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Abstract 

Convolutional Neural Network (CNN) has become an increasingly important research field in machine learning and 
computer vision. Deep image features can be learned and subsequently used for detection, classification and 
retrieval tasks in an end-to-end model. In this paper, a supervised feature embedded deep learning based tire defects 
classification method is proposed. We probe into deep learning based image classification problems with 
application to real-world industrial tasks. Combined regularization techniques are applied for training to boost the 
performance. Experimental results show that our scheme receives satisfactory classification accuracy and 
outperforms state-of-the-art methods. 
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1. Introduction 

There has been an increasing interest in the use of NDT 
techniques of defects from steel [1], castings [2], [3], 
textile [4], TFT-LCD panel [5], nanostructures [6], [7], 
titanium-coated aluminum surfaces [8], and 
semiconductors [9] etc. Among these topics, tire defects 
inspection research is a significant research topic that 
has been investigated by researchers from both academy 
and industry areas over the past few decades [10], [11], 
[12], [13], [14] and is considered as one of the most 
challenging problems in industrial information 
revolution era [15] due to its unique properties 
illustrated in our previous study [11]. Much work has 
been done on automatic tire defect detection and has 
been applied in tire X-ray inspection systems to carry 

out computer vision based automatic defect inspection. 
Tire defect classification is one of the three steps in 
computer vision (radiographic) based tire inspection in 
which the first step is an X-ray imaging system, the 
second is defect detection and the last one is defect 
classification. However, in most real-world applications 
tire defect classification and defective products handling 
thereafter still require human observers. The reason for 
this is that the complexity, high-variety, and high 
dynamic range real-world defect pattern cannot be 
described with analytical equations. Because the 
dynamics are either too complex or unknown and 
traditional shallow methods, which contain only a small 
number of non-linear operations, do not have the 
capacity to accurately model such complex data [16]. In 
previous work, low-level features were used for tire 
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defects detection and classification. In [11], optimal 
scale and threshold parameters were selected to 
distinguish defect edges from the background textures 
using wavelet multi-scale features. To model complex 
real-world data, exquisite features, either supervised or 
semi-supervised, are selected to capture relevant 
information in classification tasks. 
However, on the one hand, developing domain-specific 
features for each specific task is expensive, time-
consuming, and requires expertise of the data. On the 
other hand, unsupervised feature learning [17], [18] is 
an alternative to learn feature representations from 
unlabeled data which would result in performance 
degeneration because of overfiting when a large number 
of features are utilized. Dimensionality reduction and 
feature selection techniques have been applied to 
address the problem of dimensionality, which is 
becoming a significant branch in the machine learning 
and data mining research area [19], [20]. 
Deep networks, with the goal of learning to produce a 
useful higher-level representation from the lower-level 
representation output by the previous layer from 
unlabeled data, are motivated in part by knowledge of 
the layered architecture of regions of the human brain 
such as the visual cortex, and in part by a body of 
theoretical arguments in its favor [21]. Deep networks 
have been used to achieve state-of-the-art results on a 
number of benchmark datasets for solving difficult 
artificial intelligence (AI) tasks. A variety of deep 
learning algorithms have been proposed, e.g., Deep 
sparse auto encoders (Bengio) [22], Stack sparse coding 
algorithm [23], Deep Belief Network (DBN) (Hinton) 
[24] and their extrapolations, which learn rich feature 
hierarchies from unlabeled data and can capture 
complex invariance in visual patterns. In recent 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) competitions [25], deep learning methods 
have shown to be successful for computer vision tasks 
by extracting appropriate features while jointly 
performing discrimination and thus have been widely 
adopted by different researchers and achieved top 
accuracy scores [26], [27]. There have been applications 
based on these techniques in diverse vision tasks. In 
[28], Shi and Zhou et al. proposed a stacked deep 
polynomial network based representation learning 
method for tumor classification. A discriminant deep 
belief network was proposed in [29] to characterize 
SAR image patches in an unsupervised manner in which 

weak decision spaces were constructed based on the 
learned prototypes. Various deep learning approaches 
have been extensively reviewed and discussed in [27]. 
However, much work has been done in the deep 
learning community, researchers focus mainly on 
developing models for static data and not so much on 
optimal representation for practitioners in real-world 
applications, e.g., what makes a optimal representation 
for practitioners in real-world applications; and can 
unsupervised pre-training criteria be applied to initialize 
deep networks for better classification? 
In this work, a supervised feature embedded deep 
learning based tire defect classification method is 
proposed. We probe into deep learning based image 
classification problems with application to real-world 
industrial tasks. The deployment of deep neural 
networks in industrial application domains are well 
explored and discussed. 
This paper is organized as follows. Section 2 provides 
an overview of deep learning model and architecture. 
Starting from the related work of CNN based deep 
feature learning and Caffe (Convolution Architecture 
for Feature Embedding, Caffe) framework, we discuss 
related existing works and present a generalized 
formulation of the state-of-the-art AlexNet architecture. 
In section 3, we describe the dataset used in this work 
and introduce data preparation and augmentation 
processes. Section 4 presents experiments that 
qualitatively study of classification accuracies for each 
tire defect category and validates the effectiveness of 
the scheme compared with other state-of-the-art 
methods using the same dataset. Section 5 summarizes 
our findings and concludes our work. 

2. Deep Network Model for Learning 
Representations 

Different from the general idea of face recognition, 
universal object recognition, which aims at learning 
thousands of objects from millions of images, is 
becoming a booming research field while still is a huge 
challenge for the reason that datasets contain a huge 
number of features, noise, and a variety scale of 
different objects which exceeds the capacity of 
traditional classification schemes. The problem to be 
addressed in this work however, faces similar 
difficulties such as multiple categories, scale varieties, 
magnanimous features and noise.  
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To describe object instances, various local features such 
as Scale Invariant Feature Transform (SIFT) [30] and its 
variants like Speeded-Up Robust Features (SURF) [31] 
etc., binary descriptors including FREAK [32] and 
BRISK [33], are extracted, with or without embedding 
them into Global Features Representations. For example, 

BRISK is a 512-bit binary descriptor that computes the 
weighted Gaussian average over a select pattern of 
points near the key point. However, in some real-world 
applications, existing classification methods using a Bag 
of Words model based on low level features and global 
representations as well cannot yield satisfactory 
presentations, especially when the high-level concepts 
in the user’s mind is not easily expressible in terms of 
the low-level features as is shown in Fig. 1. 
In recent years, by virtue of its appropriate features 
representation and their jointly discrimination, deep 
networks have been shown to be successful for 
computer vision tasks [34], [35] and have outstripped 
traditional techniques in the ILSVRC (ImageNet Large 
Scale Visual Recognition Challenge, ILSVRC) which 

has become the standard benchmark for large-scale 
object detection as well as image classification since 
2010. In 2012, as the major milestone of deep learning 
based methods AlexNet [36] trained on ImageNet 2012 
reached a great success in the ILSVRC after which deep 
learning based methods such as ZF [37]，SPP [38] and 
VGG [39] choose AlexNet as their baseline deep model 
and also achieved excellent performance. Thereafter 
more approaches [38], [40], [41] were proposed based 
on the scheme by fine-tuning the parameters according 
to their specific applications. However, few toolboxes 
or trained models of published results offer truly off-
the-shelf deployment of state-of-the-art models such 
that they are not sufficient for real-world applications or 
even commercial deployment.  
To address such problems, a fully open-source 
framework Caffe was proposed to afford clear access to 
deep architectures [42]. Caffe is an open-source deep 
learning framework for state-of-the-art deep learning 
algorithms and a collection of reference models. The 
framework provides a complete toolkit for training, 
testing, fine tuning, and deploying models. Moreover, it 
is one of the fastest available implementation of these 
algorithms, making it immediately useful for industrial 
deployment. In this work, we address the tire defects 
classification using deep learning based on convolution 
neural network under the Caffe framework. 
Compared with previous schemes such as Cifar 10 and 
LeNet, AlexNet has been improved by Hinton et al. by 
adding Rectified Linear Units (ReLU) nonlinearity and 
Dropout [43] model regularization strategy at fully-
connected layers which make it several times faster than 
their equivalents and prevent substantial overfitting at 
the same time. Fig. 2 shows the flowchart of the 
proposed tire defects classification scheme. 

 

Fig. 2.  The flowchart of the proposed tire defects classification scheme. 

   
(a)                   (b)                    (c) 

   
(d)                   (e)                    (f) 

Fig. 1.  Low level features of tire radiography image. (a) Brisk; 
(b) FAST; (c) Harris; (d) MinEigen; (e) MSER; and (f) SURF. 
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2.1. Network architecture 

As a milestone of CNN based deep learning scheme, 
AlexNet has a significant architecture. As is shown in 
Fig. 3, in this work there are five convolutional layers 
namely conv1, conv2, conv3, conv4 and conv5 with 
kernel sizes 11×11, 5×5, 3 × 3, 3 × 3 and 3 × 3 pixels 
respectively. Considering the geometric dimensions and 
scales of tire defects in the dataset, we set the fixed-
resolution (127 × 127) images as the input to the first 
convolutional layer which with 96 kernels of size 11 × 
11with a stride of 4 pixels. The second convolutional 

layer filters the output of pooled output of the first 
convolutional layer with 256 kernels of size 5 × 5 and 
with a stride of 1 pixel. The pooled output of the second 
convolutional layer is connected to the rest three 
convolutional layers without using any pooling layers 
with 384, 384 and 256 kernels of size 3 × 3 and with a 
stride of 1 pixel respectively. The fifth convolutional 
layer is followed by a max-pooling layer and two fully-
connected layers which have 4096 neurons each. Finally, 
the output of the last fully-connected layer is fed to soft 
max which produces a distribution over the 6 class 
labels as is shown in Fig. 3. 

Table I. Network architecture. 

 
 
 
 
 
 
 
 
 
 
 
 

In this architecture, three max-pooling layers are used 
after the first, second and fifth convolutional layers with 
the pooling size of 32 pixels and the stride of 2 pixels. 
In each fully-connected layer, ReLU non-linearity 
activation function is applied for a better convergence 
speed than that using sigmoid and tanh activation 
functions. A more detailed configurations and primary 
parameters of the CNN model are listed in Table I. 

2.2. Pre-training and fine-tuning 

Consider that our dataset has limited quantities of 
samples, in this work we used a pre-trained network on 

ImageNet to initialize the networks with pre-trained 
parameters and thus to accelerate the learning process 
and to improve the generalization ability. Moreover, 
data augmentation and dropout techniques were used to 
regulate data. 
There are many research works indicated the feasibility 
and efficiency of transferring the pre-trained model to 
new tasks with a variety of datasets [44]. They indicated 
how well features at that layer transfers from one task to 
another and concluded that initializing a network with 
transferred features from almost any number of layers 
can give a boost to generalization performance after 

 

Fig. 3.  The flowchart of the proposed tire defects classification scheme. 

Layer Type Maps & neurons Kernel Stride 
0 Input 3 maps of 127×127 neurons   
1 Convolutional 96 maps of 30×30 neurons 11×11 4 
2 Max pooling 96 maps of 15×15 neurons 3×3 2 
3 Convolutional 256 maps of 15×15 neurons 5×5 1 
4 Max pooling 256 maps of 7×7 neurons 3×3 2 
5 Convolutional 384 maps of 7×7 neurons 3×3 1 
6 Convolutional 384 maps of 7×7 neurons 3×3 1 
7 Convolutional 256 maps of 7×7 neurons 3×3 1 
8 Max pooling 256 maps of 3×3 neurons 3×3 2 
9 Fully connected 4096 neurons 1×1 1 
10 Fully connected 4096 neurons 1×1 1 
11 Fully connected 6 neurons 1×1 1 
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fine-tuning to a new dataset. To adapt the pre-trained 
nets to our specific classification task, fine-tuning 
process is necessarily of great concern. We use the pre-
trained AlexNet model to initialize all layers except the 
output layer in which a limited number of category 
labels are used compared with that in the ILSVRC.  
Class labels are given for our new training dataset to 
compute the loss functions. Moreover, in this work, we 
decrease the spatial resolution of each hidden layer, and 
thus to increase the number of feature plane in order to 
detect more types of features for tire defects. A more 
detailed network architecture that illustrates the fine-
tuning process will be given in Section 4. 
The most direct way to improve the feature 
representation or classification ability of CNNs is to use 
a deeper network and more neurons, namely deeper and 
wider. However, deeper networks also bring over-fitting 
problem. Existing studies have shown that dropout 
technique helps preventing overfitting even though this 
roughly doubles the number of iterations required to 
converge. Because the neurons which are “dropped out” 
do not contributed to the forward pass and do not 
participate in backpropagation. A neuron cannot rely on 

the presence of particular other neurons. In this work, 
we use dropout in the first two fully-connected layers 
with dropout_ratio=0.5 as is shown in Fig.3. 

3. Dataset 

3.1. Data Source 

In this work, a dataset composed of 1582 images 
belonging to 6 typical defect categories, namely Belt-
Foreign-Matter (BFM), Sidewall-Foreign-Matter (SFM), 
Belt-Joint-Open (BJO), Cords-Distance (CD), Bulk-
Sidewall (BS) and Normal-Cords (NC), was used to 
perform the tire defect classification experiments. The 
images were collected from a typical tire manufacturing 
enterprise in China. Source images were derived from 
real-world defect detection system at the end of the 
manufacturing line and thereafter were labeled manually 
by human labelers. Moreover, the proportion of defect 
samples is consistent with that of the production line. 
Fig. 4 shows sample synopses of the evolving dataset. 

       

        

        

      

     

Fig. 4.  Sample synopses of the evolving dataset (Some of the images above were scaled for better visual effect). From top to bottom: 
Sidewall-Foreign-Matter, Belt-Foreign-Matter, Belt-Joint-Open, Bulk-Sidewall, Cords-Distance.  

 

___________________________________________________________________________________________________________

1060

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1056-1066



3.2. Data Preparation and Augmentation 

According to the statistics on the tire defects dataset, it 
consists of variable-resolution defect images arrange 
between 50×50 and 200×500 pixels due to the 
uncertainty of tire defects occurrences in the production. 
In order to meet the requirements of a constant input 
dimensionality of the classification scheme, characterize 
tire defects to the maximum extent and reduce 
computational complexity at the same time, the images 
in the dataset were down-sampled or up-sampled to a 
fixed resolution of 127×127. Given a rectangular image, 
we first rescaled the image such that the shorter side 
was of length 127, and then cropped out the central 
127×127 patch from the resulting image. We did not 
pre-process the images in any other way, except for 
subtracting the mean activity over the training set from 
each pixel. Therefore, aiming at practical applications, 
raw gray values of the pixels are used in this work. 
In deep learning based tasks, sufficient amount of data 
is usually needed to avoid severe overfitting problem. 
Under different applications, the geometric 
transformation of the image using one or more 
combination of data augmentation transform can be 
used to increase the amount of input data. In AlexNet, 
two forms of data augmentation were employed: image 
translations and horizontal reflections and altering the 
intensities of the RGB channels while in Fast R-CNN 
[45] only horizontal flip was used. In this work, we 
abandon altering the intensities of the RGB channels 
given that the radiographic images are in gray value in 
our dataset and add reflection, zoom, scale and contrast 
translations to produce more training examples with 
broad coverage. 

4. Experiments and Discussion 

The performance of the proposed deep learning scheme 
was evaluated by applying it to our tire defects dataset. 
For test, 20% of each defect category were selected 
randomly as test dataset, another 20% of each defect 
category are selected randomly as validation dataset, 
and the rest were selected as training dataset. Ten 
groups of selections were used for experiments and their 
mean classification accuracy was taken as the final 
results. 
We use images with fixed resolution of 127×127 as the 
input of the network which would convolve and pool 

the activations repeatedly, then forward the results into 
the fully-connected layers and classify the data stream 
into 6 categories. Considering the small quantities of 
validation dataset, to prevent the error descending too 
fast we set the initial learning rate base-lr as 0.001. For 
test dataset, we set test batch volume batch as 246, test 
batch test-iter as 1, and test interval test-interval=200, 
namely test once every 200 iterations and displays 
classification accuracy. Unlike AlexNet in which two 
GPUs are used, in this work we set the solver_mode as 
CPU. The remaining parameters of the deep architecture 
were the same as the default parameters in the CaffeNet 
optimization model. 
Fig. 5 shows the filters on the first convolutional layer 
(upper left), and the second convolutional layer (upper 
right) of the network and filtered features respectively. 
Notice that the weights of the first convolutional layer 
are smooth and without noisy patterns, indicating nicely 
converged network while the second convolutional layer 

weights are not as interpretable, but it is apparent that 
they are still smooth, well-formed which would 
guarantee high regularization strength to avoid 
overfitting. 

  
    (a)                                             (b) 

  
    (c)                                             (d) 

Fig. 5.  (a) Filters on the first convolutional layer, and (b) the 
second convolutional layer of the network, (c) and (d) filtered 
features respectively. 
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In the three fully-connected layers, Fc6 and Fc7 are 
hidden layers with 4096 neurons while Fc8 is the soft 
max output layer of 6 categories. Fig. 6 (upper row) 
shows the statistics of Fc6 and Fc7 in which the 
horizontal axis represents the number of neurons and the 
vertical axis represents each neuron's response value. 
Fig. 6 (bottom row) shows the histogram respectively, 
the horizontal axis is the neuronal response value, the 
vertical axis is the number of occurrences of each 
response value. 
Fig. 7 illustrates the classification accuracy versus loss 
relation graph in which the horizontal axis denotes the 
number of iterations while the left vertical axis 
representing the value of the loss function (LF) and the 
right vertical axis denotes the average validation 
recognition rate. The loss function represents the price 
paid for inaccuracy of predictions in classification and 
therefore measures the optimal strategy. The smaller the 
LF value is the better the system is. As can be seen in 
Fig. 5, after 1200 iterations the loss curve tends to zero 
while the classification accuracy curve tends to 1 which 
meet the requirements of the optimization objectives. 
The validation classification accurate reaches as high as 
0.98374 when the iteration is 1200 while decreases to 
0.97561 when the iteration is 2000 and, the actual test 
accuracy is 0.94521. 

Table II shows the detailed classification accuracies for 
each tire defect category. As is shown that the overall 
classification accuracy reaches 96.51% for all categories. 
Correct classification accuracy for BS defect is the 

lowest, 88.89%, while SFM and BFM defects own the 
highest correct classification accuracies, 100%, among 
all categories. BS defects were mainly mistakenly 
classified as normal cords which is because the weak 
edge of tire BS defect is too weak to be extracted by the 
feature representation scheme. Most of BS defects can't 
be identified even by qualified human observers as is 
shown in Table II.  

 

 

 

Fig. 7.  The relation between classification accuracy and 
the loss function value. 

 

Fig. 6.  The statistics of fully-connected layers (Fc) Fc6 and Fc7. 
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Table II. Detailed classification accuracies for each tire defect categories. 

Positive/Negtive 
classification 

SFM BFM BJO CD BS NC 
Correct 

classification 
Total 

sample 
Accuracy 

% 
SFM 68 0 0 0 0 0 68 68 100 
BFM 0 53 0 0 0 0 53 53 100 
BJO 0 2 50 0 0 0 50 52 96.15 
CD 0 0 0 53 1 1 53 55 96.36 
BS 0 0 0 0 40 5 40 45 88.89 
NC 0 0 0 0 2 41 41 43 95.35 

Total sample       305 316 96.51 

On the other hand, the scheme reached satisfactory 
classification accuracies for other tire defect categories, 
especially for SFM and BFM defects, 100% accuracies 
were reached. Deep learning is almost the only end-to-
end machine learning system available in which the 
most expressive deep features can be learnt and 
classified automatically. This mechanism therefore is 
consistent with the human visual process. 
To validate the effectiveness of the scheme, we 
experimented on available state-of-the-art methods for a 
general comparison on the same dataset, shown in Table 
III. We experimented PCA+BP neural network, 
ScSPM09 [46], LLC10 [47], KSPM-200-3 [48], KSPM-

400-2 [48] and LeNet [49] methods. Here in KSPM-
200-3 method, we set dictionary size N=200 with a 3 
layer pyramids structure while in KSPM-400-2 we set 
N=400 with pyramid structure of 2 layers. SIFT features 
were used in ScSPM09, LLC10 and KSPM methods, 
and linear SVM classifier was used in ScSPM09 and 
LLC10 methods while in KSPM-200-3 and KSPM-400-
2 methods nonlinear SVM classifier was used. As is 
shown in Table III that our method outperformed state-
of-the-art methods on our tire defect dataset with the 
overall classification accuracy of 96.51% and validation 
classification accuracy of 98.37%. 

Table III. Comparison on state-of-the-art methods using the same dataset. 

Methods Overall 
Accuracy % 

Validation 
Accuracy % 

Test times 
In second 

PCA+BP  69.44 / 30.23 
ScSPM09 95.56 / 84.67 
LLC10 94.85 / 22.37 
KSPM-200-3 92.77 / 15.26 
KSPM-400-2 92.37 / 15.35 
LeNet 91.89 93.46 26.36 
Our method 96.51 98.37 37.16 

Notice that the validation classification accuracies are 
slightly better than the test overall classification 
accuracies in both LeNet and our method. There are two 
reasons for this. Firstly, insufficient training samples 
were used. And secondly, parameters were not 
optimized. Given that tires are of nonlinear composite 
material structure, the manufacturing process is 
complicated such that there are a broad variety of tire 
defects with different shapes, scales, positions and gray 
levels etc. that consist of large number of features in 
both foreground and background of radiographic images. 
On the other hand, deep nets have a too large number of 
parameters to be trained that only large quantities of 
training samples can be sufficient for training a network 

with strong generalization capability. ScSPM09 and 
LLC10 are two successful sparse coding based methods 
that have been extensively studied and applied in 
various domains. Both of them received acceptable 
classification accuracies however, in the two methods 
and KSPM method researchers need to be involved in 
the extraction of image features and the selection of 
classifiers. Most importantly, these selections would 
affect the classification accuracies directly. 

Compared with these methods, the proposed scheme 
outperformed them in classification by virtue of the 
advantages of CNNs such as well-matched topology 
structure of the input image and the network, weight 
sharing and feature representation etc. However, it is 
worth noting that the relationship between network’s 
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size and performance can be complicated even though it 
is believed that with a larger network the results can be 
improved under this deep convolutional neural network 
architecture.  

The last 3 layers of the given model are fully 
connected layers (Fc6~Fc8). Notice also that prior 
convolution and the pooling layers have reduced the 
dimensionality of the features to the acceptable size 
such that the use of the three fully connected layers will 
not result in a serious computational burden. The test 
time of the proposed method for the test dataset is 
37.16s on a workstation with 3.60 GHz 4-core CPUs 
and 16 GB RAM, on an Ubuntu 16.04, Caffe and 
python 2.7 platform. The average processing time of the 
proposed method for the final representation of an input 
image is 0.1176 seconds. The LetNet method was tested 
on the same platform and workstation. The PCA+BP, 
ScSPM09, LLC10 and KSPM methods were tested in 
MATLAB R2009b, on a 64-bit Windows 7 platform, on 
the same workstation. A detailed test times comparison 
is shown in Table III. 

5. Conclusions 

In just a few years, deep learning almost subverts the 
thinking of image classification, speech recognition and 
many other fields, and are forming an end-to-end model 
in which the most reprehensive deep features can be 
learnt and classified automatically. This model tends to 
make everything easier. Moreover, in deep nets each 
layer can be adjusted according to the final task and 
ultimately to achieve co-operation between the layers 
which can greatly improve the accuracy of the task. 
However, the detection and classification of universal 
objects or generalized automatic deployment, e.g. tire 
defects, is often an ambiguous and challenging task 
especially in real-world application. Inspired by recent 
successful approaches, the approach we investigate in 
the present work, that is, using a supervised feature 
embedded deep learning based scheme to classify tire 
defects which is an application of deep learning to real-
world industrial tasks. Combined regularization 
techniques were applied for training to boost the 
performance. Experimental results show that our 
scheme received satisfactory classification accuracy and 
outperform state-of-the-art methods. This work would 
provide practical usefulness to both researchers and 
practitioners in various industrial fields. 
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