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Abstract

The craniofacial region is anatomically complex and is of critical functional and cosmetic 

importance, making reconstruction challenging. The limitations of current surgical options 

highlight the importance of developing new strategies to restore the form, function, and esthetics 

of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative 

medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and 

self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM 

offers many advantages over current treatments as tissue can be engineered for specific defects, 

using an unlimited supply of bioengineered resources, and does not require immunosuppression. 

In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical 

studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines 

the current progress that has been made toward the engineering of these tissues for craniofacial 

reconstruction and facial esthetics.

Keywords

Craniofacial; Facial aesthetics; Regeneration medicine; Tissue engineering

The craniofacial anatomy is highly specialized and individualized and is of critical 

functional and cosmetic importance but is prone to genetic and environmental insults. The 

head and face are commonly affected by cancer and trauma,1,2 and of all the live births 

affected by a minor or major anomaly, one-third involve the head and face.3 Around 85% of 

the global population is in need of craniofacial tissue at some point during their lifetime,4 

and >28,000 head and neck reconstructions are performed every year in the United States 

(US).5 Craniofacial deformities can have a dramatic impact on quality of life, and 

adequately reconstructing the complex form, function, and esthetics of facial anatomy is 

challenging. The criterion standard approach is to replace missing or damaged tissue with 

autologous grafts. Donor bone and soft tissues, however, are in finite supply and their 

harvest can result in significant morbidity.6 Allogeneic grafts from cadavers or living donors 
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bring the risk of infection, inflammation, lifelong immunosuppression,7,8 and unpredictable 

donor-recipient anatomical compatibility.9 Prosthetic alloplastic materials are unable to 

restore the multiple complex sensory and motor functions of craniofacial structures, do not 

expand in growing children, and are at risk for failure and infection.10–13 Thus, a clear need 

exists to develop alternative strategies to reconstruct craniofacial tissues.

Regenerative medicine (RM) is an emerging interdisciplinary field which combines the 

principles of cellular and molecular biology, material science, and bioengineering, to support 

endogenous healing and replace or regenerate cells, tissues, or organs, with restoration of 

impaired function. Tissue engineering (TE) is a related concept centered on the engineering 

and manufacturing aspects of tissue replacement; however, TE and RM are often combined 

and treated as a single research pursuit.14,15 TE/RM supports natural tissue regeneration 

processes by using cells, natural or artificial scaffolding materials, growth factors (GFs), 

gene manipulation, or combinations of these elements (Fig. 1). The cells of interest, often 

stem or progenitor cells, are typically isolated, expanded, differentiated ex vivo, seeded onto 

scaffolds, then reinserted into the defected areas with the scaffolds, often in combination 

with tissue-specific GFs. Mesenchymal stromal cells (MSCs) are the most common cell type 

used because of their ethical acceptance, ease of harvesting, robust proliferative capacity, 

and their ability to give rise to the cells commonly required for craniofacial reconstruction, 

namely osteoblasts, chondroblasts, adipocytes, tenocytes, myoblasts, and stromal cells.16,17 

MSCs are mostly sourced from human bone marrow-derived stem cells (BMSCs) or adipose 

tissue-derived stem cells (ADSCs). Although BMSCs were described first and have been the 

focus of TE strategies, ADSCs are in greater abundance and can be harvested with less 

patient-morbidity from liposuction or fat excision procedures. Scaffold and biomimetic 

materials can assist cellular growth and differentiation by providing a dynamic three-

dimensional [3D] framework for cellular attachment, migration, and protection. Ideally 

scaffolds are able to withstand the immune response and eventually undergo resorption. 

Synthetic biomaterials have been created and refined for different tissues. The application of 

GFs aims to provide the necessary stimuli to promote the activity and differentiation of 

stem/progenitor cells toward certain cell fates required for tissue healing. Vectors or 

nonchemical extracellular environmental changes, such as atmospheric pressure, can also be 

used to alter cellular activity.

TE/RM promises many advantages over current standards of treatment for craniofacial 

reconstruction; customized tissues can be created for specific defects, using an unlimited 

supply of bioengineered resources, enabling reconstruction without the need for 

immunosuppression. In craniofacial and facial esthetic surgery, numerous tissue types 

require repair following congenital or acquired defects. This review provides for the first 

time a unique synopsis of current concepts of TE/RM in craniofacial reconstruction and 

facial esthetic surgery. We focus on TE/RM of various types of tissues relevant to the field, 

including skeleton, soft tissue, adipose tissue, and neurovasculature, and provide an up-to-

date report on future perspectives and challenges.
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BONE

The craniofacial skeleton provides the stable, rigid, structural framework for facial soft 

tissue, cartilage, and dental structures, and is a key determinant of facial esthetics.18 Loss of 

craniofacial bone, owing to congenital, traumatic, or neoplastic causes, can result in 

significant structural and functional deformities. Bone TE has large applications within 

craniofacial surgery and has been extensively studied (Fig. 2).19–21 Preclinical studies have 

demonstrated that both BMSCs and ADSCs are effective osteoblastic precursors and when 

placed into mandibular or critical-sized cranial defects, they can accelerate bone 

regeneration.22–25 Additionally, MSCs modified ex vivo using bone morphogenetic protein 2 

(BMP-2) and applied to the dog mandible during distraction, accelerated osteogenesis.26 In 

humans, MSCs have been used to engineer bone in the jaw and cranium in clinical case 

series and case reports.27–32 One randomized clinical trial (RCT, n = 30) reported that β-
trical-cium phosphate (β-TCP) scaffolds seeded with BMSCs, monocytes, and macrophages 

promoted more bone to form in areas of maxillary sinus deficiency than did scaffolds 

without cells.33 The most effective bone-forming MSC remains to be identified. Specific 

subpopulations of ADSCs,23 induced pluripotent stem cells (IPSCs),34 and genetically 

modified ADSCs,35 all may have enhanced osteogenic potential and are able to promote 

bone formation in the craniofacial skeleton of animals. Recently, the mouse (mSSC) as well 

as the human skeletal stem cell (hSSC) have been identified, defined as cells with the ability 

for self-renewal, which give rise to bone, cartilage, and stromal tissue in vitro and in vivo.
36,37 SSCs appear to be a promising cellular candidate for future skeletal tissue engineering 

therapies with the unique advantage of requiring less exogenous stimulation to drive 

differentiation of bone and cartilage compared to MSCs and ADSCs. The bone-regenerating 

ability of ADSCs and BMSCs can be encouraged by GFs. The members of the transforming 

GF-beta (TGFβ) family, such as BMPs, fibroblast GFs (FGFs), vascular endothelial GF 

(VEGF), and platelet-derived GF (PDGF), have all been used for bone TE.38 Two 

recombinant BMPs have been approved by the US Food and Drug Administration (FDA) for 

clinical use: Infuse Bone Graft, containing rhBMP-2 (Medtronic and Wyeth, Watford, UK), 

and Osigraft, containing rhBMP-7 (Stryker Biotech, Ontario, Canada). BMP-2 and BMP-7 

are able to promote bone regeneration in the alveolar ridge and facilitate the repair of 

critical-sized craniofacial bone defects in humans.39–41 GFs can be incorporated into seeded 

cells via molecular or genetic modification,42 or alternatively can be combined with 

scaffolds by soaking or bonding. Soaking results in the quick release of GFs by passive 

diffusion or upon degradation of the biomaterial.42 GFs that are encapsulated or covalently 

bound to scaffolds are released according to cellular demands, which may more accurately 

recapitulates the natural bone-healing process which occurs over several weeks.43 Multiple 

GFs added in unison, or in temporal/spatial succession, may have synergistic results and 

further promote bone formation,44 which remains to be defined in future studies. Platelet-

rich plasma (PRP) is rich in GFs45 which are released upon platelet activation and induce 

cellular differentiation, enhance healing, and promote bone regeneration.46 PRP is gaining 

interest in bone TE and is being increasingly used in orthopedic surgery.47 In the 

craniofacial skeleton, a PRP membrane incorporating MSCs promoted the healing of 

critical-sized cranial defects in both mice and rabbits,48 as well as the healing canine 

mandibular defects, with evidence of improved vascularization.49
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A variety of scaffolds act as carriers for cells and GFs. Natural biodegradable polymers 

made of substances, such as polysaccharides (eg, chitosan) or proteins (eg, collagen), are 

highly biocompatible but may lack significant mechanical strength and may cause an 

immune response. Synthetic polymers, such as poly(lactic-co-glycolic acid) (PLGA) and 

polymer of lactic acid (PLA) have easily controllable mechanical and physical properties50 

and, once degraded, do not obscure computed tomography (CT) scans51; however, they are 

expensive and generally have weak cell adhesive ability. Other bone TE scaffold 

biomaterials include bioactive ceramics, glass, hydrogels, metals, and composite scaffolds.52 

Hydrogels closely resemble the extracellular matrix but may lack mechanical strength. Bone 

is composed of 85% calcium phosphate; therefore, biphasic calcium phosphate bioceramics, 

such as hydroxyapatite (HA) and TCP, have been widely investigated for their use as bone 

scaffolds. These bioceramics are highly biocompatible, not immune reactive, and can be 

easily assessed radio-graphically. Biodegradable metals are absorbed within the physiologic 

environment and may have superior mechanical properties to biodegradable polymers.50 

Composite materials, composed of ≥2 biomaterials, could offer the best qualities from each 

material.53 PLGA, for example, can be combined with HA to significantly enhance its 

osteogenic environment.54 Advances in patient imaging and computer-assisted design 

(CAD) technologies have advanced the field, enabling the fabrication of complex 3D 

custom-fit scaffolds with optimal pore sizes to improve load-bearing strength, cellular 

adhesion, and the delivery of biomolecules.55 3D printing and electrospinning, for example, 

are based on CAD software and allow for the creation of scaffolds with more tightly 

manipulated internal morphology and gross geometry.56,57 Electrospinning is able to create 

scaffolds made of nanofibers with architectural, functional, and morphologic similarities to 

collagen fibrils.58 These nanofibrous scaffolds can be designed to have high porosity and 

high surface-to-volume ratio which enhances cellular attachment and proliferation.59,60 

Incorporation of metallic nanoparticles can increase the mechanical strength, cellular 

adhesion, long-term osteoblast function, collagen synthesis, alkaline phosphatase activity, 

and calcium deposition of bioscaffolds.58,61

Bone TE approaches have also been explored in dentistry. The teeth are highly specialized 

facial structures with important influences on facial esthetics. Recent systematic reviews of 

preclinical studies have highlighted the success of bone TE strategies to regenerate oral peri-

implant bone,62 alveolar bone,19 and periodontal bone.63 In humans, a clinical case series 

showed the benefits of bone TE for the reconstruction of oral peri-implant defects,64 and a 

systematic review of clinical trials reported the effectiveness of bone TE for alveolar bone 

regeneration.20,21 Another question which is important to address is whether bone TE/RM 

may have clinical efficacy in patients whose regenerative capacity is impaired by infection 

or irradiation. Delivery of BMP-2 in a collagen sponge helped to reconstruct calvarial bone 

in irradiated65 or infected wounds in rabbits.66 Dermal fibroblasts transduced ex vivo to 

express BMP-7 were able to promote the regeneration of calvarial bone in the defects of 

mice subjected to therapeutic doses of radiation.67 These studies suggest TE/RM strategies 

have value in these complex clinical scenarios. To summarize, preclinical and early clinical 

studies demonstrate an enormous potential of TE/RM in craniofacial bone repair. There are, 

however, large variations in study methodology with regards to the nature of cells, 

biomaterial scaffolds, and type/dimensions of defects used. Future work must identify the 
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biomaterials, cell, and GFs with most clinical effectiveness for certain clinical situations, in 

more standardized, preclinical, and clinical studies.68

CARTILAGE

The cartilage of the craniofacial skeleton is found in the nose, ears, pharynx, eyelids, and 

joints. Cartilaginous tissue has a limited ability for spontaneous repair because of its 

avascular, aneural, and almyphatic nature, as well as the low mitotic activity of 

chondrocytes. Cartilaginous deficiencies can therefore result in dramatic deformities. 

Existing therapies for cartilage repair are limited and surgical reconstruction of the 

craniofacial cartilage, including the external ear, are arguably some of the most challenging 

reconstructive operations because of the complex patient-specific 3D architecture. Cartilage-

based TE has potentially vast application in craniofacial reconstructive surgery (Fig. 3). 

Implantation of autologous chondrocytes can regenerate extracranial articular cartilage in 

humans in extracranial regions,69,70 and the FDA has approved autologous chondrocyte 

implantation/transplantation (ACI/ACT) for the clinical treatment of joints.71–74 However, 

the progress made in the orthopedic field will need be duplicated in the craniofacial region, 

given that its cartilage is mostly subcutaneous, exposed to different physical forces, and is 

present in a highly antigenic environment with frequent immunological responses, including 

phagocytosis.75 Initial preclinical and clinical studies have been promising; bovine articular 

chondrocytes seeded into 3D polyglycolic acid-(PGA)-PLA templates constructed in the 

form of a human ear and transplanted into the dorsum of 10 athymic mice produced lasting 

cartilage, both morphologically and histologically, after 12 weeks of implantation.76 Using 

the same model, poly(L-lactic acid-ε-caprolactone) (PCL) copolymer scaffolds molded into 

human ear shapes and seeded with articular chondrocytes supported the development and 

maintenance of cartilage in a human ear shape over 40 weeks.77 Additionally, human septal 

chondrocytes, expanded ex vivo in culture with TGFβ, FGFs, and PDGF and resuspended in 

alignate polymer structures maintained the size, shape, and viability, with histological, 

biochemical, and biomechanical features of nasal septum up to 60 days post implantation in 

the dorsum of athymic mice.38 In a clinical series of 4 patients with microtia, a 2-stage ACI 

approach was used. Autologous chondrocytes were harvested from the underdeveloped ear, 

expanded first in vitro and then in a subcutaneous pocket in the patient’s abdomen for 6 

months, before they were explanted and hand-sculpted into an ear framework used for 

auricular reconstruction. Five years following auricular reconstruction, the ear had retained 

its form.78 Nasal alar lobe defects of 5 patients were repaired using autologous chondrocytes 

harvested from nasal septal cartilage biopsies, expanded ex vivo, seeded onto fibrous 

collagen scaffolds, and cultured with autologous serum onto collagen type I and III 

membranes for 4 weeks. Engineered cartilage grafts were shaped intraoperatively and 

successfully implanted in regions where tumors had been excised under paramedian 

forehead or nasolabial flaps.79 Another clinical trial used autologous nasal chondrocytes to 

reconstruct the nasal alar of 11 patients with nasal alar valve collapse. Nasal cartilage was 

harvested in small strips, disaggregated, centrifuged, and resuspended in autologous PRP. 

This fibrin gel was placed into the external nasal valve collapse defects and, at 12 months 

following surgery, formed persistent cartilage with the appearance of an augmented nasal 

dorsum without obvious contraction and deformation.80
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Despite these promising studies, ACI/ACT therapies are limited by the paucity of donor 

chondrocytes, the morbidity associated with their harvesting, and the slow proliferation 

capacity of harvested chondrocytes. MSCs and perichondrocyte cartilage progenitor cells81 

are gaining use in cartilage-engineering strategies. They are multipotent and have high 

replicative abilities, so fewer cells are required at harvest. Synovium-derived MSCs82,83 may 

have a superior capacity for chondrogenesis.84,85 MSCs, however, have the potential to form 

unstable cartilage with reduced mechanical stiffness and are prone to fibroblast 

dedifferentiation or hypertrophy in vitro and in vivo.70,86 Additionally, chondrogenically 

induced BMSCs tend to lose their chondrogenic ability with passage, resulting in ectopic 

ossification upon subcutaneous transplantation.87,88 Co-transplant of chondrocytes and 

MSCs can overcome the limitations of using each cell individually.89,90 Human microtia 

chondrocytes and BMSCs seeded onto a human ear-shaped PGA scaffold in a ratio of 1:3, 

grown for 1 week in vitro, and then transplanted subcutaneously into nude mice, resulted in 

the formation of de novo cartilage 12 weeks after transplant, and maintained the delicate 

cartilaginous structure with proper elasticity of the cartilaginous tissue. This suggests the 

chondrocytes had a stable chondroinductive effect on the BMSCs.91 In a second study, 

human ADSCs and auricular chondrocytes from microtia specimens and were co-grafted 

into a nude mouse in a 3:7 ratio, and after 8 weeks formed cartilaginous tissue with 

translucent appearance and good elasticity with cartilage-specific ECM components, 

including collagen type II, glycosaminoglycans (GAGs), aggrecan, and elastic fibres.92 An 

alternative approach in future investigations may be to exploit the capacity of the 

aforementioned mSSC36 to both self-renew and differentiate into cartilage and bone.

The GFs most intensively studied for their molecular control of chondrogensis of MSCs and 

proliferation of chondrocytes include the BMPs, Wnts, and FGFs.93,94 Combined BMP-2 

and TGFβ1 can induce MSC chondrogenesis in pellet culture.95 Dexamethasone also 

induces the chondrogenic differentiation of BMSCs.96 GF receptor expression is thought to 

dynamically change during chondrogenesis and temporal control in administration of 

chondrogenic factors may be required to improve cell growth, matrix deposition, and the 

phenotype of the cartilage formation.97,98 Similar natural and synthetic materials used for 

bone have been explored in cartilage TE. Natural materials include agarose, alginate, 

hyaluronic acid, gelatin, fibrin glue, collagen derivatives, and acellular cartilage matrix, but 

these may have inferior mechanical strength, disease transfer, and antigenicity, and be prone 

to rapid and variable host-related degradation. Of the synthetic polymers polyhydroxyacids, 

such as PLLA, PGA, and PCL have been well studied and are easily extruded into fibrous or 

open-lattice sponges. One study comparing these 3 polymers found all promoted cartilage 

formation, but the PCL template yielded neocartilage with the best gross architecture akin to 

a human ear.75 PEG-based hydrogels are also able to promote chondrogenesis99–101 and are 

biomaterials already approved by the US FDA.

The temporomandibular joint (TMJ) is a synovial joint which can be damaged by tumors, 

trauma, and degenerative joint disorders including rheumatoid arthritis, osteoarthritis, and 

ankylosis.102 TMJ dysfunction can cause pain, problems with speech, swallowing, and 

mastication, and facial asymmetry. Unlike the hyaline cartilage of the knee joints, the 

articular surfaces of the TMJ mandibles are covered by fibrocartilage.103,104 Additionally, 

regeneration of the TMJ articular surface requires an adequate bone-cartilage interphase.
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105–107 This can be achieved by seeding both osteoblasts and chondrocytes into scaffolds 

that are able to fulfill the biological and mechanical requirements for the regeneration of 

cartilage and bone. The scaffolds can also be shaped fit the unique TMJ environment. In a 

preclinical study, bovine osteoblasts and chondrocytes were seeded onto a scaffold 

composed of PGA and PLA formed in the shape of a human mandible condyle. The scaffold 

was implanted into subcutaneous pockets of athymic mice, and after 12 weeks, there was 

evidence of trabecular bone and hyaline cartilage on the articular surface.108 Alternatively, 

scaffolds can be seeded with mesenchymal progenitor cells or differentiated MSCs, as MSCs 

have the ability to differentiate into both bone and cartilage depending on cues in their 

cellular microenvironment such as matrix stiffness.109 In one preclinical study, chondrogenic 

and osteogenic differentiated BMSCs were encapsulated into a bilayered osteochondral 

PEG-based construct that had been carved into a human mandibular condyle shape. After 8 

weeks of transplantation into the dorsum of immunodeficient mice, the construct had formed 

de novo mandibular condyles with areas of both cartilage and bone.99 Chondrogenic 

differentiated MSCs have also been directly injected into the intra-articular space of the TMJ 

in a rabbit model of TMJ osteoarthritis, where they were reported to integrate into the 

mandible and form both subchondral cancellous bone, cartilage, and synovial membrane 4 

weeks post-transplantation. Interestingly, the cartilage repair was better in rabbits 

transplanted with differentiated, compared to non-differentiated, MSCs.110 Developing an 

injectable approach for cartilage regeneration of the TMJ could satisfy a patient’s desire for 

minimally invasive surgery, but this requires substance that is viscous or semisolid to be 

injected, and once injected to maintain a desired shape or form without diffusion.111 BMSCs 

have also been modified using NEL-like molecule 1 (NELL-1—a GF thought to target cells 

toward an osteochondral lineage) seeded onto a PLGA composite and transplanted into large 

condylar defects in goat mandibles. This rapidly regenerated both bone and cartilage tissue.
112 Low-intensity pulsing ultrasound can stimulate stem cell growth and differentiation, and 

demonstrates enhanced formation of bone and cartilage tissue and their integration in rabbit 

mandibular condyles.113 In humans, HA/collagen blocks have been successfully used in 

TMJ ankylosis with PRP to regenerate a new functioning condyles in a case series (n = 19) 

of children and adolescents.114 This is a promising initial finding but longer-term clinical 

studies in a larger cohort of patients are required. In conclusion, the use of cartilage TE in 

the craniofacial region is expanding, but there are unique challenges to overcome before the 

more widespread use of engineered cartilage is possible for reconstruction of the nose, ears, 

and TMJ.

SKIN

The skin is an important tissue in the craniofacial region. In addition to its barrier functions 

it provides the insertion for facial muscle which is important in communication. Given the 

face is the most exposed part of the body, the facial skin is frequently damaged in traumatic, 

congenital, and neoplastic processes. Disruption of the epithelial contiguity impairs the 

skin’s barrier, pigmentary, thermoregulatory, mechanical, and cosmetic functions.115 

Wounds that penetrate beyond the epidermis in adult mammals heal by scarring, forming 

tissue that is of inferior functional quality to that of normal skin.115 Skin was one of the first 
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tissues to be successfully engineered and FDA-approved, and there are currently a number of 

skin substitutes available for clinical use (Fig. 4).

The first skin substitutes were biodegradable porous matrices that emulated the dermis and 

functioned as templates for dermal regeneration. Typically, these matrices are placed on the 

wound bed, and promote healing by increasing adherence and proliferation of regenerative 

cells, and by acting as a vehicle for drug delivery. After sufficient integration and 

vascularization, the matrices are covered with autografts.116 Natural and synthetic 

biomaterials can be used for dermal matrices. Natural polymers include polysaccharides (eg, 

chitosan), proteoglycans, proteins (eg, collagen). These materials are biocompatible and 

biodegradable with similar composition to the ECM.117,118 Integra was the first 

commercially available skin substitute. It is made of cross-linked collagen and 

chondroitin-6-sulfate, with a silicon sheet attached to one side which functions as a 

temporary epidermal layer.119 Integra is primarily used for treating deep burn wounds. It is 

able to facilitate dermal regeneration while preventing wound contraction, which results in 

improved wound healing, function, and appearance.120 Natural polymers, however, have 

variable degradation rates, limited ability to be modified, and can cause immunogenic 

reactions.121 Decellularized-derived matrices are made by removing cells and keeping the 

protein component. They preserve native skin architecture, have low immunogenicity, and 

reduce the risk of disease transmission.119,122 Alloderm is a skin substitute made from 

decellularized donor skin used both for wound repair and reconstructive surgery. In the 

craniofacial region, it has been used to reconstruct the eyelid. Alloderm is sufficiently rigid 

to act as a replacement for the tarsus and also behaves as a scaffold promoting the regrowth 

of the conjunctiva on its surface.122 Synthetic polymers may be absorbable, such as PLA, 

PLGA, PGA, PCL, PEG, or nonabsorbable, such as polyurethane, nylon, 

polytetrafluoroethylene (PTFE), and polyethylene terephthalate. Synthetic polymers are 

cheaper, more homogeneus, bypass the immunogenic effects, and can easily be manipulated 

to exhibit controlled GF release or antimicrobial effects.123–126 Synthetic polymers have 

been shown to accelerate wound closure in diabetic patients.127 Nanomaterials are extremely 

versatile with regards to fabrication and design methodology permitting the modification and 

customization of material properties to suit the wound repair environment.128 Of the 

numerous matrix materials, it is difficult to identify which materials would be best for 

widespread clinical translation.

Subsequent approaches to skin TE focused on developing keratinocyte culture techniques to 

produce live cultured skin products. Traditionally, keratinocytes were cultured into 

epidermal autografts (CEA) or seeded onto natural or synthetic dermal scaffolds.129,130 

Epicel is an example of a cultured autologous epidermis first produced in 1988. Without a 

dermal layer, these scaffolds are thin, fragile, and lack elasticity, suppleness, and tensile 

strength. Epicel and epidermal constructs are used for major burns wherein very little 

autologous viable skin remains. Dermoepidermal skin substitutes (DESS), containing both 

epidermal and dermal layers, were subsequently developed. In addition, the inclusion of 

fibroblasts in dermal substitutes was found to improve wound healing.131,132 Autologous 

skin cells are used where possible but several weeks are required before skin biopsy cells are 

sufficiently expanded for grafting.119 Commercial skin substitutes such as Apligraf and 

Dermagraft, therefore, use allogenic epidermal and dermal cells and can be immediately 
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applied to injured skin.133 Dermagraft consists of allogeneic neonatal dermal fibroblasts 

cultured on a polyglactin mesh. As the mesh degrades, the cells produce de novo ECM 

matrix proteins.119 Apligraf consists of neonatal foreskin fibroblasts and keratinocytes 

cultured to form dermal and epidermal layers.119 The fibroblasts are first mixed with type 1 

collagen to form a strong network of cells and matrix proteins, and the keratinocytes are then 

seeded onto the construct and form stratified layers. Dermagraft and Apligraf are ultimately 

rejected but before rejection can help heal the cutaneous layers.134,135 “Minced 

micrografting” is a new approach where a small full-thickness skin sections are removed 

from the patient, minced, mixed with hydrogel, and applied onto the wound. It is cheap, 

simple, and effective in grafting large wounds with little donor skin amounts.136

A number of GF families are integral to endogenous wound healing and may promote 

healing if applied at specific time points during injury. Topical application of epidermal GF 

(EGF) in a double-blind clinical trial (n = 12) accelerated the epidermal regeneration of skin 

graft donor sites.137 A double-blind RCT (n = 118) found that topical application of PDGF 

safely and effectively stimulated healing of chronic full-thickness diabetic ulcers.138 FGF 

accelerated the healing of chronic wounds in 2 RCTs (n = 58, n = 50 respectively).139,140 

Stromal cell-derived factor 1141 and TGFβ142 have shown beneficial effects in animal 

studies and results remain to be translated to humans. Topical factors must be able to 

withstand degradation by the wound’s proteolytic environment.143 The method by which to 

deliver GF to achieve maximum therapeutic effect remains to be determined.128

The skin substitutes in current clinical use have established milestones in the treatment of 

skin disorders,116,144 and address the primary therapeutic concern which is rapid recovery of 

the skin’s barrier function to diminish water loss and prevent infection. However, these 

substitutes are not routinely used because of their high cost, limited effectiveness, and the 

inability to fully recreate the functions and aesthetics of skin.145 Long-term success is 

limited by the absence of self-renewing stem/progenitor cells.146 A number of animal 

studies have demonstrated the benefit of the topical application of ADSCs147–151 and 

BMSCs152–155 on healing wounds. A small number of clinical studies have shown that 

autologous BMSCs help to heal chronic wounds.156–159 Two randomized studies found that 

intramuscular injection of BMSCs into the limbs containing chronic ulcers, in addition to the 

topical application of cultured autologous BMSCs on the ulcers, decreased wound size (n = 

41, n = 24, respectively).157,160 Autologous ADSCs, topically applied to wounds resulting 

from radiation injuries, using an artificial dermis and supplemented with FGF, helped to heal 

the chronic wounds (n = 10).161 ADSCs differentiated into adipocytes and injected into 

depressed scars resulted in long-term restoration of volume (n = 17).162 ADSCs may also 

promote skin rejuvenation and the repair of atrophic and photo-damaged skin, perhaps 

through the secretion of cytokines and GFs that stimulate dermal fibroblasts to synthesize 

collagen, a process that decreases in skin aging.163 Subcutaneous injection of ADSCs in 

hairless aged mice increased dermal thickness and collagen density,162 increased 

angiogenesis, and reduced UVB-irradiated induced wrinkles.164,165 In one clinical study, 

autologous lipoaspirate composed of around 25% ADSCs was injected intradermally into 

the photo-aged skin of a patient, and improvement was noted in skin texture and wrinkles at 

2 months with increase in dermal thickness detected with ultrasound.163 These initial 

clinical studies are promising but are few in number and limited by sample size and long-
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term follow-up.166 They remain to be validated in larger studies conducted with more 

patients.

Another limitation of currently available skin substitutes is their inability to carry out the 

functions of normal skin owing to missing dermal appendages.115,116 The sweat and 

sebaceous glands, hair follicles, adipose tissue, Langerhans cells, and neurovasculature are 

responsible for thermoregulation, insulation, sensation, ultraviolet protection, and the 

esthetic appearance of skin. Inclusion of progenitor cells may facilitate generation of dermal 

components. Hair follicle cells are skin progenitor cells able to reconstitute all components 

of the cutaneous epithelium,167 and facilitate re-epithelialization as well as the formation of 

sebaceous glands and hair follicles following cutaneous wounding.168–173 Application of 

hair follicle cells to wounds in animal studies reduces time for closure and forms skin with 

cycling hair follicles.169,174,175 A preliminary clinical study (n = 10) demonstrated that 

inclusion of hair follicles in skin grafts reduces the wound size in chronic leg wounds with 

evidence of increased re-epithelialization and vascularization on histology at 18 weeks.176 

An RCT (n = 12) demonstrated that implantation of skin grafts containing scalp hair follicles 

reduced wound size of chronic wounds compared to non-hairy skin grafts and formed hair-

bearing skin.177 No clinical studies have attempted to reconstitute scalp hair, and this 

remains a subject of future investigation. Hair follicles are also able to guide nerve migration 

both in vitro and in vivo and their inclusion in skin grafts enhances the innervation of tissue-

engineered skin.178 Full restoration of sensation in engineered skin, however, has not yet 

been demonstrated. To form pigmented skin, keratinocytes, fibroblasts, and melanocytes 

were co-transplanted subcutaneously into mice and rats and were demonstrated to 

successfully form pigmented skin with functioning melanocytes several months after 

surgery.179–181 Current skin substitutes neglect the subdermal fat layer which results in skin 

with reduced mobility and more noticeable contour defects. Multilayered skin substitute 

have been made in vitro by co-culturing preadipocytes and keratinocytes,182 or by simply 

growing ADSCs, which are able to generate 3-layered skin composites with epidermal, 

dermal, and hypodermal elements by a self-assembly process.183 Gene therapy is another 

possible way to augment the regeneration potential of skin cells, and gene-targeted 

epidermal cells showed long-term regenerative capacity when grafted into immunodeficient 

mice.184 Many of these preclinical studies, however, remain experimental,185 and although 

skin TE has undergone substantial development, there remains a number of areas need to be 

elucidated before it is possible to engineer fully functional adult human skin, and to create 

skin capable of healing without scarring.

ADIPOSE TISSUE

Fat transplantation is a technique used for a variety of reconstructive procedures in the 

craniofacial region, including the treatment of contour and soft tissue alterations following 

trauma, infection, radiation therapy-related, involutional disorders such as hemifacial 

atrophy, or for cosmetic procedures such as lip augmentation and wrinkle therapy. Fat 

transplantation, however, is limited by variable resorption rates186 and partial necrosis, 

which can lead to shape and volume loss with time and unreliable long-term outcomes.
187–189 Late enlargement of facial fat grafts can also occur with overall patient weight gain 

and requires surgical intervention. Adipose TE bypasses these issues (Fig. 5). Preclinical and 
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early clinical series show that ADSCs enhance soft tissue augmentation and survival of fat 

grafts.190–192 BMSC and ADSC-seeded hydrogel or collagen scaffolds promote 

adipogenesis and show retention of form for up to four weeks in mice.193,194 In humans, the 

addition of ADSCs to aspirated fat before lipotransfer (“cell-assisted lipostransfer” or CAL) 

improves survival and vascularity of the adipose used to augment human breast tissue.
192,195,196 This has become a popular technique in plastic surgery. In the craniofacial region, 

BMSCs (n = 10)197 and ADSCs (n = 5)198 have been successfully used to enhance fat 

grafting into the face of human patients with Parry-Romberg syndrome, a condition 

characterized by progressive hemifacial atrophy of skin, dermis, subcutaneous fat, muscle, 

cartilage, and bone. Additionally, a RCT reported that ADSC grafting was effective, safe, 

and superior to conventional lipoinjection for facial recontouring in patients with 

craniofacial microsomia.199 CAL was found to improve volume and symmetry in a patient 

with Parry-Romberg syndrome.200 CAL has also been used in facial augmentation 

operations to recontour the faces of patients with lupus erythematosus profundus (n = 3),201 

and in face-lift procedures (n = 9).202 CAL is effective, safe, and potentially superior to 

conventional lipoinjection or fat grafts. Compared to autologous fat grafts, grafts 

supplemented with ADSCs underwent less resorption when assessed by CT in patients with 

hemifacial atrophy.198 An RCT (n = 20) comparing autologous fat grafts with CAL found 

patients receiving CAL required no further treatments, whereas those receiving fat grafts 

required multiple treatments.203 The micro-RNA21 in ADSCs has been found to be 

regulated by EGF, and addition of EGF can therefore increase proliferation and inhibit the 

apoptosis of ADSC.204 These preliminary studies thus suggest that ADSCs improve 

retention capabilities of transplanted fat in a minimally invasive therapy for facial tissue 

deformity. The efficacy of ADSC-based adipose TE treatments, however, remains to be 

evaluated for safety and efficacy in large randomized double-blind controlled trials. The 

FDA considers autologous ADSCs to be a “drug” because collagenase enzyme is used to 

separate the ADSCs from lipoaspirates, and CAL-based therapies therefore require complete 

regulation.205 The 2 major limiting factors in facial CAL include lack of cell survival and 

vascularization.206

PERIPHERAL NERVES

The facial nerve is susceptible to injury during parotid tumor surgery, trauma, and petrous 

bone surgery, or may be congenitally absent. Facial nerve defects can lead to functional 

movement deficits and facial asymmetry, which can significantly affect quality of life. When 

primary nerve end coaptation is not possible, autografting is the criterion standard surgical 

reconstruction,207 but is limited by availability of donor nerves and the morbidity associated 

with grafting, such as scarring, infection, and pain. Neuronal TE has been increasingly used 

in preliminary studies to regenerate the facial nerve (Fig. 6). The cells used in neural TE 

include neural stem cells (NSCs) which are able to promote nerve regeneration in animals,
208 but are difficult to isolate. Instead, BMSCs209 and ADSCs210 can be transdifferentiated 

into cells similar to Schwann cells which provide trophic, structural, and directional support 

to regenerating axons in the peripheral nervous system. BMSCs and ADSCs secrete trophic 

factors and are able to produce myelin-forming which can establish the supportive 

microenvironment for nerve regeneration.211,212 ADSCs express genes that belong to the 
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glial phenotype and are responsible for neuron metabolism and function,213 and their 

secretome includes neurotrophic factors such as nerve GF (NGF), glial cell line-derived 

neurotrophic factor (GDNF) and brain-derived neurotrophic factor.214,215 A number of 

animal studies have used ADSCs, BMSCs, or dental pulp cells to promote regeneration of 

the facial nerve.216–224 Uncultured stromal vascular cells seeded onto nerve conduits 

extending from the facial nerve were able to promote more nerve regeneration in rats than 

the nerve conduit alone.225 Gene therapy has shown promise as a means of enhancing neural 

regeneration by promoting overexpression of neurotrophic factors, but durable 

improvements in functional outcomes and the consequences of vector-mediated gene 

delivery remain unknown.226 Biomaterial scaffolds can guide axon regeneration.227 The 

nerve conduits are designed as cylindrical tubes with internal channels or matrices, 

constituting porous walls to guide regeneration. Different material conduits (glasses, 

collagen, PGA) have been used,228 and cells or bioactive agents can be incorporated. In 

studies on facial nerve regeneration, the GF employed basic FGF, delivered using acidic 

gelatin hydrogel microspheres to enhance its half-life,229 GDNF,216 and NGF.222 Methods 

to improve delivery and bioavailability are needed.230 Translational studies are required as 

considerable optimization of these therapies will be required for their potential to realize in 

their clinical potential.228

BLOOD VESSELS

Sufficient vascularization is a challenge common to all engineered tissues, except cartilage 

which is avascular, and becomes especially important when using 2D or 3D constructs.231 

Scaffold microarchitecture significantly influences the ability of engineered tissue to become 

vascularized. Scaffold pore sizes of 150 to 500 mm are recommended to support 

vascularization and blood vessel invasion.232 Another option is co-transplantation of 

endothelial progenitor cells (EPCs) with MSCs which has shown to improve vascularization 

of bone and muscle. In critical-sized bone defects in animals, co-transplantation of EPCs and 

MSCs improved vascularization and was associated with increased release of VEGF.233–235 

Alternatively, vasculogenic and stimulatory ligands, such as VEGF and erythropoietin, can 

be added to synthetic scaffolds, to encourage neovascularization post-implantation.236 In 

bone scaffolds, controlled release of VEGF from scaffolds can induce a more organized 

vasculature compared to the vasculature associated with uncontrolled VEGF release.237 

Despite these options, vascularization of large TE constructs remains a major limiting factor 

for organ engineering. The concept of axial vascularization may provide a promising 

strategy to overcome this challenge in the future. Axial vascularization of TE constructs may 

be provided by the principles of prelamination238 and prefabrication.239 Prelamination 

involves the implantation of a nonvascularized TE construct into a highly vascularized 

territory (eg, a flap) which then serves to create an axially vascularized unit suitable for free 

transplantation via its pedicle. Warnke et al240 showed that axially vascularized flaps may 

serve as an “in vivo bioreactor” for ex vivo engineered bone constructs. For mandibular 

reconstruction after cancer resection, they loaded a computer-designed custom titanium 

mesh with HA blocks coated with recombinant human bone morphogenetic protein-7 and 

bone marrow-derived MSCs. Using the principle of prelamination, the construct was 

implanted into the patient’s latissimus dorsi muscle for a period of 7 weeks to promote 
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heterotopic bone growth and vascularization from the thoracodorsal artery before successful 

inset into the bony defect.240,241

Prefabrication of TE constructs is achieved by implantation of vascular pedicles, such as 

arteriovenous (AV) bundles or AV loops, thus enabling the vascularization of bone or soft-

tissue constructs, which then can be transplanted into distant defect areas.242 This technique 

has shown promising results for mandibular reconstruction in large animal models.243

CHALLENGES AND LIMITATIONS

Despite the significant progress in techniques of TE/RM in recent years, there are still 

considerable challenges, which have to be addressed before successful translation into 

routine clinical applications can be achieved. Although a combination of different cell types, 

GFs, and scaffolds builds the foundation of many promising TE approaches, the successful 

vascularization of TE constructs remains a major limiting factor for TE of large volumes or 

whole organs. As adequate perfusion is a crucial determining factor for the development and 

host integration of TE constructs, the translation of TE concepts into clinical applications 

depends on the success of future strategies to improve vascularization.

A further limitation which remains to be systematically analyzed in future studies is the 

oncologic safety of the components used for tissue engineering approaches such as GFs, cell 

types, and scaffolds. Especially for ADSCs, which may be a potential treatment strategy for 

defect reconstruction following oncologic resection or irradiation, oncologic safety concerns 

have been raised. ADSCs used in CAL may promote tumor growth and recurrence through 

stimulatory paracrine actions with in vitro and in vivo animal studies suggesting a 

prooncologic effect of ADSCs.244 To date, only few studies have investigated the use of 

ADSCs in craniofacial reconstruction of congenital anomalies200 and long-term data on 

oncologic safety are not available.

Functional reconstruction of tissues or organs is a further limitation of TE/RM. Owing to 

missing dermal appendages like sebaceous glands, hair follicles, as well as neurovascular 

structures, skin substitutes are yet unable to recreate fully functional skin layers. Substantial 

progress is still needed in all areas of TE, to translate functional TE applications from bench 

to bench side.

The conclusions that can be drawn from the current literature are limited variations in study 

methodology regarding the nature of cells, different scaffolds, and defect characteristics. 

Future more standardized comparative studies are needed to identify cell types, scaffolds, 

and GFs with high effectiveness for certain clinical scenarios.

FUTURE PERSPECTIVES

Recent technologic advances which have been proven to be particularly valuable to the field 

of craniofacial reconstruction are 3D printing of biomaterials and nanotechnology.

3D printing is a rapidly emerging technology which enables the organization of a template 

into an appropriate 3D structure using computer-enabled printers and has the potential to 
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replace more complicated processes of template fabrication in TE. In craniofacial 

reconstruction, the use of 3D printing for calvarial bone TE can produce porous structures 

with superior interconnectivity and fabricate custom templates for calvarial bone defects 

with specific anatomic shapes.245 Published case series in human patients have shown high 

success rates with a limited number of complications despite being of high methodological 

bias.246

The use of nanomaterials such as nanoparticles, nanotubes, or nanofibers has been shown to 

improve mechanical properties of scaffolds, increase cellular attachment, and facilitate tissue 

regeneration. Several studies have shown improved biomechanical and biochemical 

properties of nanomaterials highlighting a great potential for TE in various tissues of the oral 

and maxillofacial region. With the risk of potential accumulation of nanomaterials in 

different organs, reliable dose-response and toxicity evaluation techniques, however, are 

urgently needed before routine clinical applications can be conducted.247,248

CONCLUSION

In craniofacial reconstruction and facial esthetic surgery current concepts of TE and RM 

provide strategies for reconstruction of several tissue types such as bone, cartilage, soft 

tissue, nerves, and blood vessels to treat congenital or acquired defects. Significant advances 

have been made and the results of preclinical and clinical studies are encouraging, however, 

differences in study methodology limit the conclusions that can be drawn and clinical 

translation. Early clinical success has been demonstrated with TE of bone and cartilage and 

experimental results for soft tissue reconstruction are promising. Larger and more systematic 

studies are required to determine the most effective cell types, scaffold characteristics, and 

delivery methods before TE and RM principles in craniofacial surgery can be brought from 

bench to bedside. Further advances will be possible through interdisciplinary collaboration 

between the fields of molecular biology, polymer chemistry, molecular genetics, materials 

science, robotics, and mechanical engineering.
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FIGURE 1. 
The process of tissue engineering/regenerative medicine.
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FIGURE 2. 
Skeletal tissue engineering.
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FIGURE 3. 
Facial cartilage tissue engineering.
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FIGURE 4. 
Skin tissue engineering.
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FIGURE 5. 
Facial adipose tissue engineering.
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FIGURE 6. 
Facial nerve tissue engineering.

Borrelli et al. Page 32

J Craniofac Surg. Author manuscript; available in PMC 2020 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	BONE
	CARTILAGE
	SKIN
	ADIPOSE TISSUE
	PERIPHERAL NERVES
	BLOOD VESSELS
	CHALLENGES AND LIMITATIONS
	FUTURE PERSPECTIVES
	CONCLUSION
	References
	FIGURE 1.
	FIGURE 2.
	FIGURE 3.
	FIGURE 4.
	FIGURE 5.
	FIGURE 6.

