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Simon Duchesne,1, 2 and The Alzheimer’s Disease Neuroimaging Initiative3

1 Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, 2601 Chemin de la Canardière,
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Intensity standardization in MRI aims at correcting scanner-dependent intensity variations. Existing simple and robust techniques
aim at matching the input image histogram onto a standard, while we think that standardization should aim at matching spatially
corresponding tissue intensities. In this study, we present a novel automatic technique, called STI for STandardization of Intensities,
which not only shares the simplicity and robustness of histogram-matching techniques, but also incorporates tissue spatial
intensity information. STI uses joint intensity histograms to determine intensity correspondence in each tissue between the input
and standard images. We compared STI to an existing histogram-matching technique on two multicentric datasets, Pilot E-ADNI
and ADNI, by measuring the intensity error with respect to the standard image after performing nonlinear registration. The Pilot
E-ADNI dataset consisted in 3 subjects each scanned in 7 different sites. The ADNI dataset consisted in 795 subjects scanned in
more than 50 different sites. STI was superior to the histogram-matching technique, showing significantly better intensity matching
for the brain white matter with respect to the standard image.

1. Introduction

Magnetic resonance images (MRIs) acquired with similar
protocols but on different scanners will show dissimilar
intensity values for the same tissue types [1]. These variations
are machine-dependent and do not correspond to noise
or bias field inhomogeneity, which both can be reduced
with different image processing techniques (e.g., [2, 3],
resp.). This problem becomes particularly severe in large,
multicentric settings such as the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), in which longitudinal data is
being acquired on more than 50 different platforms in the
United States and Canada.

Image processing pipelines aimed at extracting tissue-
based characteristics (e.g., grey matter/white matter identi-
fication) must be robust to these variations. Intensity stan-
dardization is therefore employed to reduce interscanner

differences in order for similar intensities to have similar
tissue meaning in the standardized images, regardless of
provenance. It has been shown that standardization improves
segmentation [4, 5] and registration [6, 7]. However, scaling
intensities with a simple linear transformation is not suffi-
cient, since the influence of the MRI acquisition parameters
on the image intensities is nonlinear [6]; a higher order
transformation is thus needed.

Published standardization techniques generally propose
matching image histograms. An algorithm proposed by
Wang et al. [8] stretches or compresses a windowed part of
the input image histogram with a multiplicative factor, found
by minimizing the bin-count difference between the input
and standard images histograms. The window is used to
include only pixels of interest and remove, for example, the
background; this makes the technique linear in the intensity
range of interest. The technique developed by Nyúl et al.
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[1, 9] matches input image histogram landmarks onto stan-
dard histogram landmarks, obtained during a learning
process, linearly interpolating intensities between the land-
marks. In particular, the variant in [1] uses percentile
landmarks, which is simple and more robust. This landmark
technique has been used in many studies [5, 7, 10–12]. Jäger
et al. [13] extended this principle to two or more jointly used
MRI sequences (e.g., T1 and T2), matching multidimen-
sional joint histograms with nonlinear registration. As long
as the MRI sequences are spatially aligned, which is assumed,
no prior registration of the images is required for computing
the joint histogram.

Other techniques use models with some form of a priori
knowledge, such as the technique proposed by Hellier [6]. It
approximates the input image histogram with a mixture of
Gaussian functions and aligns their mean with those of the
standard image through a polynomial function. Christensen
[14] has proposed even-ordered derivatives to find the
histogram peak corresponding to the characteristic value
of brain white matter; the value is then used to normalize
the global image intensity. Weisenfeld and Warfield [4]
have proposed modeling the input image as a standardized
image corrupted by a linear transformation. Their iterative
algorithm then found the parameters of a linear model
minimizing the Kullback-Leibler divergence between the
standardized and the standard images, thus matching their
histograms.

Bergeest and Jäger [15] compared four techniques’ per-
formances [1, 4, 6, 13] along with an earlier histogram-
matching technique using dynamic histogram warping [16].
None clearly outperformed the others.

Further, in our view, histogram matching should not be
the unique objective, as it does not guarantee the standard-
ization of spatially corresponding tissue intensities. Towards
this end, Leung et al. [17] have recently proposed a semiauto-
mated segmentation technique that delineates cerebrospinal
fluid (CSF), white matter (WM) and grey matter (GM) tissue
components, for which they computed mean intensities. In a
following step, they performed a linear regression between
mean intensities and used the results of this regression to
perform the standardization. However, this technique yields
a linear transformation, which does not completely addresses
the problem as mentioned above.

Thus, to our knowledge, techniques presented so far
either matched histograms disregarding spatial correspon-
dence or employed spatial correspondence and linear trans-
formations. Our objective was to design a technique that
would (1) use both histogram and tissue-specific intensity
information; (2) provide a nonlinear intensity transforma-
tion between images; (3) share the simplicity and robustness
of the Nyúl’s landmark technique [1], while remaining fully
automated.

In this study, we report the development of our STan-
dardization of Intensities (STI) technique, which fulfills these
requirements. We compare STI to the variant L4 of Nyúl et al.
[1], which matches foreground (FRG) intensity histograms
using decile (10%) landmarks, in two different multicentric
T1-weighted MRI datasets: the Pilot European ADNI (Pilot
E-ADNI) study and the larger ADNI dataset.

2. Methodology

2.1. Pilot E-ADNI Dataset. The Pilot E-ADNI dataset was
obtained with permission from the multicentric project
[18]. Part of this dataset included data from three healthy
volunteers, herein referred to as Subjects 1 to 3, scanned
within the span of few weeks at seven different European
centers (Sites 1 to 7), using the ADNI study 3D T1-weighted
MP-RAGE protocol [19]. Information regarding the Pilot E-
ADNI study can be found in [18]. Subjects were scanned two
times in each center but some data from the first scan were
not available. We thus used the data from the second scan
only, giving a total of 21 images.

This dataset allowed us to evaluate the performance of
standardization techniques by avoiding intersubject intensity
variations and focusing only on interscanner differences.
Making the reasonable hypothesis that subject tissue prop-
erties did not change between sites within the short study
timeframe, a well-performing standardization technique
should output similar tissue intensities independently of the
scanning site.

2.2. ADNI Dataset. The second dataset was obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.ucla.edu/). It consisted in 795
baseline MRIs from control, mild cognitive impairment and
probable Alzheimer’s disease subjects, acquired on more than
50 different 1.5 T scanners (GE Healthcare, Philips Medical
Systems, Siemens Medical Solutions) using the aforemen-
tioned protocol [19]. Ethics approval was obtained for each
institution involved. MR parameters were standardized as
per instructions provided by the ADNI MRI Core [19].

The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public- private
partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of
sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California
– San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from
over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55 to 90, to participate
in the research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI
to be followed for 3 years and 200 people with early AD
to be followed for 2 years. For up-to-date information, see
http://www.adni-info.org/.
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2.3. Standard Image. The standard image used throughout
this study is the reference image for the BrainWeb simulation
software (http://mouldy.bic.mni.mcgill.ca/brainweb/) [20].
The standard image is a high resolution (1-mm3 isotropic),
high signal-to-noise average of 27 T1-weighted images of a
single human brain, with manually delineated CSF, GM, and
WM tissue masks.

2.4. Preprocessing. All MRI volumes were preprocessed iden-
tically with the MINC image processing toolbox (http://www
.bic.mni.mcgill.ca/ServicesSoftware/MINC) before stand-
ardization:

(1) nonlocal means noise removal [2];

(2) intensity inhomogeneity correction [3], performed
prior to standardization as suggested in [10];

(3) global linear registration (12 degrees of freedom)
to the standard image [21], maximizing mutual
information between the two volumes [22];

(4) resampling to a 1-mm3 isotropic grid;

(5) intensity clamping, which consisted in (a) setting to
zero all intensity values below the percentile value
0.01, (b) setting to 100 all intensity values above the
percentile value 99.99, and (c) linearly interpolating
intensities between those limits. This step removed
outliers of low and high intensities and rescaled
image intensity between 0 and 100;

(6) global nonlinear registration to the standard image
[23], maximizing mutual information between the
two volumes as in step 3.

Left of Figure 1 (red) summarizes the above preprocessing
steps.

2.5. Intensity Standardization

2.5.1. STI. In the last preprocessing step, global nonlinear
registration established spatial correspondence between tis-
sues in the standard and input images. This spatial corre-
spondence allowed us to compute a joint intensity histogram
of the frequency distribution of intensity correspondences.
From the most frequent tissue-specific correspondences, our
aim was to compute an intensity transfer function mapping
the nonlinearly registered input image (preprocessed with
steps 1 to 6) onto the standard, which was then applied
to the linearly registered input image (preprocessed with
steps 1 to 5), as shown in Figure 1 (green), giving us the
desired standardized image, in the standard reference space
for further processing and/or comparison.

Since tissue intensities generally overlap, it was difficult
to estimate tissue-specific correspondences from the global
joint histogram. To refine its estimates, STI used the standard
image tissue masks for (1) background (BKG), (2) WM and
(3) GM, from the standard image. We chose to treat the
background for two reasons. First, each image can be taken
as a whole, with no background removal. Second, intensity
corresponding to CSF is often treated in our downstream

processing pipelines. Since it is mostly similar to BKG, we
found that it was more robust to correct it through BKG
standardization.

For each tissue, STI performed the following steps:

(1) kept only voxels contained in the applicable tissue
mask for both nonlinearly registered input and stan-
dard images;

(2) computed and smoothed, with a Gaussian low-
pass filter, the standard-versus-input joint intensity
histogram for the masked voxels. The width of the
histogram bins was 0.25% in each dimension, that is,
400 bins covering the 0 to 100 intensity scale, and the
full width at half maximum of the Gaussian filter was
set to 10 bins;

(3) found the mode, that is, maximum, in the joint his-
togram. The mode corresponds to the most frequent
intensity correspondence between the nonlinearly
registered input and standard images for the current
tissue. This point determined a histogram landmark
pair corresponding to the input-to-standard intensity
mapping for the current tissue.

To the set of landmark pairs obtained with the tissue masks,
STI added two extra pairs: the first, (0, 0), mapped both
minimum intensities in the nonlinearly registered input and
standard images, and the second, (100, 100), their maximum
values. The resulting landmark set SSTI is then given by

SSTI =
{

(0, 0)
(

mr,BKG,ms,BKG

)(

mr,GM,ms,GM

)

(

mr,WM,ms,WM

)

(100, 100)
}

,
(1)

where mr,X and ms,X represent the intensity of the nonlin-
early registered input and standard images, respectively, for
tissue X .

STI completed the mapping function by linearly inter-
polating intensities between the landmark pairs (piecewise
linear transformation) and finally applied this function to the
linearly registered input image (preprocessed with steps 1 to
5) in order to create the standardized image.

We added an experimentally determined heuristic to this
algorithm. Given large overlaps between tissue classes in
some cases, we ordered the search from largest to smallest
tissue component, reducing the voxel search space once a
component mode was estimated. Practically, this resulted in
estimating BKG first, as it generally had the largest mode.
Once found, all voxels in an intensity range up to 10% above
that mode were removed before estimating the WM mode.
After the WM mode had been found, voxels in an intensity
range 25% below as well as all voxels above this mode were
removed before estimating the GM mode, thereby removing
overlap between BKG/GM and GM/WM.

2.5.2. L4. We compared STI to the following implementation
of the histogram-matching technique described in [1] as
L4, which uses decile, that is, 10%, landmarks to match
the histograms of nonlinearly registered input and standard
images foreground (FRG). FRG is determined in each image
via intensity thresholding. It corresponds to the set of voxels
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Figure 1: Flowchart showing the steps involved in image preprocessing (red), intensity standardization (green) and mean absolute error
(MAE) computation for technique comparison (blue). The steps for which the standard image or its masks are required are shaded in grey.
For the mapping function process, we summarize the three steps involved in STI.

for which the intensity is (1) higher than or equal to the
mean intensity computed over the whole image and (2) lower
than the intensity corresponding to the percentile value 99.8
obtained for the whole image. This operation thus crops
the histogram of each image by removing, as assumed, the
background and the intensity outliers, respectively. While the
clamping step in the preprocessing phase already deals with
outliers by clamping the image intensities between percentile
values 0.01 and 99.99 to produce the input image, we chose
to keep the additional less-tolerant limit of 99.8 to conform
with [1].

For both the nonlinearly registered input and standard
images, the intensity values corresponding to the percentile
value 99.8 were first found, creating a first landmark pair.
Decile landmarks, corresponding to the percentile values
{10, 20, . . . , 90}, were then determined, within FRG only.
This operation yielded nine more landmark pairs.

Two extra pairs, (0, 0) and (100, 100), were finally added
to map, respectively, the minimum and the maximum values
of the nonlinearly registered input and standard images. We
thus obtained the following set of landmark pairs SL4:

SL4 =
{

(0, 0)
(

mr,fg,10,ms,fg,10

)(

mr,fg,20,ms,fg,20

)

· · ·
(

mr,fg,90,ms,fg,90

)

(

mr,99.8,ms,99.8

)

(100, 100)
}

,

(2)

where mr,fg,P and ms,fg,P represent the intensities at percentile
P for the nonlinearly registered input and standard image
FRG, and mr,99.8 and ms,99.8 are intensity values at 99.8

percentile for the whole images. The mapping function is
obtained by interpolating linearly between landmark pairs.

2.6. Technique Comparison. As mentioned, the intensity
standardization mapping functions were determined using
the preprocessed nonlinearly registered images (preprocess-
ing steps 1 to 6). However, the obtained mapping functions
were applied to the linearly registered images, preprocessed
with steps 1 to 5, that is, prior to nonlinear registration.

To compare standardization techniques, we applied, as
shown in Figure 1 (blue), a nonlinear registration to the
latter images to match the standard image, using the same
technique as in preprocessing step 6. We then used the
standard image tissue masks to compute the voxelwise mean
absolute error (MAE) on different voxel sets: (1) the standard
image FRG, as defined in the L4 procedure above, (2) WM
and (3) GM. Applying standardization to the images prior
to nonlinear registration allowed us, in this comparison
scheme, to reduce any bias toward STI associated with the
use of the standard masks.

The MAE was given by

MAE =
1

N

N
∑

v=1

∣

∣Io,v − Is,v

∣

∣, (3)

where N is the number of voxels, and Io,v and Is,v are intensity
values for the nonlinearly registered standardized output and
standard images, respectively, at voxel v. We note that since
output and standard images intensity scales range from 0 to
100, MAE can be expressed in percentage.
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Figure 2: Standardized images for Subject 1 in the Pilot E-ADNI dataset. From top to bottom: linearly registered input images, standard
image, and images standardized with L4 and STI, respectively. From left to right: images for Sites 1 to 7. Color coding enhances intensity
differences.

We performed t-tests to evaluate the statistical signifi-
cance of MAE differences between L4 and STI.

3. Results

3.1. Pilot E-ADNI Dataset. Figure 2 shows standardized
linearly registered output images for Subject 1 in the Pilot E-
ADNI dataset scanned at 7 different sites. We expected stan-
dardized intensities to be similar. Qualitatively, STI exhibited
a better performance than L4, especially for WM, and in
particular for Sites 6 and 7. We obtained similar results (not
shown) for Subjects 2 and 3.

Figure 3 presents an example of joint intensity his-
tograms computed before (a, c) and after (b, d) standard-
ization. The grayscale images correspond to the natural
logarithm of the joint histograms obtained for Subject 1 at
Site 1, whose images are presented in Figure 2. In (a) and
(c), we overlaid the intensity mapping functions obtained
with L4 and STI. We observe that STI gives a better intensity
correspondence after standardization (d) than L4 (b).

Figure 4 shows MAE boxplots of FRG, WM, and GM over
the 21 images. We see that, compared to no standardization
(Original), L4 and STI clearly showed an improvement in
terms of MAE for all voxel sets. However, STI offered better
performance; the statistical test effectively showed that the
difference between L4 and STI was significant for WM (P =
0.0075), almost significant for GM (P = 0.0674), but not for
FRG (P = 0.2459).

3.2. ADNI Dataset. Figure 5 shows MAE boxplots for the
795 different subjects for (a) FRG, (b) WM, and (c) GM.
Compared to no standardization (Original), both L4 and STI
exhibited better MAE. STI significantly outperformed L4 for

WM (P < 0.0001), with no difference for GM (P = 0.3120).
However, L4 was superior for FRG (P = 0.0239).

Figures 6 and 7 present ADNI image examples sorted
according to MAE percentiles 100 (A), 90 (B), 75 (C), 50
(D), 25 (E), 10 (F), and 0 (G) for the FRG voxel set. Images
(A) and (G) thus give the highest (worst) and lowest (best)
MAE, respectively, for L4 (Figure 6) and STI (Figure 7). FRG
was selected, instead of WM or GM, to avoid any bias toward
STI. In fact, selecting FRG would normally favor L4.

Qualitatively, although FRG MAE decreases from (A) to
(G), a corresponding improvement in WM is not necessarily
observed. This is also shown in Table 1, where FRG, WM and
GM MAE values are given for each image of Figures 6 and 7.
MAE values for GM do not necessarily follow the trend for
FRG either.

We also see that L4 and STI can both result in higher
(worse) MAE than with no standardization (see Figures 7(A)
and 7(C) for WM). In other words, the WM intensity of
the nonstandardized image, in these cases, would be closer
to the standard than the WM intensity given by L4 and STI,
according to MAE. Over the 795 images of the ADNI dataset,
the percentages of images for which L4 and STI gave higher
MAE than without standardization for WM (worst case for
both methods) were, respectively, 1.38% and 4.65%. The
higher percentage obtained with STI is explained by multiple
peaks or wider distributions in the joint intensity histograms
of images similar to Figure 7(A). As mentioned, STI selects
only the maximum peak for a given tissue. This point is
further discussed below.

Finally, for the images presented in Figures 6 and 7,
Table 1 reveals that STI gave the lowest MAE values in 26
cases (FRG: 7, WM: 10, GM: 9) versus 16 for L4 (FRG: 7,
WM: 4, GM: 5), even if selecting FRG as the sorting voxel
set would have normally favored L4. It must be noted that
this sample is not representative of the whole ADNI dataset,



6 International Journal of Biomedical Imaging

Input image intensity

St
an

d
ar

d
 i

m
ag

e 
in

te
n

si
ty

 
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

8

9

10

11

(a)

St
an

d
ar

d
 i

m
ag

e 
in

te
n

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

8

9

10

11

L4 image intensity

(b)

 

 

St
an

d
ar

d
 i

m
ag

e 
in

te
n

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

8

9

10

11

Input image intensity

(c)

STI image intensity

St
an

d
ar

d
 i

m
ag

e 
in

te
n

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

(d)

Figure 3: Natural logarithm of the joint intensity histograms obtained for Subject 1 at Site 1, whose images are presented in Figure 2, (a, c)
before and (b, d) after standardization with (a, b) L4 and (c, d) STI. In (a, c), we overlaid the intensity mapping functions obtained with L4

(a) and STI (c). The histogram diagonals (white) represent perfect intensity correspondence.

as we artificially selected images to display at each MAE
percentiles for each standardization technique. Yet, it is in
accordance with boxplots shown in Figure 5 and statistical
results detailed earlier.

4. Discussion

4.1. Methodological Considerations. STI uses spatial corre-
spondence and joint intensity histograms between the input
and standard images to find modes and use them as land-
marks in the intensity mapping function. While the use of

joint histograms has been reported in [13], the authors com-
puted joint histograms between different imaging modalities
separately, rather than for the input and standard images.
As demonstrated in this study, using such spatial correspon-
dence improves the standardization quality in terms of MAE.
This improvement in MAE can impact the final outcome
of studies by reducing systematic errors, which in turn can
reduce the number of subjects required to achieve a similar
level of statistical significance or power.

In this study, the Pilot E-ADNI dataset allowed us to
avoid intersubject intensity variations. Effectively, we should
theoretically expect that, for a given subject, a similar image
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Figure 4: Boxplots of (a) FRG, (b) WM, and (c) GM mean absolute errors for the 21 images from Pilot E-ADNI. (Original) Nonlinearly
registered input images, (L4) nonlinearly registered output images standardized with L4, and (STI) nonlinearly registered output images
standardized with STI.

be produced for all sites. Compared to L4, STI was nearer
to this expectation, particularly for Sites 6 and 7. Effectively,
we showed that STI was significantly superior to L4 in WM,
while differences were not significant in the other voxel sets.

For the ADNI dataset, STI again showed to be signifi-
cantly better in WM than L4, while in FRG, L4 was signif-
icantly superior. For FRG, however, we showed that better
results did not necessarily correspond to better intensity
correspondences for WM and/or GM. This suggests we
should not rely on the results obtained in FRG, as long as
we are mainly interested in brain GM and WM.

4.2. Limitations. We tested STI following linear registration
only (results not presented); nonlinear registration yielded
better performance. This reliance on registration however
remains the main limitation of the technique.

STI is also designed to find one maximum, the mode, in
the joint intensity histograms. In cases where two or more
peaks are present or the intensity distribution is wider,

due to for example insufficient inhomogeneity correction,
this might lead to discrepancies such as in Figure 7(A), for
which we observe high intensity WM. Although a better
preprocessing may solve some of these discrepancies, we
plan to add further landmarks in the joint intensity histo-
grams and thus produce better mapping functions in future
versions. However, care must be taken to avoid “overstan-
dardizing” intensity variations, especially when dealing with
pathologies, for example, severe white matter diseases. We
will have to further validate the influence of these pathologies
on STI. However, due to the nonlinear registration step,
STI should not be sensitive to volume changes, for example,
associated to Alzheimer’s disease, as suggested by the results
obtained with the ADNI dataset.

Another limitation is that STI has been developed for
brain T1-weighted MRI. However, it could be easily applied
to other sequences (e.g., T2-weighted images), provided a
standard image for this acquisition and corresponding tissue
masks.
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Figure 5: Boxplots of MAE obtained over the 795 images of the ADNI dataset for (a) FRG, (b) WM, and (c) GM. (Original) Nonlinearly
registered input images, (L4) nonlinearly registered output images standardized with L4, (STI) nonlinearly registered output images
standardized with STI.
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obtained in FRG for L4. From top to bottom: linearly registered input images, standard image, and images standardized with L4 and STI,
respectively. MAE values are given in Table 1.
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Figure 7: Standardized images of the ADNI dataset, sorted according to MAE percentiles (A) 100, (B) 90, (C) 75, (D) 50, (E) 25, (F) 10, and
(G) 0 obtained for the FRG voxel set with STI. Images (A) and (G) correspond, respectively, to the highest (worst) and lowest (best) MAE
obtained in FRG for STI. From top to bottom: linearly registered input images, standard image, and images standardized with L4 and STI,
respectively. MAE values are given in Table 1.

Table 1: MAE (%) of the ADNI images presented in Figures 6 and 7, obtained for FRG, WM, and GM.

Figure Voxel set Technique (A) (B) (C) (D) (E) (F) (G)

Figure 6

FRG

Original 21.27 13.93 11.94 12.14 9.90 8.85 7.87

L4 11.07 9.84 9.41 9.02 8.62 8.30 7.50

STI 9.93 9.71 9.24 8.81 8.69 8.48 7.56

WM

Original 27.89 16.65 12.90 11.28 6.88 5.08 4.04

L4 8.60 7.05 6.32 4.59 4.19 5.04 3.67

STI 4.42 4.86 4.03 4.04 4.40 4.34 3.64

GM

Original 22.61 14.31 11.24 10.77 7.58 7.20 5.62

L4 9.99 8.58 7.52 6.65 6.04 6.70 4.97

STI 8.75 8.05 7.03 6.50 6.43 6.50 5.31

Figure 7

FRG

Original 12.14 11.77 10.10 10.90 10.13 10.29 8.93

L4 10.64 9.70 8.88 8.92 8.77 8.24 7.67

STI 12.05 10.11 9.60 9.05 8.57 8.23 7.32

WM

Original 8.04 9.38 5.34 10.01 7.68 8.30 6.43

L4 6.49 5.26 6.32 5.70 4.95 4.28 4.02

STI 8.24 5.94 5.00 4.11 4.89 4.32 3.69

GM

Original 10.72 10.00 8.30 9.21 8.59 8.19 7.37

L4 8.99 7.63 7.71 6.83 6.90 6.23 5.89

STI 10.59 8.12 7.69 6.70 6.79 6.29 5.49

Best (lowest) MAE values are highlighted in bold characters.

5. Conclusion

We presented a new tissue-based standardization technique
called STI. This technique uses spatial correspondence be-
tween an input image and a standard determined via global
linear and nonlinear registration. Registration allows the use
of joint histograms to determine intensity correspondence in
each tissue, defined within voxel masks.

We compared STI to an existing histogram-matching
technique and showed that STI was superior in terms of
mean absolute error, particularly in the white matter, in
two multicentric datasets. These results demonstrated that
standardization techniques should not be aimed solely at
matching histograms and that spatial information should
also be incorporated. To our knowledge, it is the largest study
on intensity standardization.
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Abbreviations

2D: Two-dimensional
ADNI: Alzheimer’s Disease Neuroimaging

Initiative
BKG: Background
CSF: Cerebrospinal fluid
E-ADNI: European ADNI
FRG: Foreground
GM: Grey matter
MAE: Mean absolute error
MRI: Magnetic resonance imaging
STI: STandardization of Intensities
WM: White matter.
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