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Abstract

Background: Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-

wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most

analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets

comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse

tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide

the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data

– critical first steps for any subsequent analysis.

Results: We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account

for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization

software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps

designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with

data from the Genotype-Tissue Expression (GTEx) project.

Conclusions: An R package instantiating YARN is available at http://bioconductor.org/packages/yarn.
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Background
RNA-Seq experiments using ultrahigh-throughput

sequencing-by-synthesis technologies were first performed

in 2008 and have since been used for large-scale transcrip-

tome analysis and transcript discovery in mammalian ge-

nomes [1–3]. Although hundreds of published studies have

used this technology to assay gene expression, the majority

of studies consist of relatively small numbers of samples.

There are many widely used methods for normalization

and analysis of expression data from modest numbers of

relatively homogeneous samples [4–6]. The workflow for

RNA-Seq typically includes basic quality control on the raw

reads and alignment of those reads to a particular reference

database to extract sequence read counts for each fea-

ture—gene, exon, or transcript—being assayed [7].

The resulting features-by-samples matrix is then fil-

tered, normalized and analyzed to identify features

that are differentially expressed between phenotypes

or conditions. Functional enrichment analysis is then

performed on these features [7].

There are now many large cohort studies, including the

Genotype-Tissue Expression project (GTEx) and The

Cancer Genome Atlas (TCGA) that have generated tran-

scriptomic data on large populations and across multiple

tissues or conditions to study patterns of gene expression

[8, 9]. The GTEx project is collecting genome-wide germ-

line SNP data and gene expression data from an array of

different tissues on a large cohort of research subjects.

GTEx release version 6.0 sampled over 550 donors with

phenotypic information representing 9590 RNA-Seq as-

says performed on 54 conditions (51 tissues and three
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derived cell lines). We excluded K562 from our analyses

since this leukemia cell line does not represent a healthy

tissue and is only a reference cell line unrelated to any

GTEx participants. GTEx assayed expression in 30 tissue

types, which were further divided into tissue subregions

[8]. After removing tissues with very few samples (fewer

than 15), we were left with 27 tissue types from 49 subre-

gions. This included 13 different brain regions and three

types of skin tissue. While GTEx broadly targeted body re-

gions, the sampling is uneven across these subregions,

with some sampled in nearly every donor and others sam-

pled in only a small subset. For example, there are some

tissues, such as the brain, in which many subregions were

sampled with the expectation that those samples might

exhibit very different patterns of expression.

Established methods for RNA-Seq analysis can be

used to make direct comparisons of gene expression

profiles between phenotypic groups within a tissue.

However, they are not well suited for comparisons

across multiple, diverse tissues, of which each exhibit

a combination of commonly expressed and tissue-

specific genes. This characteristic is a feature that

confounds most normalization methods, which gener-

ally assume the majority of expressed transcripts are

common across samples. Widely-used normalization

methods make assumptions that are valid only in fairly

consistent samples and assume that most genes are not

differentially expressed, that housekeeping genes are

expressed at equivalent rates, or that the expression distri-

butions vary only slightly due to technology [4–6]. In large

heterogeneous data sets, such as GTEx, these biological

assumptions are violated. When looking at diverse tissues,

or distinct patterns of expression, the use of the appropri-

ate quality control is necessary in order to make valid

comparisons of expression profiles.

Yet Another RNA-Seq normalization pipeline (YARN),

illustrated in Fig. 1, is a data preprocessing and

normalization pipeline that includes filtering poorly an-

notated samples, merging samples from “states” that

have indistinguishable expression profiles, filtering genes

in a condition specific manner, and normalizing to keep

global distributions while controlling for within group-

variability. While every step in the gene-by-sample fea-

ture matrix generation process can bias downstream re-

sults, our focus in this analysis, and in the YARN

package, is on the downstream effects of methods used

to filter and normalize data that has already been aligned

to a reference genome.

Implementation
YARN, shown in Fig. 1, is instantiated as a Bioconductor

(BioC version 3.4+) R package. YARN is built on top of

the Biobase Bioconductor package that defines the

ExpressionSet class, a S4 object class structure. Using

this class structure, multiple helper functions were de-

signed to help 1) filter poor quality samples – (checkMi-

sAnnotation), 2) merge samples derived from similar

sources (in our case, different sampling regions of the

“same” tissue) for increased power (checkTissuesTo-

Merge), 3) filter genes while preserving tissue or group

specificity – (filterLowGenes, filterGenes, filterMissing-

Genes), 4) normalize while accounting for global differ-

ences in tissue distribution (normalizeTissueAware), and

5) visualize the structure of the data (plotDensity,

plotHeatmap, plotCMDS). The full details of our pipe-

line methodology are available in Additional file 1. The

object-oriented architecture allows for future expansion

of the pipeline and the ExpressionSet class allows for in-

tegration with various other Bioconductor packages.

Example data sets have been curated and are available

within the packages. The R package instantiating YARN

is available at http://bioconductor.org/packages/yarn.

Results
Annotation quality assessment

The first step in any good data processing pipeline is

quality assessment to assure that samples are correctly

labeled. Reliable metadata is critical for studies and a

high rate of mis-assignment raises issues about the qual-

ity of the rest of the annotation provided for each sam-

ple. Some disease states and sex annotation metadata

can be checked with the RNA-Seq expression values

using disease biomarkers or sex chromosomal genes.

Misannotation is a common problem, with 46% of

studies potentially having had misidentified samples

[10]. We ourselves found it necessary to remove 6%

of samples in an analysis of sexual dimorphism in

COPD due to potential misannotation of the sex of

individual samples [11]. While correct sex assignment

is not a guarantee that the rest of the annotation is

correct, it provides a testable measure of the quality

of sample annotation in a study.

As a measure of the quality of the GTEx annotation,

we tested for the fidelity of sample sex assignment. We

extracted count values for genes mapped to the Y

chromosome in each sample, log2-transformed the data,

and used Principal Coordinate Analysis (PCoA) with

Euclidean distance to cluster individuals within each tis-

sue [12] (Additional file 1). While PCoA is similar to

Principal Components Analysis (PCA), PCoA has the

advantage that the distance between two samples allows

for an intuitive interpretation of the quality and reproduci-

bility of a sample. In addition, any appropriate distance

can be substituted and PCoA will preserve distances in

the decomposition. In contrast, the correlation-based

metric used in PCA cannot identify discrepancies if there

are large average shifts in expression.
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PCoA clearly separates samples into two groups in every

tissue using the Y chromosome genes. However, one sub-

ject, GTEX-11ILO, annotated as female, grouped with

males in each of the 13 tissue regions for which RNA-Seq

data was available (Additional file 2: Figure S1); we ex-

cluded GTEX-11ILO from further analysis. We later

Fig. 1 Preprocessing workflow for large, heterogeneous RNA-Seq data sets, as applied to the GTEx data. The boxes on the right show the number

of samples, genes, and tissue types at each step. First, samples were filtered using PCoA with Y-chromosome genes to test for correct annotation

of the sex of each sample. PCoA was used to group or separate samples derived from related tissue regions. Genes were filtered to select a normalization

gene set to preserve robust, tissue-dependent expression. Finally, the data were normalized using a global count distribution method to

support cross-tissue comparison while minimizing within-group variability
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learned that this individual had undergone sex-

reassignment surgery providing evidence that this quality

check had appropriately flagged an individual who was

genetically male.

The PCA plot in the first step of Fig. 1 and the col-

lected set in Additional file 2: Figure S1 were produced

using the functions checkMisAnnotation and plotCMDS

in the YARN package. While the majority of variation in

the GTEx data was present in the first two components

and clearly showed separation between the sexes, as a

rule of thumb one should check components until 90%

of the variation has been captured in the PCs. The

plotCMDS function is structured to return as many

components as requested for pairwise scatterplots, and

users can adjust the number of PCs to capture the de-

sired level of variation. Helper functions in YARN in-

clude filterSamples that can help the user remove

specified samples. Examples are included in YARN’s help

file and the Bioconductor vignette.

Merging or splitting sample groups

GTEx sampled 51 body sites (based on morphological

definitions) and created two cell lines (fibroblasts from

skin and lymphoblastoid cells from whole blood). How-

ever, not every site was sampled in every individual. Fur-

ther, there were often multiple sites sampled from the

same “organ” (for example, sun exposed and non-

exposed skin, or transverse and sigmoid colon), but the

GTEx consortium did not report testing whether such

samples exhibited fundamental differences in gene ex-

pression or if they were effectively indistinguishable. Our

interest in analyzing GTEx was to increase our effective

power by maximizing the sample size in each tissue by

grouping samples that were otherwise transcriptionally

indistinguishable (Fagny et al. 2016, Lopes-Ramos et al.

2016; Sonawane et al. 2017; Chen et al. 2016).

We first grouped samples based on GTEx-annotated

subregions (labeled SMTS) by taking, for example, all

skin-derived samples. We excluded the X, Y, and mito-

chondrial genes, identified the 1000 most variable auto-

somal genes, and performed PCoA using Euclidean

distance on the log2-transformed raw count expression

data (see Fig. 2 and Additional file 3: Figure S2). We chose

the 1000 most variable genes instead of all genes for com-

putational efficiency; results were relatively insensitive to

the absolute number of genes used (Additional file 1).

We then visually inspected the PCoA plots to deter-

mine whether subregions were distinguishable from each

other based on the two first PCs. If they were, the subre-

gions were considered independent tissues in all down-

stream analyses (for example, transverse and sigmoid

colon were considered distinct). Those regions that

could not be resolved were merged to improve the

power of downstream analyses. If we observed complex

patterns, as described for brain below, we performed

multiple rounds of PCoA analysis to assure that we had

identified transcriptionally distinct regions. In many

cases, we found clear separations between tissue subre-

gions, such as for the various arterial or esophageal sub-

regions, which we retained as separate tissues. However,

for other tissues, such as sun-exposed and non-exposed

skin, we found no distinguishable difference in the PCoA

plots (Fig. 2) and therefore merged these into a single

tissue for downstream analysis.

The greatest consolidation occurred in brain, where

GTEx had sampled 13 subregions. In examining the

PCoA plots, we found that samples from cerebellum and

cerebellar hemisphere subregions were indistinguishable

from each other, but these were very distinct from the

other brain regions. We merged the cerebellum and

cerebellar hemisphere subregions (brain cerebellum) and

removed these from the remaining brain subregions. We

Fig. 2 PCoA analysis allows for grouping of subregions for greater power. Scatterplots of the first and second principal coordinates from principal

coordinate analysis on major tissue regions. a Aorta, coronary artery, and tibial artery form distinct clusters. b Skin samples from two regions group

together but are distinct from fibroblast cell lines, a result that holds up (c) when removing the fibroblasts
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then performed a second PCoA on the remaining re-

gions. We found that basal ganglia (brain basal ganglia)

clustered separately from the remaining subregions that

did not further separate into other groups (brain other;

largely cortex, Additional file 3: Figure S2), leaving three

brain regions.

The PCoA clearly separated the fibroblast cell line

from skin (Fig. 2b-c and Additional file 3: Figure S2) and

the lymphoblastoid cell line from blood (Additional file 3:

Figure S2). This result is consistent with previous re-

ports that indicate that cell line generation and growth

in culture media produces profound changes in gene ex-

pression [13, 14]). A detailed transcriptomic and net-

work analysis of these cell lines and their tissues of

origin is provided in [14].

By merging subregions, we increased the effective

sample size of several of the tissues allowing down-

stream analyses, such as eQTL analysis [15] that would

not have been otherwise possible. This increase in power

was also important in the reconstruction of gene regula-

tory networks [14, 16–18]. The results of our tissue clus-

tering on the GTEx data are summarized in Table 1.

We used the YARN routines checkTissuesToMerge

and plotCMDS functions to generate the PC plots as

shown in Fig. 2 and Additional file 3: Figure S2. Similar

to checking for misannotation, one can visually inspect

the overlap of subregions to determine whether data

from similar tissues should be merged or kept separate.

We recommend checking multiple components and in-

vestigating components up until at least 90% of the vari-

ability is explained. Multiple components can be plotted

using the plotCMDS function in combination with the R

base function, pairs.

Gene selection and filtering for normalization and testing

Most commonly used normalization methods adjust

gene expression levels using a common gene set under

the assumption that the general expression distributions

are roughly the same across samples. With RNA-Seq ex-

periments, the selection of an appropriate gene set with

which to carry out normalization is more challenging

because, even when comparing related samples, each

sample may have a slightly different subset of expressed

genes. Because of this, filtering methods are essential in

preprocessing RNA-Seq data to remove noisy measure-

ments and increase power without biasing differential

expression results [19].

In the GTEx expression data we found many “tissue-

specific” genes that were expressed in only a single or a

small number of tissues (Additional file 1, Additional file 4:

Figure S3). We tested two different filtering methods: (1):

a “tissue-aware” manner in an unsupervised approach rec-

ommended by Anders et al. (Anders et al. 2013), and (2)

filtering in a “tissue-agnostic” manner to remove genes

with less than one count per million (CPM) in half of all

samples (Additional file 1).

The tissue-aware method filters genes with less than

one CPM in fewer than half of the number of samples of

the smallest set of related samples (for GTEx, at least 18

samples since the “smallest” number of samples in any

tissue is 36); this leaves 30,333 genes out of the 55,019

mapped transcripts for which reads are available in

GTEx. Of these 30,333, 60% (18,328) are classified as

protein coding genes and 11% (3220) are pseudogenes.

This contrasts with the tissue-agnostic method in which

genes are removed if they appear in fewer than half of the

total number of samples in the data set; this filtering

method retains only 15,480 genes, of which 84%

(12,994) are protein coding and 4% (659) are pseudo-

genes (Additional file 1, Additional file 5: Table S1,

Additional file 6: Figure S4).

We tested these filtering strategies and compared the

results to unfiltered data by assessing differential expres-

sion between whole blood (n = 444) and lung (n = 360),

two tissues with relatively large numbers of samples, and

for which we expect to find many differentially

expressed genes (Additional file 1). Following filtering,

we normalized the data using qsmooth and used voom,

from Bioconductor R package limma [20], to identify dif-

ferentially expressed genes.

We found the smallest fraction of differentially

expressed genes in the unfiltered data set (54%). The

tissue-agnostic filtering identified the largest fraction

(80%), but many of the differentially expressed genes

were noncoding genes. The tissue-aware filtered data

yielded an intermediate fraction of differentially

expressed genes (69%), but the greatest number of differ-

entially expressed protein coding genes. Consequently,

we chose to use tissue-aware filtering as it provides for

identification of tissue-specific, differentially expressed

genes (Additional file 1). Using this filtering with the

GTEx data reduced the number of mapped genes from

55,003 to 30,333 genes that were advanced to the next

step in the pipeline.

Figure 3 shows examples of genes related to tissue-

specific function or disease that would have been lost

using the tissue-agnostic approach that are retained by

the tissue-aware filtering. MUC7 (Fig. 3a) is overex-

pressed in the minor salivary gland and has been associ-

ated with asthma. REG3A (Fig. 3b) is overexpressed in

pancreas and small intestine and has been associated

with cystic fibrosis and pancreatitis. AHSG (Fig. 3c) is

overexpressed in the liver and has been associated with

uremia and liver cirrhosis. GKN1 (Fig. 3d) is overex-

pressed in the stomach and is downregulated in gastric

cancer tissue as compared to normal gastric mucosa.

SMCP (Fig. 3e) is overexpressed in the testis, where it is

involved in sperm motility. It is also linked to infertility
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and tumorigenicity of cancer stem-cell populations

[21, 22]. NPPB (Fig. 3f ) is overexpressed in the heart

left ventricle and heart atrial appendage and has been

associated with systolic heart failure. Retaining such

tissue-specific genes is crucial for understanding the

relationship between gene expression and tissue-level

phenotypes and understanding their impact on the

complex biological system [17].

In YARN, multiple functions are available for filtering

lowly expressed genes, including, filterLowGenes, filter-

MissingGenes, and filterGenes. These functions allow

for filtering genes by either a minimum CPM threshold

(tissue-aware/agnostic approach), those that are missing,

or those mapping to a specific chromosome, respect-

ively. The use of these functions helps retain tissue-

specific genes while removing extremely low abundance

genes that may represent sequencing noise [19, 23]

(Additional file 1).

Tissue-aware normalization

Normalization is one of the most critical steps in data pre-

processing and there are many normalization approaches

that have been used in expression data analysis. Many early

and widely used methods for RNA-Seq normalization were

based on scaling [24–26]. More recently developed

Table 1 Breakdown of tissues, assigned groups, abbreviations

used, and sample sizes

Tissue Abbreviation Subtissue Sample
size

Adipose
subcutaneous

ADS Adipose -
Subcutaneous

380

Adipose visceral ADV Adipose - Visceral
(Omentum)

234

Adrenal gland ARG Adrenal Gland 159

Artery aorta ATA Artery - Aorta 247

Artery coronary ATC Artery - Coronary 140

Artery tibial ATT Artery - Tibial 357

Brain other BRO Brain - Amygdala 779

Brain - Anterior
cingulate
cortex (BA24)

Brain - Cortex

Brain - Frontal Cortex
(BA9)

Brain - Hippocampus

Brain - Hypothalamus

Brain - Spinal cord
(cervical c-1)

Brain - Substantia nigra

Brain cerebellum BRC Brain - Cerebellar
Hemisphere

254

Brain - Cerebellum

Brain basal ganglia BRB Brain - Caudate
(basal ganglia)

360

Brain - Nucleus
accumbens
(basal ganglia)

Brain - Putamen
(basal ganglia)

Breast BST Breast - Mammary
Tissue

217

Lymphoblastoid cell
line

LCL Cells - EBV-transformed
lymphocytes

132

Fibroblast cell line FIB Cells - Transformed
fibroblasts

305

Colon sigmoid CLS Colon - Sigmoid 173

Colon transverse CLT Colon - Transverse 203

Gastroesophageal
junction

GEJ Esophagus -
Gastroesophageal
Junction

176

Esophagus mucosa EMC Esophagus - Mucosa 330

Esophagus
muscularis

EMS Esophagus -
Muscularis

283

Heart atrial
appendage

HRA Heart - Atrial
Appendage

217

Heart left ventricle HRV Heart - Left Ventricle 267

Kidney cortex KDN Kidney Cortex 36

Liver LVR Liver 137

Table 1 Breakdown of tissues, assigned groups, abbreviations

used, and sample sizes (Continued)

Tissue Abbreviation Subtissue Sample
size

Lung LNG Lung 360

Minor salivary
gland

MSG Minor Salivary
Gland

70

Skeletal muscle SMU Muscle - Skeletal 469

Tibial nerve TNV Nerve - Tibial 334

Ovary OVR Ovary 108

Pancreas PNC Pancreas 193

Pituitary PIT Pituitary 124

Prostate PRS Prostate 119

Skin SKN Skin - Not Sun
Exposed (Suprapubic)

661

Skin - Sun Exposed
(Lower leg)

Intestine terminal
ileum

ITI Small Intestine -
Terminal Ileum

104

Spleen SPL Spleen 118

Stomach STM Stomach 204

Testis TST Testis 199

Thyroid THY Thyroid 355

Uterus UTR Uterus 90

Vagina VGN Vagina 97

Whole blood WBL Whole Blood 444
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methods such as voom [20] use quantile normalization,

which assumes that all samples should express nearly iden-

tical sets of genes with similar distributions of expression

levels. Although quantile normalization has proven to be a

robust approach in many microarray applications, its as-

sumptions break down when analyzing samples in which

gene expression can be expected to be substantially differ-

ent among members.

Quantile normalization forces every sample’s statistical

distribution to the reference’s distribution where the ref-

erence is defined as the average of all sample count

quantiles. When the distributional shapes are dissimilar

across tissues, the reference is not representative of any

particular tissue and scaling of quantiles is dependent on

the largest tissue’s distribution. In GTEx, we wanted to

use a single normalization method for all tissues. Here,

with a very diverse set of tissues, the assumptions

underlying quantile normalization clearly break down

(Additional file 4: Figure S3).

The qsmooth [27] normalization method is a

generalization of quantile normalization that normalizes

all samples together but relaxes the assumption that the

statistical count distribution should be similar across all

samples and instead assumes only that it is similar in

each phenotypic group (as one might expect for different

tissues in GTEx). We used qsmooth to normalize the

GTEx expression data where phenotypic groups were

determined using the 38 “merged” tissues that resulted

from our quality control assessment.

We compared the effects of “full” quantile normalization

to the “tissue-specific” strategy implemented in qsmooth.

We observed much larger root mean squared errors

(RMSE) using an all-sample reference (“full” quantile

normalization) than we saw using qsmooth’s tissue-

specific references (Fig. 4). The root mean square error es-

timates the divergence of transcriptome distributions from

the assumed transcriptome reference distribution. The

more the RMSE varies by tissue, the larger the number of

tissue-specific counts. Figure 4 suggests that global quan-

tile normalization disproportionately weights and biases

tissue-specific transcripts based on other tissues’ propor-

tion of zeros in the distribution and tissue sample size

(Additional file 1, Additional file 7: Figure S5). Both

qsmooth (smooth quantile normalization) and full quan-

tile normalization (over every specific tissue) are imple-

mented in YARN’s normalizeTissueAware function.

Fig. 3 Six highly expressed tissue-specific genes that are removed upon tissue-agnostic filtering. Boxplots of continuity-corrected log2 counts for

six tissue-specific genes (a-f). These genes are retained when considering tissue-specificity and not when filtering in an unsupervised manner.

Colors represent different tissues. Examples include (a) MUC7, (b) REG3A, (c) AHSG, (d) GKN1, (e) SMCP, and (f) NPPB
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Discussion
Large-scale transcriptional studies, such as GTEx, present

unique opportunities to compare expression in a relatively

large population and across a large number of tissues.

However, as with all analyses of gene expression, it re-

quires careful quality assessment, gene filtering, and

normalization if meaningful conclusions are to be drawn

from the data. We developed a simple and robust software

pipeline, YARN, to allow us to perform quality control as-

sessment of the metadata associated with a large, hetero-

geneous data sets such as the collection of RNA-Seq

assays that are available as part of the GTEx v6 release.

YARN was designed to process RNA-Seq data to allow

comparisons between diverse conditions and consists of

four basic steps: quality assessment filtering to remove

questionable samples, comparison of “related” sample

groups to merge them or split them into separate

groups, filtering genes that have too few counts while

preserving tissue-specific genes, and normalizing the

data. For each step, YARN contains multiple options that

allow user to adapt the pipeline for their use.

In our analysis of GTEx v6 data, we began by using PCoA

to filter samples based on misidentification by sex. We then

used PCoA to compare samples from the same general

body site so as to merge those that were indistinguishable.

Next, we used a tissue-aware filtering method to retain

genes that were expressed in one or a small number of tis-

sues, while eliminating those in too few samples to perform

a reliable normalization. Finally, we used qsmooth to per-

form a tissue-aware normalization (Additional file 1).

This pipeline allowed us to identify one individual who

was misidentified by sex, to reduce the 53 sampling site

conditions to 38 non-overlapping tissues, eliminated

24,670 genes for which there was insufficient data to

perform a reasonable normalization or subsequent ana-

lysis, and to produce normalized data for 30,333 genes

in 9435 samples distributed across 38 tissues. The result

of applying YARN is a data set in which general expres-

sion levels are comparable between tissues, while still

preserving information regarding the tissue-specific ex-

pression of genes. This comparability allowed us to use

the normalized data in a wide range of analyses that

compared processes across tissues [14, 15, 17, 18].

Conclusions
YARN is a flexible software pipeline designed to address

a problem that is becoming increasingly challen-

ging—that of normalizing increasingly large, complex,

heterogeneous data sets, often consisting of many sam-

ples representing many different physical states, pertur-

bations, or phenotype groups. YARN is implemented as

a Bioconductor package and is available under the open

source GPL v3 license at http://www.bioconductor.org/

packages/yarn.

The workflow includes numerous quantitative options

for filtering as well as tools for visual inspection of data to

allow users to understand the distributional and other char-

acteristics of the data. The Bioconductor vignette includes

sample skin data from GTEx that can be used to work

through as an example analysis. Example code to reproduce

the figures in this manuscript is available through GitHub

at: https://github.com/QuackenbushLab/normFigures. We

intend to actively maintain YARN, adding additional fea-

tures and integrating it with differential gene expression

and analysis tools in Bioconductor.

Fig. 4 Using a tissue-defined reference lowers root mean squared error. Boxplots of the RMSE comparing the log-transformed quantiles of each

sample to the reference defined using (left) all tissues and samples and the (right) reference defined using samples of the same tissue
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Availability and requirements
Project name: Yet Another RNA Normalization software

pipeline (YARN).

Project home page: http://bioconductor.org/packages/

yarn

Operating system(s): Platform independent.

Programming language: R.

Other requirements: Dependencies: Biobase. Imports:

biomaRt, downloader, edgeR, gplots, graphics, limma,

matrixStats, preprocessCore, readr, RColorBrewer, stats,

quantro. Suggests: knitr, rmarkdown, testthat (> = 0.8).

License: GPLv3.

Any restrictions to use by non-academics: None.
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(DOCX 37 kb)

Additional file 2: Figure S1. PCoA analysis of multiple tissues on Y-

chromosomal genes can highlight poor sex annotation, related to Fig. 1

and misannotation section. Scatterplots of the first and second principal

components from principal component analysis on all major tissue

regions. We plotted data from 13 tissue regions from the GTEx con-

sortium, coloring the annotated sex of each sample. Enlarged is sam-

ple GTEX-11ILO that clusters with male samples in every tissue

despite being annotated as being from a female; we later learned

that this research subject was genetically male. (PDF 240 kb)

Additional file 3: Figure S2. PCoA analysis of multiple tissue groups,

related to Figs. 1, 2 and merging conditions section. Scatterplots of the

first and second principal components from principal component analysis

on all major tissue groups colored by sampled region. The grouping in

these plots led us to either merge regions into a single group or to keep

them separate. The final tissue set used for further analysis is summarized

in Table 1. (PDF 73 kb)

Additional file 4: Figure S3. Animated density plots of log-transformed

counts when including more tissues, related to Fig. 1. GIF animation of

density plots when including 10 largest sample size tissues. As more

samples are included we observe a larger fraction of tissue-specific genes

as can be seen by the growing spike-in the distribution at zero within

each tissue. (GIF 3641 kb)

Additional file 5: Table S1. Breakdown of gene types remaining in

each data set after different filtering approaches. Filtering in a tissue-

specific manner, we keep genes that appear in a least half the number of

samples present in of the smallest phenotype group (for GTEx, at least 18

samples since the “smallest” tissue has 36 total samples); this leaves 30,333

genes of which 60% (18,328) are classified as protein coding genes and 11%

(3220) are pseudogenes. This contrasts with our tissue-agnostic method in

which genes are removed if they appear in fewer than half of the samples

in the data set; this retains only 15,480 genes for which 84% (12,994) are

protein coding, and 4% (659) are pseudogenes. (XLSX 36 kb)

Additional file 6: Figure S4. Heatmap of the 15 most variable genes in

the GTEx heart samples post filtering, related to Figs. 1 and 3. Heatmap

of the 15 most variable genes in the GTEx heart samples. Left, top 15

genes were chosen in an unsupervised manner using the normalized

gene expression after a stringent filtering in a tissue-agnostic manner.

Right, the 15 most variable genes were chosen in an unsupervised

manner using the normalized gene expression after tissue-specific

filtering. (PDF 277 kb)

Additional file 7: Figure S5. Count distributions pre- and post-

normalization, related to Figs. 1 and 4. Density plots of gene count

distributions. Left to right: log2 raw expression distribution of samples

pre-normalization; count distribution for each sample normalized in a

tissue-aware manner. Colors represent different tissues. (PDF 7035 kb)
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