in this paper is a fast, efficient, and elegant algorithm for finding
the optimal isothetic inner and outer polygons of an object, where the object
can have any arbitrary shape. The elegance and novelty of our algorithm lies
in the fact that it takes into account the spatial arrangement of the grid lines

H. Kalviainen et al. (Eds.): SCIA 2005, LNCS 3540, pp. 930–939, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object 931

with respect to the object, and constructs the polygon to avoid backtracking
completely. Further, this algorithm, with suitable modifications, will also work
if non-uniform isothetic grid lines are imposed on the object plane.

It may be mentioned that, in contrast to the classical safety zone problem
[7], which computes a minimum area safety region for an input polygon using
the Minkowski sum, and also to the problem on inner and outer approxima-
tions of polytopes [1], which approximates a convex polytope by a collection of
(hyper)boxes, the proposed algorithm can be applied on an arbitrarily shaped
object/image, independent of whether or not it is a polygon. Since it works
on isothetic grid lines, it can be used for VLSI design rule checking by adjust-
ing the grid space as dictated by the minimum clearance zone required to be
maintained. In the present form, this algorithm works on uniform grid spacing;
however, this can be easily extended to non-uniform grid spacing which delin-
eates the outer approximation of rough sets of very complex types. Futhermore,
this algorithm, in a converse form, can extract the area-maximized isothetic in-
ner polygon, thereby enabling the determination of inner approximation and
boundary region of rough sets.

In this paper, after stating the problem definition in Sec. 2, the major steps of
the algorithm to find the isothetic outer polygon (area-minimized) are narrated
and explained in Sec. 3. In Sec. 4, we have shown experimental results on several
objects. Since the algorithm of finding the inner polygon of an object will be
very much similar to that of finding the outer one, we have not discussed the
details of finding the inner polygon; however, results have been shown for both
inner and outer polygons.

2 Problem Definition

Given a region (object) R defined in the two-dimensional real plane R2, and a set
of uniformly spaced horizontal and vertical grid lines, G = (H,V), where H and
V represent two sets of equispaced horizontal and vertical grid lines respectively

(a) Image of a butterfly. (b) Isothetic outer polygon
for grid size 12.

(c) Isothetic inner polygon
for grid size 4.

Fig. 1. A sample 2D object and its isothetic polygons

932 A. Biswas, P. Bhowmick, and B.B. Bhattacharya

(uniform grid), the problem is to construct the corresponding isothetic polygonal
envelope, Pout(R,G), such that the following conditions are satisfied:

(c1)Pout(R,G) should not have any self-intersection and should not contain any
hole (although R may be self-intersecting and may contain holes);

(c2)no point p ∈ R2, lying in the region R, should lie outside Pout(R,G);
(c3) each vertex of Pout(R,G) is the point of intersection of some line in H and

some line in V;
(c4)area of Pout(R,G) is minimized.

Before going into the discussion about the algorithm, a sample object R, mapped
to the 2D discrete plane, has been shown in Fig. 1(a), and the corresponding
isothetic outer polygon, completely “containing” R, has been displayed in Fig.
1(b). In Fig. 1(c), the entire set of isothetic inner polygons, that completely “fills’
R, has been shown.

3 Proposed Algorithm

Let I be the smallest two-dimensional image plane that contains the entire ob-
ject R. Let g be the underlying grid size, which is equal to the length (i.e. height
or width) of each unit grid square in G, defined over I (Fig. 2). It may be noted
that the height h and the width w of the plane I are chosen appropriately to
suit the requirement that g divides both h and w. Let α(i, j) be the point of
intersection of the horizontal grid line lH : x = i and the vertical grid line
lV : y = j, where, lH ∈ H and lV ∈ V. It may be observed that, since α(i, j) is
a point on grid with grid size g, g always divides i and j, i.e., i (mod g) = 0 and
j (mod g) = 0. Let SLT(i, j), SRT(i, j), SLB(i, j), and SRB(i, j) represent the four
unit grid squares surrounding the common grid node α, and lying at the left-top,
right-top, left-bottom, and right-bottom block respectively, as shown in Fig. 2.

We define a function ϕ to construct a binary matrix Me (unit edge matrix)
that stores the information regarding the intersection of each of the unit grid

α"

α’
S S

SS

H

RB

RTLT

LB

α

Vl

l

g

g

y

x

Fig. 2. Four unit grid squares with common vertex α

TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object 933

edges (of length g) with the object R. It may be noted that the total number
of unit horizontal edges is w

g (h
g + 1), and total number of unit vertical edges

is h
g (w

g + 1), which togetherly decide the size of the unit edge matrix, Me. Let
α′(i, j + g) be the grid point lying immediate right of α(i, j), and e(α, α′) be the
unit horizontal grid edge connecting α and α′ (Fig. 2). Similarly, let α′′(i + g, j)
be the grid point lying immediate below α(i, j), and e(α, α′′) be the unit verctial
grid edge connecting α and α′′. Then the function ϕ, defined as follows, indicates
the entry place, 〈ie(α,β), je(α,β)〉, in Me where the binary information about the
intersection of the unit edge e(α, β) with the object R is stored:

ϕ : e(α, β) �→
{ 〈2i/g, j/g〉, if β = α′;
〈i/g, 2j/g〉, if β = α′′. (1)

Depending on the intersection of the edge e(α, β) with the object R, the
corresponding entry Me[ie(α,β)][je(α,β)] is decided as follows:

Me[ie(α,β)][je(α,β)] =
{

1, if edge e(α, β) intersects R;
0, otherwise. (2)

Now from the unit edge matrix, Me, we construct another binary matrix,
called the unit square matrix, Ms, having h/g rows and w/g columns, as follows.

Ms[is][js] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if ((Me[2is][js] OR
Me[2is + 1][js] OR
Me[2is + 1][js + 1] OR
Me[2is + 2][js]) = 1)

0, otherwise

(3)

It may be observed that, if an entry in the unit square matrix, Ms, is unity,
then the corresponding unit square grid in I contains some part of the object
R. More precisely, if Ms[is][js] = 1, then the unit grid square, formed by the
four grid lines (two horizontal and two vertical), namely x = gis, x = g(is + 1),
y = gjs, and y = g(js+1), contains some part of R. Furthermore, as evident from
Eqn. 3, Ms[is][js] = 1 if and only if at least one among Me[2is][js], Me[2is+1][js],
Me[2is +1][js +1], and Me[2is +2][js] is unity, since the object R must penetrate
at least one of the four edges of the unit grid square in order that it lies inside
the concerned square.

3.1 Finding the Vertices of Pout(R, G)

In the proposed algorithm, the candidature of α as a vertex of Pout(R,G) is
checked by looking at the combinatorial arrangements (w.r.t. object contain-
ments) of the four unit grid squares having common vertex α (Fig. 2). It may
be noted that, each of these four unit squares has a binary entry at the corre-
sponding locations in the unit square matrix, Ms, which, in turn, is derived from
Eqns. 1, 2, 3, as discussed above. These four entries together form a 2×2 subma-
trix in Ms. Now, there exist 24 = 16 different arrangements of these 4 unit grid
squares, since each square have 2 possibilities (‘0’/‘1’). These 16 arrangements

934 A. Biswas, P. Bhowmick, and B.B. Bhattacharya

have been further reduced to 5 cases in this algorithm, where, a particular case
Cq, q = 0, 1, . . . , 4, includes all the arrangements where exactly q out of these 4
squares have object containments (i.e. contain parts of the object R), and the
remaining (i.e. 4− q) ones have not. That is, the case in which the sum of the 4
bits in the corresponding entries in Ms is equal to q is represented by Cq. Fur-
ther, out of these 5 cases, only two cases, namely C1 and C3, always represent
vertices of Pout(R,G), and one case, namely C2, may conditionally give rise to
a vertex of Pout(R,G), as discussed below.

Case C1:
In this case, exactly one of the four unit grid squares contains some part of the
object R. W.l.g., let SLT(i, j) be the unit grid square that contains some part
of R, as shown in Fig. 3. Hence the isothetic envelope, Pout(R,G), will have
its one horizontal edge ending at α and the next vertical edge starting from
α, if we consider traversal along the edges of Pout(R,G) in a way such that
the region/object R always lies to the left of each edge while being traversed
(shown by the respective arrows in Fig. 3). This argument holds for each of the
4 arrangements where exactly one of the corresponding four binary entries in
Ms is unity and the remaining three is zero. This observation leads to the fact
that α is a 900 vertex (i.e. a vertex with 900 internal angle) of Pout(R,G), if and
only if q = 1.

Case C2:
Here, exactly two of the four unit grid squares contain parts of R. If the two
unit grid squares, having object containments, do not have any unit grid edge
in common, only then α will be vertex of Pout(R,G). It is easy to observe that,
in case C2, only two different arrangements are possible for which α is a vertex;

S S

SS RB

RTLT

LB

α

S S

SS RB

RTLT

LB

α

S S

SS RB

RTLT

LB

α

(a) R intersects only the left
edge of SLT.

(b) R intersects only the top
edge of SLT.

(c) R intersects both
the left edge and the
top edge of SLT.

Fig. 3. Three possible instances for one of the 4 arrangements of case C1, where α
is a 900 vertex. The edges (right edge and bottom edge of SLT), which would belong
to Pout(R,G), have been highlighted and directed to show their directions of traversal
with R always lying at the left

TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object 935

these are: (i) SRT(i, j) and SLB(i, j) contain object parts, and (ii) SLT(i, j) and
SRB(i, j) contain object parts. An instance of arrangement (i) is shown in Fig.
4. It can be shown that, in each of these two arrangements, α becomes a 2700

vertex, since Pout(R,G) is considered to be non-self-intersecting, as stated in
condition (c1) in Sec. 2. It should be carefully observed in Fig. 4 that two
different styles of arrow heads indicate the two possibilities of formation of edges
of Pout(R,G), since α may be visited along either of the two possible paths
during construction of Pout(R,G), and only the traced one is included in the
final solution of Pout(R,G).

For all other (four) arrangements with q = 2, α is just an ordinary point
lying on some edge of Pout(R,G).

S S

SS RB

RTLT

LB

α

Fig. 4. An instance of one of the 2 arrangements of case C2, where α is a 2700 vertex

Case C3:
If q = 3, then out of the four unit grid squares, only one square is free, which
will have 4 different arrangements. In each of these arrangements, one of which
is shown in Fig. 5, α would be a 2700 vertex (i.e. a vertex with 2700 internal
angle).

For the two other cases, namely case C0 and case C4, it can be proved that α
can never be a vertex of Pout(R,G). Case C0 implies that α is just an ordinary
grid point that lies in I \ R, and can be shown to by lying outside Pout(R,G).
Case C4 indicates that α is a grid point that either lies in R, or lies in a hole
of R and is surrounded by parts of R in all four unit grid squares with common
vertex α, whence α can be shown to be a grid point lying inside Pout(R,G).

3.2 Storing the Vertices of Pout(R, G)

It is easy to see that there are two types of vertices of the isothetic polygon,
Pout(R,G): 900 vertex (obtained from case C1), and 2700 vertex (obtained from
case C2 and case C3), whose nature are discussed in Sec. 3.1. During the process
of extraction of these vertices, each of them is dynamically inserted simultane-
ously in two temporary link lists, Lx and Ly, such that Lx always remains

936 A. Biswas, P. Bhowmick, and B.B. Bhattacharya

S S

SS RB

RTLT

LB

α

Fig. 5. A typical instance of one of the 4 arrangements of case C3, where α is a 2700

vertex

lexicographically sorted in an increasing order w.r.t. x (primary key) and y (sec-
ondary key), and Ly always lexicographically sorted in an increasing order w.r.t.
y (primary key) and x (secondary key). In addition to the grid coordinates of
these vertices, one bit (type-bit) is stored for each vertex v in Lx and in Ly to
denote its type (‘0’ denotes a 900 vertex and ‘1’ denotes a 2700 vertex). Further-
more, when the first 900 vertex (v(0)

1) is detected, the way in which its two edges
should be traversed, such that the object R lies left during traversal, is decided
and stored accordingly. After extraction of all the vertices, the link lists Lx and
Ly are processed, starting from any one of the 900 vertices, in order to construct
the isothetic polygonal envelope, Pout(R,G), as discussed in Sec. 3.3.

3.3 Construction of Pout(R, G)

The construction of the isothetic polygonal envelope, Pout(R,G), starts from
v
(0)
1 , which is the start vertex, as discussed in Sec. 3.2. It may be noted that,

considering any 2700 vertex as a start vertex is risky, since that vertex may be
derived as a result of case C2, which has a dubious nature, as discussed in Sec.
3.1 and illustrated in Fig. 4. Further, if, for example, the isothetic envelope is
merely a rectangle, then there exist 900 vertices and there does not exist any
2700 vertex. Hence a vertex with internal angle 900 should always be considered
as a start vertex.

Now, if the outgoing edge from v
(0)
1 is vertical and directed towards top (as

shown in Fig. 3, then the preceding vertex in the list Lx is the next vertex,
vnext, of Pout(R,G), since the points in Lx are ordered w.r.t. x. Similarly, if
the outgoing edge from v

(0)
1 is vertical and directed towards bottom, then the

succeeding vertex in the list Lx becomes the next vertex, vnext, of Pout(R,G).
For the other two possible arrangements, the decisions are similarly taken, and
vnext is obtained using Ly. Once vnext is found, then depending on the type-bit
(‘0’ or ‘1’) of vnext, the outgoing edge from vnext is decisively selected using the
rule that R always lies left during traversal, and the process continues until the
start vertex v

(0)
1 is reached (after traversing the incident edge of v

(0)
1 as the last

edge of Pout(R,G)).

TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object 937

4 Results

The above algorithm for constructing the outer polygon of any object in a 2D real
plane has been tested on several objects of various shapes and sizes in 2D discrete
plane. The algortihm requires slight modification for finding the inner polygons.
By definition (Sec. 2), for a single object, we will always have a single outer
polygon. However, if holes and self-intersections of outer polygon are allowed,
the algorithm can be modified to produce the desired results. In the case of inner
polygons, a single polygon may not be tight, i.e., complete “fill” the given object.
Hence, we have allowed multiple inner polygons, whenever necessary. The CPU
times on two typical sample images (shown in Figs. 6 and 7) have been given in

(a) Inner polygons: grid size= 5. (b) Inner polygons: grid size= 18.

(c) Inner polygons: grid size= 5. (d) Outer polygon: grid size= 18.

Fig. 6. Inner and outer polygons of a spiral

938 A. Biswas, P. Bhowmick, and B.B. Bhattacharya

(a) Inner polygons: grid size= 4. (b) Inner polygons: grid size= 14.

(a) Outer polygon: grid size= 4. (b) Outer polygon: grid size= 14.

Fig. 7. Inner and outer polygons of a mythological figure

TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object 939

Table 1. CPU times in millisecs. for objects given in Figs. 6 and 7 for various grid
sizes

CPU Time
Grid Size spiral myth. fig.

Inner Outer Inner Outer

1 895 687 1285 451

2 235 201 280 203

4 64 62 67 40

8 15 20 13 15

16 5 9 4 9

Table 1 for varying grid sizes. From Table 1, it is evident that, there is a sharp
decrease in CPU time with the increase in grid size.

5 Conclusion and Future Works

The proposed algorithm has been tested on several 2D objects in discrete domain,
and has produced fast successful results in all cases. The proof of correctness of
the algorithm is under preparation and will be reported in a subsequent paper.
The algorithm will be tested on a non-uniform grid as a future work. Further,
extension of the algorithm to 3D objects is also under our consideration.

References

1. A. Bemporad, C. Filippi, and F. D. Torrisi, Inner and outer approximations of
polytopes using boxes, Computational Geometry - Theory and Applications, Vol.
27, (2004) 151–178

2. L. Gatrell, Cad-based grasp synthesis utilizing polygons, edges and vertices, Proc.
IEEE Intl. Conf. Robotics and Automation (1989) 184–189

3. Y. Kamon, T. Flash, and S. Edelman, Learning to grasp using visual information,
Proc. IEEE Intl. Conf. Robotics and Automation (1995) 2470–2476

4. J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, Real-time Robot Motion
Planning Using Rasterizing Computer, Computer Graphics, ACM, Vol. 24(4), (1990)
327–335

5. M. Liu, Y. He, H. Hu, and D. Yu, Dimension Reduction Based on Rough Set in Image
Mining, Intl. Conf. on Computer and Information Technology (CIT’04) (2004) 39–44

6. A. Morales, P. J. Sanz, and Á. P. del Pobil, Vision-Based Computation of Three-
Finger Grasps on Unknown Planar Objects, IEEE Intl. Conf. on Intelligent Robots
and Systems (2002) 1711–1716

7. S. C. Nandy and B. B. Bhattacharya, Safety Zone Problem, Journal of Algorithms,
Vol. 37 (2000) 538–569

8. S. K. Pal and P. Mitra, Case Generation Using Rough Sets with Fuzzy Representa-
tion, IEEE Trans. on Knowledge and Data Engg., Vol. 16(3), (2004) 292–300

9. S. K. Pal and P. Mitra, Pattern Recognition Algorithms for Data Mining, Chapman
and Hall/CRC Press, Bocan Raton, FL (2004)

	Introduction
	Problem Definition
	Proposed Algorithm
	Finding the Vertices of Pout(R, G)
	Storing the Vertices of Pout(R, G)
	Construction of Pout(R, G)

	Results
	Conclusion and Future Works
	References

