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The inherent complexity of brain tissue, with brain cells intertwining locally and projecting

to distant regions, has made three-dimensional visualization of intact brains a highly

desirable but challenging task in neuroscience. The natural opaqueness of tissue

has traditionally limited researchers to techniques short of single cell resolution such

as computer tomography or magnetic resonance imaging. By contrast, techniques

with single-cell resolution required mechanical slicing into thin sections, which entails

tissue distortions that severely hinder accurate reconstruction of large volumes. Recent

developments in tissue clearing and light sheet microscopy have made it possible to

investigate large volumes at micrometer resolution. The value of tissue clearing has been

shown in a variety of tissue types and animal models. However, its potential for examining

the songbird brain remains unexplored. Songbirds are an established model system

for the study of vocal learning and sensorimotor control. They share with humans the

capacity to adapt vocalizations based on auditory input. Song learning and production

are controlled in songbirds by the song system, which forms a network of interconnected

discrete brain nuclei. Here, we use the CUBIC and iDISCO+ protocols for clearing adult

songbird brain tissue. Combined with light sheet imaging, we show the potential of

tissue clearing for the investigation of connectivity between song nuclei, as well as for

neuroanatomy and brain vasculature studies.
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INTRODUCTION

Recent innovations in tissue clearing, combined with advances in light sheet microscopy and big
data analysis, are bringing the exploration of whole brain three-dimensional space at single-cell
resolution within our reach. Brain tissue is composed of high-refractive index (RI) molecules, lipids
and proteins, embedded in a low RI medium, water. This RI mismatch leads to heterogeneity
in light scattering, and consequently turns tissue opaque. Tissue clearing methods, which have
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flourished into several variants, generally try to reduce the RI
mismatch by either substituting water by a higher RI medium
or by removing or modifying the optical properties of the dry
components (for review see Richardson and Lichtman, 2015).

Along with the available clearing protocols, the variety of
species and tissue types examined has multiplied in recent
years, encompassing varied species including mice, rats, rabbits,
humans, zebrafish, Xenopus, octopus, fruit flies, and even the
botanical model species Arabidopsis (Dodt et al., 2007; Palmer
et al., 2015; Lee et al., 2016). As for avian tissue, tissue clearing
has been commonly applied to the embryonic tissue of chicken
(Botelho et al., 2017; Gómez-Gaviro et al., 2017), and more
rarely to other avian embryos (Friocourt et al., 2017). Regarding
songbird adult tissue, tissue clearing reports are limited to the
zebra finch syrinx (Faunes et al., 2017) and the bengalese finch
brain (Fujii et al., 2016).

Fujii et al. have, to our knowledge, published the only
application of tissue clearing to the songbird brain. They
applied the SeeDB (Ke et al., 2013) and ClearT (Kuwajima
et al., 2013) protocols to 1 mm-thick brain sections of
both Bengalese finches (Lonchura striata var. domestica) and
laboratory rats (Rattus norvegicus), and then compared the
resulting transparency. Surprisingly, they showed limited success
concerning the songbird brain tissue, as the finch samples became
less transparent than the rat tissue, even though the finch
sections were smaller in volume. Furthermore, no clearing of
larger volumes of brain tissue was reported, and the capacity
for imaging fluorescently labeled structures in the songbird
brain remains unexplored. As of yet, the potential of optical
clearing methods for research on the songbird brain remains
surprisingly uncharted.
Songbirds are an important model system for the study

of vocal learning because juvenile birds learn their songs via
imitation of an adult tutor (for review see Bolhuis et al.,
2010). Additionally, they are excellent models for studies of
sensorimotor control and of neural plasticity, because singing
requires precise motor coordination and their brains are highly
responsive to sex hormones (for review, see Gahr, 2004).

The songbird brain organization shows distinct potential
for the application of clearing techniques. Songbirds possess
a dedicated brain circuit for song learning and production,
the song system, which is organized as a network of discrete
brain nuclei interconnected by brain-wide axonal projections,
making three-dimensional explorations at cellular resolution
particularly promising.

The exploration of the song system wiring has traditionally
required segmentation into thin tissue sections. Whole-brain
approaches have been limited to techniques lacking cellular
resolution, such as CT or MRI (Poirier et al., 2008; Vellema et al.,
2011). Interestingly, even though researchers have been trying to
dissect the song system circuit since the 1970’s (Nottebohm et al.,
1976), new projections between song system nuclei and their
afferents and efferents, and new projection neuron types have
only recently been discovered (Akutagawa and Konishi, 2010;
Roberts et al., 2017; Nicholson et al., 2018). Possibly, the loss of
3D information intrinsic to mechanical sectioning makes sparse
projections difficult to detect.

We successfully clear and image unsectioned songbird
forebrains. We chose the CUBIC protocol (Susaki et al.,
2014, 2015) for its simplicity, low cost, low toxicity, potential
compatibility with immunostaining, and good preservation of
fluorescent proteins. We combine viral vector-driven fluorescent
protein expression with light sheet microscopy to study
projections between song system nuclei. We take a closer look
at the projection between premotor nucleus HVC (proper name)
and its efferent nucleus RA (robust nucleus of the arcopallium).
Additionally, we also tested the iDISCO+ protocol (Renier et al.,
2016) to compare the transparency obtained with that of a
solvent-based method.

MATERIALS AND METHODS

Animals
Zebra finches were reared in our breeding colonies in
Seewiesen, Germany. Animal handling was carried out
in accordance with the European Communities Council
Directive 2010/63 EU and legislation of the state of
Upper Bavaria. The government of Upper Bavaria,
“Sachgebiet 54—Verbraucherschutz, Veterinärwesen, 80538
München” approved animal experiments (record number
55.2-1-54-2532-150-2016).

Tissue Preparation
Four adult male zebra finches were intracranially injected into
HVC using stereotactic coordinates, with either a lentivirus
driving Tomato expression (n = 2, 2 weeks expression time—
minimum expression time required to successfully label the
HVC-RA projection), or an AAV driving GFP expression
(n = 2, 3 weeks expression time), both under the control of
the cytomegalovirus (CMV) promoter. Additionally, three adult
male zebra finches were sacrificed (but not injected) to test the
performance of the CUBIC protocol on a whole songbird brain
(n = 1), as well as to provide tissue for the application of the
iDISCO+ protocol (n= 2).

Birds were sacrificed by isoflurane overdose, perfused, and
brains were extracted and post-fixed. Fixed brains where
either kept whole or hemisected and trimmed to obtain
forebrain hemispheres, because tissue clearing is known to
perform better in smaller volumes. Subsequently, brain tissue
clearing was carried out using either the CUBIC or iDISCO+
protocols (for further details see Supplementary Methods).
We found that, with the CUBIC protocol, prolonging the
immersion in reagent-1 solution to 10 days, instead of the 7
days recommended by the original protocol, helped improve
final transparency.

Imaging
Cleared tissue was transferred to the imaging solution and images
were acquired using either the commercial Ultra Microscope II
(LaVision), or the mesoSPIM system (www.mesospim.org). Post-
processing of images was carried out using ImageJ (Schneider
et al., 2012) and Imaris (Bitplane). For further details see
Supplementary Methods.
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During clearing progress, whole brain macroscopic images
were acquired using a macroscope (Leica Z16 APO, 0.57x zoom).
These images were then used to measure forebrain/whole brain
maximal length in the rostro-caudal axis in order to obtain a
rough estimate of tissue expansion/shrinkage.

RESULTS

Tissue Clearing
We successfully validated two tissue clearing methods for
songbird brain tissue (Figure 1). We obtained transparencies
comparable to those reported for CUBIC and iDISCO+
protocols, enabling single sided light sheet penetration in imaging

volumes of least half an adult zebra finch forebrain (Figures 1, 2
and Supplementary Movie S1). We observed some expansion
of CUBIC-cleared tissue, and some shrinkage for the iDISCO+
protocol (approximately 15% increase for CUBIC and 20%
decrease for iDISCO+ in final maximal rostro-caudal length as
compared to fixed tissue).

Light Sheet Imaging
CUBIC tissue clearing enabled us to use light sheet imaging
to visualize axonal tracts in the intact HVC-RA projection
(Figures 2A–D and Supplementary Movie S1), as well as
individual fluorescently-labeled cells throughout the entire
HVC (Figure 2E).

FIGURE 1 | Chemical clearing of songbird brain tissue and visualization of autofluorescent features. (A) CUBIC pipeline. A fixed hemisphere was treated with

reagent-1 to remove lipid components initially for 7 days, with reagent-1 immersion prolonged to a total of 10 days to increase transparency. Lipid removal was

followed by a PBS wash, and then by reagent-2 immersion for refractive index (RI) adjustment for 3 days. (B) CUBIC-cleared hemisphere in imaging solution (left), and

volume rendering resulting from light sheet imaging of the same hemisphere (right; mesoSPIM, 1.6x zoom, no emission filter). (C) CUBIC-cleared whole brain in

imaging solution. (D) iDISCO+ cleared hemisphere in ethyl cinnamate. (E) Volume rendering of autofluorescent vasculature (mesoSPIM, 1.6x zoom). (F) Two sagittal

optical sections showing autofluorescent anatomical landmarks, including laminae, myelinated fiber tracts, and song control nuclei HVC, RA, Area X, and LMAN (Ultra

Microscope II, 1x zoom, 10µm light sheet thickness; top is frontal, bottom is caudal). Scale bars in (A,B) left inset, (C,D) are 3mm; in (B) right inset, (E,F) are 1mm.

(A–E) Dorsal view.
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FIGURE 2 | Light sheet microscopy of the cleared song system. (A) Volume rendering of the HVC-RA projection from a sample of a lentivirus injected bird (Ultra

Microscope II, 1x zoom, frontal view). (B) Detail of axonal tracts from highlighted region in (A). (C) Volume rendering of a whole forebrain hemisphere showing the

labeled HVC-RA projection with overlaid autofluorescent signal from vasculature (same tissue sample as in (A); dorsal view, top is caudal, bottom is frontal;

mesoSPIM, 1.6x zoom) (D) Zoom into the highlighted region in (C), showing the HVC-RA projection in more detail. (E) Optical section showing labeled cells in HVC

from a sample of a AAV injected bird (Ultra Microscope II, 3x zoom, 10µm light sheet thickness). Scale bars in (A,D) are 500µm, in (B,E) 100µm, in (C) 1mm.

Additionally, imaging of autofluorescent structures
allowed visualization of cerebral vasculature throughout
the forebrain in CUBIC-cleared tissue (Figures 1E, 2C,D),
as well as anatomical landmarks in iDISCO+ cleared
tissue (Figure 1F).

DISCUSSION

Clearing the Songbird Brain
We successfully validated the application of tissue clearing
for songbird brain tissue using the CUBIC and iDISCO+
protocols, and demonstrate that sufficient transparency can be
achieved. The reason for the limited transparency achieved by
Fujii et al. is still unclear. However, both clearing protocols
they applied had been optimized for rodent tissue, and to our
knowledge no clearing method has been previously optimized
for songbird brain tissue. Possible explanations for unsatisfactory

transparency in songbird brain tissue could be related to different
chemical composition, and distinct anatomical organization,
particularly of myelinated tissue (Karten et al., 2013). We
found that prolonging the delipidation step in the CUBIC
protocol helps achieve better final transparency. We also
achieved good transparency using the iDISCO+ protocol,
which we expected, because solvent-based protocols such as
iDISCO+ provide the best clearing results. Nevertheless, with
some exceptions (Schwarz et al., 2015), these protocols entail
drawbacks such as poor fluorescent protein emission retention
and the need for special dipping caps to protect objectives from
harsh solvents.

Clearing for Anatomical Landmarks and
Vasculature
The intrinsic tissue fluorescence of cleared samples has
previously been exploited for registering samples to a
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reference brain (Renier et al., 2016; Ye et al., 2016). Acquiring
autofluorescence signals in a label-free channel can enable the
creation of an average reference brain by pooling data from
multiples samples. Subsequently, signals from labeled structures
can be acquired in the appropriate channel and be aligned to the
reference brain, enabling faster and more precise comparisons
across treatment groups. IDISCO+ was specifically developed
to optimize brain morphology preservation to facilitate
automated registration of light sheet-imaged samples. Along
with the chemical protocol, Renier et al. (2016) also developed
ClearMap, an open-source software for automated mapping and
analysis, including the registration of imaging data to custom
reference atlases.

We show excellent preservation of brain morphology in
iDISCO+ cleared songbird brain tissue (Figure 1F). Laminae,
myelinated fiber tracts, and song system nuclei are all clearly
visible. Anatomical landmarks in optical sections of light sheet-
imaged forebrains show similar crispness to that of Nissl-
stained thin tissue sections. Thus, clearing and light-sheet
imaging show potential for the creation of songbird brain
reference atlases.

CUBIC tissue clearing showed more limited preservation
of major anatomical landmarks, but the autofluorescence of
blood vessels enabled us to visualize vasculature throughout the
songbird forebrain (Figures 1E, 2C,D). As the anatomy of major
cerebral blood vessels is highly conserved across individuals
(Xiong et al., 2017), with the bifurcation of the midsagittal
sinus routinely used in various species including zebra finches
as the zero-point for stereotactic works, it is not difficult
to envision that such a reference point in vasculature could
be exploited for the registration of CUBIC-cleared songbird
brain tissue.

Furthermore, specific research questions on songbird brain
plasticity could benefit from 3D analysis of cerebral vasculature
and gross brain morphology; both brain region volume
and microvasculature structure are key features frequently
quantified in sex hormone studies (for review see Chen
et al., 2013). Additionally, the anatomical landmarks we
imaged in the iDISCO+ cleared tissue were comparable to
those previously imaged in songbird brains through the use
of MRI (Poirier et al., 2008; Vellema et al., 2011). Hence,
these techniques could provide an alternative to MRI for
studies of myelination and volumetric changes, with the added
advantages of higher resolution and compatibility with targeted
fluorescence imaging.

Visualizing the Intact Song System at
Cellular Resolution
Here, we focused on the projection from HVC to RA, as this is
a known important projection within the song system. HVC sits
at the apex of the song system and both HVC and RA are part of
the two song system pathways, the anterior forebrain pathway for
vocal learning and the motor pathway for song production. RA
forms the output via its projection to motor neurons controlling
the vocal organ. However, this is intended as a proof of principle,

and we hope this pipeline will be used to study further pathways
within the song system, as well as those connecting to its afferents
and efferents.

In rodents, these techniques have already proven their
value. 3D reconstructions of axonal pathways obtained from
light sheet datasets of cleared tissue revealed previously
undocumented projections and topographical features (Menegas
et al., 2015; Renier et al., 2016; Ye et al., 2016). Likewise,
a precise mapping of the wiring of the song system could
improve our understanding on how auditory input entering
the songbird brain is processed in order to produce the
accurate motor output for imitating tutor song. Important
contributions to this endeavor are already being fulfilled
by the use of other promising techniques for precise 3D
reconstructions at subcellular resolution, such as serial block-
face light and electron microscopy (Oberti et al., 2011; Kornfeld
et al., 2017) and expansion microscopy (Chen et al., 2015;
for a first application of expansion light sheet microscopy to
songbird brain tissue we refer to our other publication in
the same research topic: Düring et al., 2019). Nonetheless,
the main advantage of the combination of tissue clearing and
light sheet microscopy is its simplicity and speed. Imaging
an adult zebra finch forebrain hemisphere in one channel
at sufficient resolution to follow axonal tracts is feasible in
about 10min. This makes these techniques excellent tools
for investigations of long-range axonal projections within the
songbird brain. Furthermore, projections in this complex system
are known to respond to vocal learning experience and sex
hormones. In combination with automated analysis tools, these
techniques can make large-scale comparisons of long-rage
axonal projections across different treatment groups feasible,
and so enable more precise investigations into how this system
rewires itself.

CONCLUSION

We have shown the feasibility and discussed the potential
applications of tissue clearing combined with light sheet
microscopy for the visualization of intact long-range projections,
vasculature, and anatomical landmarks in the songbird brain.
We hope our findings will encourage the use of these
techniques in order to advance our knowledge on the song
system connectome, and lead to a better understanding on
the anatomical basis of the neural mechanisms underlying
vocal learning.
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