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Tire Force Estimation in Intelligent Tires Using
Machine Learning
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Abstract—The concept of intelligent tires has drawn attention
of researchers in the areas of autonomous driving, advanced
vehicle control, and artificial intelligence. The focus of this paper
is on intelligent tires and the application of machine learning
techniques to tire force estimation. We present an intelligent tire
system with a tri-axial acceleration sensor, which is installed onto
the inner liner of the tire, and Neural Network techniques for
real-time processing of the sensor data. The accelerometer is ca-
pable of measuring the acceleration in x,y, and z directions. When
the accelerometer enters the tire contact patch, it starts generat-
ing signals until it fully leaves it. Simultaneously, by using MTS
Flat-Trac test platform, tire actual forces are measured. Signals
generated by the accelerometer and MTS Flat-Trac testing system
are used for training three different machine learning techniques
with the purpose of online prediction of tire forces. It is shown
that the developed intelligent tire in conjunction with machine
learning is effective in accurate prediction of tire forces under
different driving conditions. The results presented in this work
will open a new avenue of research in the area of intelligent tires,
vehicle systems, and tire force estimation.

Index Terms—Intelligent tire, machine learning, sensing sys-
tems, vehicle systems, tire force estimation

I. INTRODUCTION

IRE and road interaction is the main source of force

generation in terms of vehicle dynamics, and online
estimating of tire forces are important to vehicle safety. Thus,
it is highly desirable to have an online measurement or
estimation of tire forces [1], [2], [3]. The need of online
tire measurement system is more pronounced for autonomous
vehicles and all vehicles when they experience harsh maneuver
in which estimation techniques fail to accurately report tire
forces, moments, and slip angles. An intelligent tire system
is defined as a system that can intelligently extract and
send valuable information about tire and road conditions to
vehicles’ Electronic Control Unit (ECU). By using different
communication protocols including 5G network [4], intelligent
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tires can be actualized in the near future to make vehicles
safer and fully connected. Thus, it is paramount to develop
novel sensing systems along with novel machine learning
techniques with the potential of real-world applications and
implementation in tires [5].

One crucial step for the actualization of intelligent tires is to
accurately predict tire forces. Research in the area of tire forces
spans from a simple formula to complicated finite element
model and direct measurement techniques with extra sensory
devices added to tires. Considering theoretical aspects, tire
models have been developed based on their frequency range
including steady state, transient and high frequency tire models
[6], [7]. Depending on the working conditions, tire models are
also classified as pure and combined slip models. Tire models
include but not limited to Magic Formula [6], average lumped
LuGre [8], [9], UniTire [10], Kamm circle [11], Nicolas-
Comstock [12] and Dugoff [13]. These models can some-
how predict tire forces; however, their parameters should be
tuned experimentally, which makes their practical applications
harder as the aging and wear of tires plus complicated driving
conditions affect those parameters.

Different estimation techniques have been also developed
and utilized by researchers to estimate tire forces. These
techniques are used to find vertical, longitudinal and lat-
eral tire forces [14], [15], [16], [17]. Viehweger et al. [17]
summarized four model-based methods to estimate vehicle
states and tire forces in all three directions in their recently
published article. The most well-known techniques used for
tire forces estimation are linear [18], RLS-based [19], sliding
mode [20], nonlinear [21], unknown input observers [22]
and Kalman-based techniques [3], [23]. For the estimation
of vertical forces, generally, the longitudinal and lateral load
transfers plus the static load of each tire are used. For
example, Doumiati et al. [15], [24] modeled tire vertical
forces with the coupling of the longitudinal and lateral loads
transfers, and proposed an algorithm to estimate lateral load
transfer and vertical forces based on the Kalman filter. In
another work, Cho et al. [14] studied tire vertical forces by
adding the longitudinal and lateral load transfers to static
loads. Very recently, Cordeiro et al. [25] used a delayed
interconnected cascade-observer structure along with Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) to
find tire forces including the vertical one. The implementation
of delayed interconnections addresses the challenges related
to the mutual dependence in cascade estimator.

Estimation of tire longitudinal force is very important to
determine the performance behavior of vehicles. Different
techniques have been used to find tire longitudinal forces. For



example, EKF method was adopted to calculate the tire
longitudinal force as state estimates, which can avoid complex
tire model parameters [16]. Random-walking model was used
by Cho et al. [14] and Rajamani et al. [26] to estimate
tire longitudinal forces. One of the issues of using random
walk models in tire longitudinal forces estimation is related
to observers as the model dynamic information is not fully
explored by them in the state correction process [25]. A few
other researchers adopted sliding mode observers to identify
tire longitudinal force.

Estimation of tire lateral forces is the most challenging
one in comparison with the other two forces because of
the observability conditions [21]. Several researchers have
focused on the estimation of tire lateral forces. For instance,
by utilizing a random-walk Kalman filter, tire lateral forces
were estimated in [24]. Doumiati et al. [27] exploited EKF
and UKF observers to identify tire lateral force and side-
slip angles. In another study, according to a nonlinear vehicle
dynamics model, the interacting multiple model-unscented
Kalman filter (IMM-UKF) and the interacting multiple model-
extended Kalman filter IMM-EKF) were used to estimate tire
lateral forces [28]. Assuming the time derivative of the lateral
force is proportional to the roll rate, K. Huh [29] estimated
the lateral tire force of each wheel using a four degrees of
freedom vehicle model. However, several estimation works
have been performed to find tire forces, they rely heavily on
tire and vehicle models with different complexity levels and
are still insufficient and unreliable when vehicles experience
harsh maneuver. In addition, such indirect methods introduce
additional uncertainties to the control procedure and may bring
inaccuracies such as integration errors or time lags, which
might be a disaster for the driver and driver assist systems
when facing an emergency. Accurate estimation of tire forces
is very important because the vehicle performance and safety
highly depends on the performance of control algorithms. The
control components of vehicles determine their control strategy
and parameters according to the estimated tire forces and
moments. Accordingly, several researchers have focused on
the application of intelligent tires from the perspective of
vehicle control, because intelligent tire technique is proved to
provide more accurate tire variables of interest by processing
measurements of tire deformations or strains using sensors
installed inside the tire. In addition, it is expected that control
algorithms associated with intelligent tire technology can be
more effective because uncertainties in the observers will be
disappeared [30]. Accordingly, many sensory devices have
been developed for locating them inside the tire/hub to provide
useful and online information from tire and road interaction
[2], [31]. A Load-Sensing Hub Bearings (LSB) unit was
developed with using strain gauges to relate the tire forces
and moments to the bearing deflections [32]. Several kinds of
sensing systems were designed for the development of intel-
ligent tire to directly measure tire dynamics parameters [33],
[34], [35]. The data extracted using the direct measurement
of tires are usually fused with estimation techniques or tire
models to give a better prediction from tire forces.

One of the main challenges of developing intelligent tires
is related to accurate interpretation of the generated data

from the sensors during different driving scenarios. Traditional
analytical methods try to establish the relationship by physical
model, but it is difficult to understand and model the tire
behavior under complex driving conditions [30]. This short-
coming in the areas of tire forces estimation and intelligent
tires have prompted us to develop a novel intelligent tire us-
ing accelerometer and machine learning techniques. Different
machine learning methods have been used in the automated
driving, tire modeling and parameter estimations for vehicle
dynamics application. The feasibility of the neural network
used for tire modeling is investigated by Kim with feedforward
back propagation algorithm [36] and Boada with the recursive
lazy learning method [37], and the advantages under a complex
and wide range of tire environments were shown. Cramer
trained a decision tree-based model to build the relationship of
vehicle dynamics objective measurements and subjective as-
sessment scores from professional drivers [38]. Roychowdhury
applied a convolutional neural network (CNN) to learn region-
specific features to classify road surface condition using front-
camera images [39]. To develop an affordable real-time snow
detection system, Khan used SHRP2 naturalistic driving study
video data to train the developed system. Two texture-based
image features and three classification algorithms, namely
support vector machine (SVM), k-nearest neighbor (K-NN),
and random forest (RF), were used to classify the image
groups [40]. Authors from Porsche AG and the University
of Duisburg-Essen [41] investigated the use of a recurrent
neural network (RNN) with gated recurrent units for side-
slip angle estimation. To further increase the performance and
robustness of the estimation, a simplified vehicle model is
incorporated. Nearly 6 million data points on dry, wet, and
snowy road surface conditions were used. Their results show
a great estimation quality in all covered situations.
Generally, the main machine learning methods used in auto-
motive industry, especially for tire/vehicle parameters estima-
tion, contain the family of decision tree algorithms (Decision
Tree, Random Forest, Gradient boosting machines, etc.) and
the family of neural networks (Artificial Neural Networks,
Convolutional Neural Networks, Recurrent Neural Networks,
etc.). An accepted conclusion in machine learning field is
that no single algorithm performs the best across all possible
scenarios. Therefore, in this study, three commonly used algo-
rithms, Neural Network, Random Forest and Recurrent Neural
Network, are implemented for the sake of comparison. Neural
Networks usually consist of an input, an output layer, and one
or more hidden layers that converts the input into something
that the output layer can use [42]. A Neural Network can
process all types of data coded in the numeric form. Neural
Networks can be formulated deeper via increasing the number
of hidden layers. The more hidden layers the more complex
the representation of an application can be. Random Forest
algorithm uses and merges the decisions of several decision
trees to reach an answer, which basically describes the average
of all existing decisions trees [43]. In this way, it compensates
for possible errors of single trees in the forest such that the
model is less prone to produce results further away from
the real values. In many practical applications, the Random
Forest have been proven to be a very potent learning ap-



proach. However, when used in regression problems, Random
Forest is subjected to the limitation that they cannot go
beyond the range of values of the target variable utilized in
training [44]. RNN is considered as a class of neural networks,
which can capture temporal dependencies and thus are well
appropriate in processing sequence data to make predictions
[45]. Generally, this technique fits well to natural language
processing and speech recognition applications. A comparative
results are provided, and finally the neural network with Rprop
algorithm is adopted as the most effective approach for tire
forces estimation because of its effective performance in terms
of accuracy and easy implementation.

As illustrated, in this study, the intelligent tire is developed
by attaching a MEMS-based accelerometer to its inner liner.
The accelerometer is capable of measuring the acceleration
in x, y, and z directions. The accelerations measured by the
accelerometer are used for training three different machine
learning techniques described above with the aim of finding
the interaction forces between the tire and road. This is the
first work in which tire forces are predicted in all directions
using machine learning in an intelligent tire system. In the next
sections, we first present the experimental setup used for online
measurement of tire forces and the intelligent tire system.
Then, the machine learning algorithms used in this work, are
briefly presented. In addition, it is shown how the collected
data is used for the training purposes. The very last section of
the paper shows the potency of trained neural network for the
prediction of tire forces. We first start with the experimental
setup as it will be presented in the next section.

II. EXPERIMENTAL SETUP

The intelligent tire system and the Measure Test Simulate
(MTS) Flat-Trac tire test platform are used in this study. The
intelligent tire system includes tri-axial acceleration sensor,
slip ring, signal regulator, National Instrument (NI) data ac-
quisition system (DAQ), as shown in Figure 1. A tri-axial
acceleration sensor is glued to the center of the tire inner
liner, which is used to measure the longitudinal, lateral and
vertical accelerations in the x, y and z directions of its
body coordinate frame respectively, as depicted in Figure
2(a-b). A slip-ring device is mounted to the rim to transmit
the sensor signals from the rotating tire to the MTS Flat-
Trac test platform, see Figure 3(a-b) and 4. The obtained
acceleration signals are collected through the signal regulator
and NI DAQ. The signal debugger provides energy supply for
the signal, while the NI acquisition system can adjust signal
channel, sampling frequency and other settings to collect the
acceleration signals. The sampling rate is 10kHz, which is high
enough for the purpose of this study.

A set of tests by using Pirelli all-season tire (205/40R18)
under free rolling, cornering and driving conditions with
different vertical loads and velocities are used to train three
different machine learning techniques to estimate the longitu-
dinal, lateral and vertical forces (shown in Tables I). Typical
acceleration signals in three directions are shown in Figure 5.

Fig. 1: The intelligent tire testing system

b

Fig. 2: (a) Accelerometer attached to the inner liner of the
tire, (b) its coordinate system

III. METHODOLOGY

Not limited to several feature points, the complete accel-
eration information over the entire tire contact patch is used
to estimate the tire forces in this research. The acceleration

a L S, b
Fig. 3: (a) high speed type slip ring, (b) its location on the
metal

Fig. 4: MTS tire testing system



TABLE I: Test Conditions

Free Rolling

Test parameter Value

Velocity[kph] 30/60/90

Pressure [kPa] 220

Vertical load[N] 2080/4160/6240/ Triangular wave
Cornering Condition

Velocity[kph] 30/60

Pressure [kPa] 220

Vertical load[N] 2080/4160/6240

Slip angle [Deg.] +6+5+4+3.5+£3+2.5+2+1.5+1

Triangular wave
Driving Condition

Velocity[kph] 30/60

Pressure [kPa] 220

Vertical load[N] 2080

Torque [N.m] 207/218/343/400/442/526/565/650

Free Rolling 30km/h 4160N
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Fig. 5: Typical acceleration signal

signals in x, y and z directions are inputs to the machine
learning techniques, and the outputs are the longitudinal,
lateral and vertical forces.

A. Data pre-processing

Data pre-processing transforms raw data and signals into
the information used in machine learning techniques through
a sequence of operations. It is a key step to the success of
training process. The objectives of data pre-processing include
size reduction of the input space, smoother relationships, data
normalization, noise mitigation, and feature extraction. The
main process will be briefly discussed in this part.

« Filtering and noise reduction: the sampling frequency of
the acceleration signal is 10kHz, which is high enough
for the purpose of tire force estimation. In this paper,
the acceleration signal is filtered with 400Hz of cut-off
frequency. This is the main frequency induced by tire
deformation. The information in the higher frequency
region could be used for other analysis, such as the micro-
vibration between tire and road surface.

« Identifying the contact patch: two peaks can be observed
obviously in the circumferential direction when the ac-
celerometer enters and leaves the contact patch. There-
fore, the data for every tire revolution can be extracted
by using the encoder signal, and the acceleration peaks,
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Fig. 6: Processed acceleration data for machine learning

which represent the contact patch region. As shown in
Figure 6, the points B and D are the starting and ending
positions of the contact patch, respectively.

Transform the data in the contact patch from time series
to spatial series: only one acceleration sensor is used
in order to save cost for the current study. The history
information is used when the tire with the attached
sensor rolling through the contact zone. To simplify the
structure of neural network and make the number of
features independent of the tire rolling speed, we extract
time series data at fixed positions in the contact patch
by using the encoder signal. By identifying the contact
patch in step 2, the center of contact patch C can be
determined. Finally, one signal data per 0.5° within 35°
rotation angle region extended from point C (from point
A to E in the Figure 6) is collected for machine learning.
Data normalization: the Min-Max normalization is used
for machine learning in this study. The min-max nor-
malization is a linear transformation, it can preserve all
relationships of the data values exactly. It is given as the
following equation:

T — Tmin
Tnorm = ey
Tmax — Tmin

where x is the measured acceleration value, Z,,i, and Z,,qz
are the minimum and maximum of the data.
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Fig. 7: Layers of the implemented neural network for tire
force estimation

B. Neural Network

An artificial neural network (ANN)-based formulation was
developed to estimate the tire forces in terms of tire lon-
gitudinal, lateral and vertical acceleration. Several advanced
algorithms have been developed for neural networks learn-
ing. Broyden-Fletcher-Goldfarb-Shanno (BFGS), Levenberg-
Marquardt, and conjugate gradients are classified as the well-
known algorithms for training feedforward neural networks.
Gradient descent methods (GDM) are also popular for super-
vised learning of neural networks. One of the most efficient
techniques based on GDM is batch back-propagation, which
minimizes the error function implementing steepest descent
method [46].

Adaptive gradient-based algorithms have been also ex-
ploited for training neural networks. They are considered as
one of the trendiest algorithms for optimization, and also ma-
chine learning. Among different Adaptive gradient-based algo-
rithms, Resilient backpropagation (Rprop) algorithm, which is
the basis of neural networks in R, is considered as one of the
best methods in terms of convergence speed, accuracy, and
the robustness considering the learning parameters and rate.
Using a sign-based technique, the Rprop algorithm updates the
weights to avoid detrimental effects of derivative’s magnitude
on the updated weight. As this method can effectively tackle
the noisy error, they are eminently proper for implementation
in hardware. Therefore, the Rprop algorithm with logistic ac-
tivation function and mean squared error (MSE) performance
index is adopted in our research. The structure of the neural
network is shown in Figure 7, and three hidden layers (10-
5-1) are considered for the neural network. For the F, and
F, estimation, the longitudinal and vertical acceleration are
put together as the inputs; for the F, estimation, acceleration
signals in three directions are all used.

We divide the data into training, validation and test
sets. Training set is utilized to find the correlation between
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Fig. 8: Estimation results for vertical tire forces under free
rolling conditions

dependent and independent variables; validation dataset is used
to tune model hyperparameters (i.e. the architecture); and the
test set assesses the performance of the model. We use 70%,
15% and 15% of the dataset as training, validation and test
set, respectively. The assignment of the data to different sets
is done using random sampling.

IV. RESULTS AND DISCUSSIONS

This section describes results of the tire force estimation
by the machine learning method discussed in the previous
sections. They are trained based on the data sets described
in Section III, whereas the analysis presented here is purely
performed on test datasets. The performance of the designed
algorithm is evaluated by the normalized root mean square
error (NRMS), which is calculated by the following equation:

NRMS — Zivzl(Fmeasured - Festimated)2 (2)
max(| Fmeasured D

where Ficqsureds Festimatea and N represent the measured
signal, the estimated signal and the number of collected
samples during the maneuver, respectively.

A. Estimation of vertical forces

The performance of vertical load estimation is shown in
Figs. 8-12, which demonstrates an excellent agreement be-
tween the estimated and actual values of vertical forces for
the testing scenarios. Fig. 8 represents the data collected in
free rolling conditions, which contain three days of data with
repetitive experimental conditions using the experimental setup
presented in Section II. We applied step normal and triangle
wave loads to the intelligent tire from about 2kN to 6kN, which
correspond to 40%-120% of the tire load index. Three rolling
speeds (30, 60 and 90 km/h) are used to include the influence
of velocity on intelligent tire. From Fig. 8, it can be seen
that the normal forces estimation under free rolling conditions
exhibits high accuracy, and the adopted training network can
effectively handle the influence of velocity changes.

For vehicle daily driving, it is important to include complex
driving scenarios. The vehicle will have a severe longitu-
dinal/lateral load transfer and slip angle when the vehicle
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Fig. 10: Estimation results for vertical tire forces under
cornering conditions (triangle wave slip angle)

is driving or steering with large accelerations. In Figs. 9-
11, the data is enlarged to contain cornering and driving
conditions. Figure 9 shows the comparison results of tire
vertical forces under cornering conditions, with step slip angle
input from -6 to 6 degrees at 30kph and 60kph of speeds. It
is noted that the input data to neural network for tire vertical
force estimation are the longitudinal and vertical accelerations,
which means that the key features for determining tire vertical
forces can be independent of tire slip angle and longitudinal
velocity. This is a good property for our trained network, since
the slip angle of each tire and vehicle velocity are still a big
challenge with current on-board sensors.

Figure 10 shows the estimation results for vertical tire
forces under cornering conditions with triangle wave slip angle
input. The slip angle changes from -6 degrees to 6 degrees,
and the longitudinal velocities of tire are set to 30km/h and
60km/h. The data sets used for testing of machine learning
algorithm is extracted randomly from the overall data, so
the shape of the slip angle input in Fig. 10 seems a little
irregular. From both Fig. 9 and Fig. 10, we can see that the
normal loads can be estimated accurately even though under
cornering conditions with large slip angles.

To evaluate the performance of vertical force estimation
under accelerating conditions, eight step driving torques are
applied on the intelligent tire at 30km/h and 60km/h of
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Fig. 11: Estimation results for vertical tire forces under
traction conditions (step driving torque)
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speeds, as shown in Figure 11. It can be observed that the
trained neural network is effective for estimating tire normal
force under different driving conditions. The overall estimation
results of tire vertical forces are shown in Figure 12, containing
the free rolling, cornering and driving conditions. As Figure 12
shows, the estimated and real data are slightly different only
in cornering region of the vertical loads. The NRMS error is
0.81%, which delineates the promising potential of machine
learning technique for vertical load estimation of tire forces
with a high accuracy.

B. Estimation of lateral forces

Figures 13-15 show the lateral tire force estimation results
under the triangular wave and step inputs of slip angles. The
detailed test conditions can be found in Figs.9 and 10, which
have shown the different slip angles, three loads and two
velocities. Figure 13 demonstrates the comparison of measured
and estimated lateral forces under the step input of slip angle,
and Figure 14 represents the case of the triangle wave input
of slip angles. It can be seen that the maximum lateral forces
at each conditions are nearly equal to their corresponding
limitation values, which is puF),. It should be noted that the
friction coefficient of the sandpaper on MTS test machine is
about 1.1.
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In our experiments, tires experience the maximum slip
angle up to 6 degrees in which the tire lateral force enters
into the nonlinear region, as depicted by Figure 15. Figures
13-15 demonstrate that the machine learning technique can
accurately predict the lateral forces of the tire. Nevertheless,
some differences exist in the regions of large lateral forces
due to large slip angle (5-6 degrees). The main source of these
discrepancies may be the severe sliding and micro-vibration
in the contact patch at large slip angles. However, the overall
performance of the method is satisfactory as its NRMS errors
are lower than 5% (4.23%). Comparing to previous works in
the area of tire forces estimation with focus on lateral forces,
the implemented machine learning technique shows a higher
accuracy even in the case of large slip angles.

C. Estimation of longitudinal forces

In this section, we aim to focus on the potency of our trained
machine learning algorithm for the estimation of tire longitu-
dinal forces. Figure 16 compares the estimated and measured
longitudinal forces. The test conditions are set to step driving
torque at 2880N load and two different velocities of 30 and
60 km/h. The results presented in this figure demonstrates the
high accuracy of longitudinal tire force estimation based on the
implemented machine learning technique. With having larger
data set, the accuracy of estimation can be even better for the
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Fig. 15: Tire lateral forces vs slip angle

longitudinal forces. The NRMS error is about 2.89%, which
is satisfactory for tire force estimation.
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D. Cross validation

Cross-validation (CV) is a technique to assess the generaliz-
ability of a model to unseen data. The 10-fold cross-validation
approach is adopted to reduce the bias associated with the
random sampling of the training. In this cross-validation, the
data set is divided into 10 portions, and 9 of them are utilized
for training and 1 set is employed for testing. The process is
then repeated until all data are tested. Fig. 17 shows a box
plot of validation results. NRMS errors ranged from 1.98%
to 3.85% for longitudinal force, 2.19 % to 4.53 % for lateral
force, 0.68% to 1.15% for vertical force. The average NRMS
errors for tire forces estimation in three directions are 2.71%,
3.55% and 0.92%, respectively. The CV results show that the
trained model is reliable and has an accurate estimation for
tire forces even under complex driving conditions.

E. Comparison of the results with other machine learning
methods

As stated in the introduction section, Random Forest and
Recurrent Neural Network are also commonly-used machine
learning methods. Therefore, we used the same training and
testing data for RF and RNN algorithms, and then compared
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. 17: Boxplot of 10-fold cross-validation results
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Fig. 18: Comparison of estimated Fz with different ML
methods

with NN based on Rprop algorithm as shown in Figs. 18-
20 for Fz, Fy and Fx separately. All training in this study
were conducted on a laptop computer with Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz and 16GB of DDR4 RAM. The
hyper-parameters used for all models were assigned by “trial
and error” approach. For Random Forest, the increase in the
number of decision trees will improve the accuracy but the
computational time required to train and test the system will
increase. Most of the constant minimum error rate for each
dataset for tire force estimation is achieved using 100 or 150
decision trees. We use a sgd optimizer and a mean squared
error (MSE) for the RNN model. Three hidden layers (10-5-
1) are also used, and the hyper-parameter configuration is 50,
10000 and 0.001 for the batch size, the number of epochs and
the learning rate respectively.

Figures 18-20 show the tire forces curves of different
machine learning methods, and Table II summarizes the overall
experiment results. It can be seen that Random Forest method
converges faster, however, some obvious large errors exist
for Random Forest, which may be owing to the limitation
of extrapolation for RF when applied to regression problems.
The prediction range of a Random Forest is bounded by the
lowest and highest labels in the training data. This becomes a
problem in situations, where the training and prediction inputs
differ in the range and/or distributions. Thus, for extreme
driving conditions, such as large slip angles, severe noise of
acceleration data may make the Random Forest perform poorly
with testing data that is out of the range of the original training
data. The RNN method shows a good capability in tire forces
estimation similar or even better, in some cases, to NN based
on Rprop algorithm. But it should be noted that the RNN
algorithm is more complex and need more training time and
more history information as input variables (10 times data used
here). For vehicle safety control, it is necessary to keep the
network as simple as possible in order to work in a real-time
fashion. In addition, we try to avoid the network as temporal
dependencies for direct tire force measurement/estimation
technique of intelligent tire. Therefore, the neural network
method based on Rprop algorithm is considered as the most
effective approach for tire forces estimation in this paper.
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V. CONCLUSION

In this paper, it was shown that the combination of machine
learning and sensing system can be an ideal solution for the
development of an intelligent tire. Using an accelerometer
attached to inner liner of a tire, we collected the acceleration
data in x,y, and z directions plus tire real forces in different
testing scenarios. The acceleration data and tire forces were
then exploited for training a machine learning package with

Z 2500 ‘ ‘ ‘ ‘
8 ——NN,——RF RNN Measured
5 2000 3
=
E 1500 B
£
2 1000 B
B0
£ 500 . . | . . .
= 0 10 20 30 40 50 60 70
Z 200 : . .
4 ~—\ A&
S WS TSPV
= \V,
£ 200 - 1
2 ——NN ——RF RNN
2 400 . . . . . .

0 10 20 30 40 50 60 70

Tire Rotations

Fig. 20: Comparison of estimated Fx with different ML
methods



TABLE II: Summary of experiment results on different

machine learning methods

Estimation Estimation Training time (s)/ Testing dataset
variables methods Data size NRMS errors(%)
Neural network 1499.99/6833 0.81
Fz Random forest 309.13/6833 0.95
Recurrent 6778.75/6833 1.42
neural network
Neural network 202.87/2713 4.23
Fy Random forest 95.87/2713 6.07
Recurrent 994.54/2713 4.16
neural network
Neural network 2.64/352 2.89
Fx Random forest 1.94/352 3.35
Recurrent 83.85/352 3.67
neural network

the aim of online prediction of tire forces. A neural network
was trained using the acceleration data and tire forces. It was
shown that tire forces could be accurately estimated using the
trained network. Based on the presented analysis, the trained
machine learning package is capable of estimating tire vertical,
lateral and longitudinal forces with the NRMS up to 1%, 5%,
and 3%, respectively. In addition,a comparison was provided
between NN based on Rprop algorithm, RNN,and RF. It was
shown that RNN and NN based on Rprop algorithm provides
almost the same amount of accuracy in terms of tire forces
estimation. However,NN based on Rprop algorithm is a better
choice for the intelligent tire application owing to its simplicity
in terms of real-time applications. The presented research
delineates the high potential of machine learning techniques
for the realization of intelligent tire systems.
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