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Several congenital disorders can cause end stage bladder disease and possibly renal

damage in children. The current gold standard therapy is enterocystoplasty, a bladder

augmentation using an intestinal segment. However, the use of bowel tissue is associated

with numerous complications such as metabolic disturbance, stone formation, urine

leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder

tissue would obviate the need for bowel for bladder reconstruction. Despite impressive

progress in the field of bladder tissue engineering over the past decades, the successful

transfer of the approach into clinical routine still represents a major challenge. In this

review, we discuss major achievements and challenges in bladder tissue regeneration

with a focus on different strategies to overcome the obstacles and to meet the need for

living functional tissue replacements with a good growth potential and a long life span

matching the pediatric population.

Keywords: myelomeningocele, neurogenic bladder, bladder augmentation, tissue engineering, stem cells,

pediatric

INTRODUCTION

Congenital disorders such as posterior urethral valves, bladder extrophy, and neurogenic bladder
result in reduced bladder capacity, impaired compliance, incontinence, and possibly renal damage.
Despite decades of experience in the management of end stage bladder disease, current therapy
options are not curative. Enterocystoplasty—bladder augmentation using an intestinal segment—
is the gold standard therapy if medical management fails. However, it is associated with severe
complications, including metabolic disturbances, stone formation, urine leakage, and chronic
infections owing to the inherent absorptive and secretory properties of the gastrointestinal
segments (1–3). Given the limited success and high morbidity with current treatment options,
tissue engineering (TE) has been considered as a novel treatment approach. The regeneration of
bladder tissue derived from the patient’s own cells may represent an attractive option particularly
for patients of pediatric urology. The pediatric population presents several opportunities for the
application of TE, as the regenerative capacity is significantly greater in infants and children
than in adults. However, the specific needs of the pediatric population, primarily the need for
living functional tissue replacements with a good growth potential and a long life span need to
be addressed.

First attempts to replace bladder tissue by synthetic materials were performed in the 1950s,
where plastic urinary bladder substitutes were implanted into patients (4, 5). The first biomaterials
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used for reconstruction of the urinary bladder for clinical
applications were gelatin sponge (6, 7), cellular collagen
biomatrix (8) resin sprayed paper (9), bovine pericardium (10),
and dura (11). However, due to unsatisfactory postoperative
results this technique was suspended.

The urinary bladder possesses a unique anatomy, allowing
for repetitive expansion, and contraction and withstanding
the urine pressure. Furthermore, the bladder is lined with a
highly specialized multilayer epithelium, the urothelium, which
acts as a tight urine barrier (12). The complexity of this
structure poses a challenge for regenerative medicine. During
the last two decades, TE has become a rapidly growing field
of research in biotechnology and medicine. It is driven by
the fascinating idea of generating autologous tissue substitutes
for the treatment of tissue defects and organ failure. Several
animal studies have shown promising results in bladder TE. The
concept of TE involves the integration of various interacting
components: the applied cells need to be held together by a
tridimensional scaffold which provides the shape and initial
mechanical strength, and molecular signals need to induce
tissue regeneration in vivo. There are two common approaches
in bladder engineering. The acellular approach includes the
use of natural or synthetic biomaterials to enhance the body’s
natural growth to regenerate and repair itself (13). In the
cellular approach, the removed donor tissue is dissociated into
individual cells, either mechanically and by enzymatic digestion.
Subsequently, the functional cells are either directly implanted
into the host or seeded on a suitable biomaterial after expansion
in culture and thereafter implanted into a non-functional site of
the bladder (14).

Several cell based approaches (15–17) in different animal
models (18–20) were successful with the formation of native
tissue-like epithelialization and progressive muscle and blood
vessel formation (21). Atala’s group created engineered bladder
tissue in a canine model using autologous cells and showed
functional and anatomical characteristics of a normal bladder
(3, 22). In a first clinical study human bladder was engineered
for patients (aged 4–19 years) with end-stage bladder disease by
isolating patient’s autologous bladder urothelial and muscle cells,
expanding the cells in vitro, and seeding them on a biodegradable
collagen-polyglycolic acid scaffolds. The implanted composite
engineered bladders were reported to show sustainably improved
functional parameters (23). However, the majority of treated
patients did not achieve good bladder capacity and compliance,
but developed fibrosis of the artificial bladder wall. A recent
phase II study (24), using an autologous cell seeded biodegradable
composite scaffold for augmentation cystoplasty in children with
spina bifida did not provide improved bladder compliance or
capacity. Even though these two clinical trials were similar
in design and used the same cell types, the differences in
cell number, type of biomaterial, or surface area grafted
and type of surgery might have influenced the outcome.
To date, clinical translation has failed to establish a reliably
effective treatment. Various hurdles such as early tissue
fibrosis, lack of vascularization, insufficient urine barrier
and inadequate contractibility are challenges encountered in
regenerative medicine (25, 26). In this review, we discuss the

major achievements and challenges in bladder tissue regeneration
and focus on different strategies to overcome obstacles.

CELLULAR APPLICATION IN
TISSUE ENGINEERING

Autologous cells are a perfect match for bladder engineering as
they don’t provoke inflammation and immune rejection, which
are adverse effects of non-self donor cells. They can be derived
from bladder tissue or from stem cells of another origin, such
as the bone marrow or adipose tissue, however research in
this regard is still less advanced (Table 1). Urinary bladder is a
hollow organ composed of smooth muscle, urothelium, lamina
propia, extracellular matrix, nerves, and vessels. Since detrusor
muscle and urothelium represent the main properties of the
bladder, the main focus of attention for bladder engineering
was directed toward cells originating from these two tissues.
Normal human bladder urothelium and muscle cells have been
isolated from biopsies, expanded in culture, and characterized
regarding differentiation characteristics and other biological
functions (15, 42–44). The successful use of autologous cells
for human bladder engineering derived from patients with end-
stage bladder disease was shown by Atala et al. (23) and Joseph
et al. (24). However, the use of autologous cells presupposes the
availability of viable cells devoid of any genetic defect within
the damaged or diseased tissue. In case of infection, altered
tissue composition or malignancy, the adult autologous cells may
be abnormal. Moreover, biopsies can lead to several problems
including donor site morbidity, limited sample size, restricted
proliferation ability, and loss of contractile phenotype of the cells
during in vitro culture and expansion (45).

Smooth muscle cells (SMCs) play an important role in
the functionality of the bladder and both good proliferation
potential and contractile function are essential for successful
tissue regeneration. Unfortunately, even mature SMCs isolated
from healthy sources have shown limited proliferation capacity
and loss of the contractile phenotype followed by a change
to a synthetic form during in vitro expansion (45). The
phenotypic switch between a synthetic (proliferative) or
contractile (quiescent) but active phenotype can occur reversibly
and transiently in vitro and in vivo (46, 47). SMCs derived
from neuropathic bladders have been shown to retain their
pathological characteristics in vitro (48). Therefore, to overcome
these limitations, embryonic (27), adult, and induced pluripotent
stem cells (49) have been considered for bladder engineering.

In order to create clinically applicable engineered bladder
tissue using stem cells, distinct selection criteria such as
accessibility with minimal invasiveness, the ability to yield
large number of cells in a limited time frame, only minor
changes during in vitro culturing, reproducibility with a high
differentiation potential are mandatory. Therefore, the type and
quality of stem cells for bladder engineering are critical factors.

Embryonic stem cells (ESCs) can be isolated from the
blastocyst inner cell mass. They are pluripotent cells with
the ability to differentiate into any cell type and with an
unlimited expansion potential in vitro (50, 51). Recently, ESC
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were differentiated to mesenchymal like stem cells (MSCs) by
differentiation with growth factor cocktails and supporting feeder
cells (OP9) (52). ESC can be induced to become SMCs under
retinoic acid treatment, expressing SMC gene markers (53–55).
Therefore, they are a valuable tool to study the differentiated
SMC and to test their response to therapeutic agents. In a
recent study using a rat model, MSCs derived from human ESCs
were shown to more effectively improve the contractile function
and the potential to repair the histological injury in interstitial
cystitis/bladder pain syndrome than adult bone-marrow derived
cells (56). The co-culture of human ESCs with bladder SMCs and
urothelium seeded on porcine small intestinal submucosa (SIS)
generated viable grafts in vitro (27). In a follow up study, the same
construct was used to augment a previously injured rat bladder,
resulting in an improved regeneration of the ESC-seeded graft
compared to unseeded SIS (28). However, several safety issues
such as the formation of teratoma, potential immune reactions,
and the risk of differentiating into unwanted cell types limit their
applicability for bladder engineering.

The ability of adult stem cells to differentiate and self-renew
makes them a suitable source for bladder engineering. The adult
stem cells can be isolated from virtually every tissue and organ
type in mammals (57). Several adult stem cell types with different
availabilities are currently used for bladder bioengineering,
including adipose derived stem cells (ADSCs) (58), bone marrow
stem cells (29), endometrial cells, menstrual blood cells and urine
derived stem cells (UDSCs).

Human ADSCs have several advantages in TE applications
due to their mutipotency, ease of access and high proliferative
potential. They can be isolated either from subcutaneous fat
tissue biopsies or by liposuction; both procedures are less invasive
and painful than bone marrow aspiration. Human ADSC have
surface antigens similar to MSCs derived from human bone
marrow stromal cells (58). Several studies have shown efficient
differentiation of ADSCs to SMCs and urothelial cells when
placed in specific induction media (59–61). In a rat model,
Jack et al. (30) delivered human processed lipoaspirate cells into
the bladder and urethra. The cells remained viable for up to
12 weeks, showed evidence of incorporation into the recipient
smooth muscle and differentiated with time (30). Enhanced
bladder architecture and function was observed in small animal
models upon ADSC injection (62) or in combination with an
acellular scaffold (63). Moreover, in another study on a rat model,
bladder acellular matrix (BAM) seeded with ADSCs showed
enhanced detrusor muscle and neuronal regeneration, as well
as improved bladder capacity (40). Furthermore, human ADSCs
were differentiated into SMCs with smooth muscle inductive
media and grown on PLGA scaffolds in a athymic rat model
for bladder regeneration. The organ bath results demonstrated
smooth muscle contraction of the seeded implants but not the
acellular implants after 12 weeks in vivo (32). Moreover, human
mature adipocyte derived cells could be differentiated into SMCs
and contribute to the regeneration of the bladder wall (33).

Bone marrow derived MSCs (BM-MSCs) or stromal cells
possess a self-renewal capacity and a potential to differentiate
into the myogenic lineage. They are easily isolated due to
their tendency to readily adhere to plastic culture dishes (64).

Upon induction with TGF-beta1, they can differentiate to
SMC, characterized by the expression of specific contractile
proteins including alpha-SMA, calponin and SM-MHC (65).
In some studies, BM-MSCs were evaluated as an alternative
to bladder SMCs when healthy bladder tissue was unavailable
(31). An in vivo study in a rat model showed that amniotic
membranes seeded with BM-MSC could regenerate detrusor
muscle and urothelium in the bladder wall but with no proper
urinary bladder function (35). In a similar study performed
by Chung et al., BM-MSCs seeded on SIS showed rapid
cellular regeneration of bladder constituents morphologically,
presenting a possible solution to overcome the fibrosis occurring
in unseeded SIS bladder augmentations (29). A similar study in
a canine hemicystectomy model using BM-MSC seeded SIS for
augmentation demonstrated effective bladder regeneration with
solid smoothmuscle bundles throughout the graft (31). Although
a few studies showed formation of smooth muscle using BM-
MSCs in preclinical studies, its clinical application in bladder
engineering is limited, due to the low isolation yield, difficulties
in harvesting and expansion, and last but not least the painful
collection procedure.

BIOMATERIALS

The complex anatomy and function of the urinary bladder pose
unique challenges for the selection of scaffolds, cell types and
cell sources for its bioengineering. The scaffold plays a key
role in tissue regeneration and in re-establishing the biological
function of the bladder tissue. Among the characteristics of
the biomaterial determining the success of tissue regeneration
are biocompatibility, biodegradability and scaffold architecture
(66). In addition, an ideal scaffold for bladder TE should
provide a microenvironment that promotes cell adhesion and
a tissue organization similar to the native tissue (3, 67–71).
Furthermore, the construct should serve as a barrier to urine,
to protect the underlying tissue from the cytotoxic urine (72–
74). It should display appropriate mechanical properties to
sustain the mechanical forces necessary for bladder filling and
emptying. Furthermore, the scaffold must be biodegradable at
the proper rate to optimize integration into the bladder without
triggering inflammation and foreign body reaction (70, 75). A
special challenge ensuring regeneration and long term survival
of the tissue in vivo is an adequate vascularization allowing for
adequate oxygenation and nutrition of the regenerating tissue
(76, 77). Scaffold materials for urologic tissue regeneration that
are currently being investigated and have shown promise in
clinical applications are mainly naturally or artificially derived
biodegradable materials.

Acellular matrices are chemically and mechanically
decellularized matrices such as BAM (78) and porcine SIS
(79, 80). These collagen-based scaffolds have the advantage to
maintain inherent bioactivity and feature the tridimensional
architecture of the native tissue (81). The acellular matrices have
been applied both preclinically (22, 79, 82, 83) and clinically
(8, 84) with different outcomes (8, 23, 85). Major disadvantages
of natural acellular matrices are the variability in physical and
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biochemical properties among batches (86, 87), the alterations
of the physiological environment due to decellularization and
sterilization processes (71, 88) and the possible triggering of an
immune response (83, 89).

Similar to acellular matrices, naturally-derived polymers like
collagen or silk, produced in a number of configurations and
densities, provide distinct properties mimicking the structural
and mechanical properties of native tissue extracellular matrix
(ECM) while being biodegradable. They have shown great
promise in a number of models of TE for regenerative medicine
in numerous medical applications (90–96).

Collagen Type I, a ubiquitous structural protein, has been
studied extensively as a possible scaffold in soft tissue TE
applications (97). Collagen has already been approved by the
FDA (Food and Drug Administration). It is bioactive, does not
provoke immune responses and can easily be extracted from
animal and human tissues (90, 92). However, hydrogel scaffolds
from collagen offer only limited mechanical strength and
different methods such as crosslinking (98), ultracentrifugation
(99), or evaporation methods (100) are needed to produce
high concentration collagen scaffolds. More recently plastic
compression of the collagen hydrogel has been applied in
different fields of TE and regenerative medicine e.g., for urinary
bladder regeneration (92, 93). In this cell-independent technique
developed by Brown et al. (101) and (102), excess water of the
collagen hydrogel is removed via mechanical compression. This
enables the fabrication of denser and stronger 3D nano- and
micro-scale structures as compared to conventional gels (101).
Promising preclinical results with compressed collagen scaffolds
in TE suggest a potential for these constructs to be used as
scaffolds for bladder tissue regeneration (92).

Silk fibroin (SF), another naturally derived material, has been
proposed as biomaterial for soft tissue engineering owing to its
versatility and biocompatibility (91, 103). Derived from Bombyx
mori cocoons, this protein based polymer addresses many of the
mechanical characteristics required for urologic TE applications
(91, 96). Preclinical research involving SF scaffolds in urinary
tissue regeneration has been encouraging as robust regeneration
of smooth muscle and urothelium have been demonstrated (94,
95). SF scaffolds in combination with seeded bladder or mucosal
cell populations are a promising strategy for engineering of
functional urethral tissues (96).

Synthetic polymers are rapidly gaining ground as scaffold
materials. In urologic TE, biodegradable synthetic biomaterials
with appropriate mechanical properties for soft tissue
regeneration such as poly (lactic-co-glycolic acid) (PLGA),
polyurethane (104, 105), and poly(ε-caprolactone)/poly (L-lactic
acid) (PCL/PLLA) (106) have found their application. Their
main advantage is the manufacturing process which allows
for suitable features of micro-nanostructure, strength and
degradation in a constant quality and even on a large scale.
Problems related to tissue harvesting are avoided with the use
of these materials. However, none of these materials convinced
in vivo. Disadvantages of synthetic polymers are their biological
inertness and the lack of the molecular signals that are relevant
for directing cell activity and fate. Furthermore, they can
induce foreign body reaction, and degradation may produce

acidic byproducts that may affect the local microenvironment
of the regenerating tissue, causing inflammation and cell
death (107, 108). Unfortunately, no single biomaterial or
cell source provides all the desirable properties for successful
urological tissue regeneration. Current technologies in bladder
TE have been hampered by an inability to efficiently initiate
blood supply to the graft, ultimately leading to complications
that include graft contraction, ischemia, and perforation.
These deficiencies therefore necessitate the evaluation of new
strategies combining the gained knowledge to closer fulfill
these requirements.

STRATEGIES TO SUCCEED

The reason for tissue engineering a whole or partial bladder is to
be able to deliver a functional substitute. Since the bladder wall is
subjected to mechanical forces during filling and emptying cycles
(109) selection criteria for cells and biomaterials are specific.
Furthermore, in the pediatric population, a living functional
tissue replacement with a good growth potential and a long
life span is of main concern. To this end, the use of adult
stem cells is given the most attention. Ideal stem cells need
to be accessible with minimal invasiveness, have the ability to
expand in a short period, and maintain a stable phenotype,
while not changing during in vitro culturing but having a high
differentiation potential. Therefore, the type, quality and quantity
of stem cells for bladder engineering are critical factors.

Besides the already mentioned ESC (110), ADSC (58),
and BM-MSCs (29) an other suitable stem cell candidate for
urological tissue reconstruction are USCs. They can be isolated
from voided urine within 24 h after urine collection (34, 111).
USCs show MSCs characteristics and can be differentiated
to SMCs, expressing all SMC lineage specific markers (111)
with contractile function comparable to native SMCs (112).
Originating in the urinary tract system, USCs are suggested as a
good stem cell source for bladder TE with the benefits of simple,
safe, low-cost and non-invasive collection technique (34). It was
demonstrated that a USCs can differentiate in porous bacterial
cellulose scaffolds, which may assist in the development of an
engineered urinary conduit (34). Furthermore, it was shown
that human USCs seeded scaffold-heparin-bFGF grafts improved
biocompatibility, increased bladder capacity and compliance, as
indicated by smooth muscle and urothelium layer in a partial
cystectomy rat model (39).

In addition, a few studies showed that endometrial stem cells,
which are of mesenchymal origin, can differentiate to SMCs
and are suitable for bladder engineering (113). These cells can
be harvested from the endometrium by two methods: either
by an endometrial biopsy from the uterus or by collection of
menstrual blood. In contrast to bone marrow and adipose tissue
cells, for which at least a local anesthesia is required, these
cells can be harvested without any anesthetic procedure (114).
Furthermore, endometrial stem cells could also differentiate into
urothelium using keratinocyte and epithelial growth factors,
and in combination with 3D-silk-collagen they could serve as
a suitable scaffold for building urinary bladder wall in females
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(115). However, endometrial-derived stem cells have not yet been
used in any in vivo study.

Recent reports have shown that induced pluripotent stem cells
(iPSCs) may answer the need for alternative cell sources for
bladder regeneration. The iPSCs are reprogrammed, terminally
differentiated somatic cells which have developed ESC-like
cells characteristics following expression of various pluripotency
transcription factors (116). Theoretically, iPSCs can produce
an unlimited number of differentiated cells for autologous cell
therapies (117). With this approach a patient’s cells may be
directed to become iPSCs and subsequently to differentiate
and repair tissue. However, safety and efficiency is still under
investigation. SMCs generated from iPSCs were shown to
acquire contractile features and express contractile proteins
(118, 119). Moad et al., for the first time, generated iPSCs
derived from human urinary tract cells (bladder and ureter)
which offers a potential for bladder engineering and in vitro
studies (49). However, there are continuing concerns regarding
induction of tumors by iPSCs. Currently discussed solutions
include modifications in induction methods toward virus-free,
transgene-free reprogramming and xeno-free systems (120, 121).
In addition, the use of iPSCs requires an appropriate protocol
for efficient in vitro differentiation, and in order to address safety
issues its effect should be tested in vivo.

Current studies have shown that autologous cells in
combination with biomaterials are the best options for bladder
engineering. In addition, the construction of a three-dimensional
scaffold in vitro before in vivo implantation would facilitate the
terminal differentiation of the cells in vivo. The optimization
techniques such as co-culture of different cell types and
predifferentiation before implantation showed improved cells
survival in vivo (122). Son et al. demonstrated that human
dental pulp stem cells co-cultured with bladder derived SMCs
or in a SMCs-conditioned medium with the addition of the
transforming growth factor beta 1 (TGF-β1) can differentiate
efficiently into bladder specific SMCs. This approach can
be used as a less invasive alternative to harvest stem cells
for smooth muscle regeneration and for bladder engineering
(123). De-differentiation of SMCs from a contractile phenotype
to a synthetic phenotype, which is characterized by SMCs
hypertrophy and fibrosis is a known problem in bladder
engineering. Methods to maintain the cell phenotype include
cell culture microenvironment, the use of growth factors, the
optimization of biomechanical and surface properties of the
biomaterials and mechanical stimulation (47, 124).

The fabrication of hybrid or composite scaffolds consisting of
at least two different biomaterials ideally allows the combination
of the positive characteristics of the different compounds and
even to develop new biomaterials with a wider range of
physicochemical properties (36, 71). The use of hybrids of BAM
and synthetic polymers has been described by our own group
among others. We developed a bilayered scaffold by direct
electrospinning of PLGA (36, 38) or Polyurethan microfibers
(41) onto the luminal side of a BAM and demonstrated,
that these scaffolds seeded with bladder SMCs supported the
regeneration of a multi-layered bladder wall consisting of
urothelium, lamina propria, and detrusor muscle resembling

native control bladder in rats. Ajalloueian et al. combined
CC hydrogels with electrospun PLGA sheets and studied the
effect of different fibrillary densities on fibroblast performance
(125). They showed that by decreasing the collagen content of
CC hydrogel, not only a better cell environment and optimal
mechanical properties are achieved, but also the application costs
of this biopolymer are reduced. Another method to combine the
physical properties of synthetic polymers with the biochemical as
well as molecular characteristics of naturally derived scaffolds is
the blending of natural and synthetic polymers as for example
described by Moshfeghian et al. (126). They evaluated the
formation of chitosan–PLGA blend matrices using controlled-
rate freezing and lyophilization technique. By altering the
freezing conditions they were able to control pore morphology
and degradation kinetics of the scaffold with a positive influence
on SMC spreading and colonization in vitro. Franck et al.
produced a silk-based biomaterial coated with ECM (collagens or
fibronectin), blending more than one naturally derived polymer
to synthesize scaffolds for bladder tissue engineering (119).
This composite scaffold was shown to be biocompatible and to
support primary cultures of bladder UC, SMC, and pluripotent
stem cell adhesion, proliferation, and differentiation. Such
approaches can be adapted to a number of characteristics that
are appropriate for bladder augmentation including mechanical
properties, permeability, pore size, degradation characteristics,
and biological activity (71).

The concept of natural self-assembly of cells differs from all
other TE techniques that use pre-formed synthetic scaffolds.
This innovative scaffold-free technique relies on the ability of
cells to produce and assemble their own ECM (127). Initially
introduced for skin TE (128), this approach also enabled the
reconstruction of other tissues such as blood vessel, heart valve,
cornea, adipose tissue, vaginal mucosa, and urinary tissues (129).
In a recent study, Orabi et al. were able to produce a multi-
layered construct with histological and molecular properties
similar to native tissue in vitro. For this approach, they used
bladder-specific stromal cells from the lamina propria co-
cultured with UCs or SMCs (130). However, the self-assembly
technique still needs to be investigated for urologic tissue
regeneration in vivo.

To improve the outcome of bladder regeneration, scaffolds
can be functionalized with growth factors, creating a
microenvironment that simulates the integration of the
tissue engineered constructs (131, 132). Physiologically, growth
factors are components of the ECM, which are actively released
after injury. They play a crucial role in tissue repair and the
prevention of fibrosis. The therapeutic use of recombinant
growth factors is based on the hypothesis that through
appropriate signaling they induce and/or accelerate the healing
process. Several growth factors have been identified as important
in the development of functional urological tissue (133),
mainly vascular endothelial growth factor (VEGF) and nerve
growth factor (NGF) (134, 135). The use of VEGF alone or
in combination with NGF resulted in improved bladder wall
regeneration and angiogenesis (134–136). When using stem
cells, the presence of appropriate growth factors is essential for
cell differentiation (137, 138). In most cases, incorporation of
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biologically active molecules into the scaffold material has been
aimed at rapid restoration of vascular networks tomaintain tissue
viability and long-term survival. Growth factors are considered
to be critically important modulators during all phases of tissue
regeneration (71). To provide an effective delivery of growth
factors, some challenges must be overcome. Because of the
high instability of growth factors in vivo, various slow-release
devices of natural, synthetic and composite materials have
been designed (139, 140). Biomaterials with degradable porous
reservoir structures or pre-encapsulated microspheres have
been used to control effective targeting (141). For an effective
long-term delivery, growth factors can be encapsulated in
biodegradable polymers, such as poly(lactic-co-glycolic acid)
(PLGA) or poly-L-lysine (PLL) (142, 143). Those systems are
designed to release the loaded protein in a sustained manner
following the degradation of the polymer. To improve the
controlled delivery, Layman et al. developed ionic-albumin
microspheres that allow the time-controlled release of two
growth factors (144).

Nanoparticles have not only been used for controlled delivery
of bioactive molecules and growth factors, in TE they have
been used in order to improve the mechanical and biological
performance of the regenerated tissue (145). For example
nanoparticles can play a vital role in enhancing the mechanical
properties of the scaffold as shown in skin TE, where the tensile
strength of collagen or silk fibroin was improved by using
TiO2 (146) or hydroxyapatite nanoparticles, respectively (147).
Furthermore, nanoparticles can mimic the natural nanostructure
of ECM components of tissues, and therewith influence cellular
activities such as adhesion, growth and differentiation of stem
cells (148, 149). Although the use of nanoparticles recently
made an enormous progress, in vivo experimentation to
verify the successful results from in vitro studies (150) are
still needed.

The establishment of a functional vascularization represents
one of the major challenges for the implementation of TE
applications in clinical practice. The survival of larger and
complex tissue substitutes after implantation depends on the
rapid development of an adequate vascularization. Furthermore,
vascularization is a major prerequisite for a complete restoration
of organ structure and functionality. Classical approaches to
promote vascularity in tissue substitutes focus on the stimulation
of vascular ingrowth into tissue constructs by optimizing the
material properties of scaffolds (38, 151, 152) or by enriching
implants with proangiogenetic factors (153–155). A promising
approach is the incorporation of growth factors which can be
released in a time-dependent manner at the implantation site.
Therefore, various slow-release devices of natural, synthetic, and
composite materials have been designed (156, 157). An additional
approach to supply growth factors is the use of transfected cells,
which overexpress angiogenic factors (158).

Prevascularization of tissue constructs with networks of
capillaries aims to accelerate functional anastomosis with host
tissue upon implantation. In vitro prevascularization of thicker
constructs and the connection to the host vasculature in vivo
is essential to guarantee immediate supply to the cells within
the construct. These requirements determine the success of the

applied transplant (158, 159). However, angiogenesis in a large
avascular graft in vivo does not occur fast enough to avoid
hypoxic conditions (160). This innovative approach basically
aims at the generation of preformed microvascular networks
in tissue constructs prior to their implantation by co-culturing
endothelial cells (ECs) with supporting cells (161). The co-culture
approach is the most biomimetic option, which can be achieved
by growing ECs with mural cells, such as fibroblasts (162) or
SMCs (163) or MSCs (164). Also the self-assembly technique
showed promising results with endothelialized substitutes for
skin (165) and urethral reconstruction (37). After implantation,
these networks can then be rapidly perfused with blood by
inosculation with the surrounding host microvasculature (166)
or by surgical anastomosis of feeding and draining blood
vessels (167, 168). This enhances earlier vascularization of
the graft, thus potentially decreases the risk of ischemia,
necrosis and fibrosis and enhances graft regeneration and
thereby long term function. As the feasibility of engineering
blood vessels in bladder grafts becomes reality, inosculation
and prompt nourishment of grafts upon transplantation will
further potentiate the clinical use of bioengineered bladder tissue
(73). However, mimicking natural vascular architecture and
rebuilding microvascular networks in vitro is still challenging
and limits clinical applications. These promising achievements
lead to further advancement of these prevascularization concepts
and their adaptation to individual therapeutic interventions
will markedly contribute to a broad implementation of TE
applications in clinical practice.

OUTLOOK AND CLINICAL TRANSLATION

Urinary diversions made from engineered bladder tissue would
remove the need for bowel tissue for bladder reconstruction. An
off-the-shelf bladder tissue would revolutionize reconstructive
urology and would allow a substantial reduction in morbidity
and improve the long term outcome of bladder augmentation,
especially in the pediatric patient. With recent advances in
isolating, growing, and differentiating host stem cells, an
increased understanding of the cell niche required to maintain
the artificial tissue, and novel techniques for the generation of an
intact blood supply, it appears that the major elements for the
engineering of a functional bladder wall are achievable. Despite
impressive progress in the field of bladder TE over the past
decades, the successful transfer of these approaches into clinical
routine still represents a major challenge. Large animal trials are
necessary to confirm the applicability of the approaches in a
model similar to the growing human organism tomeet the special
needs of this patient group.

As discussed in this review there are several strategies to
overcome the hurdles of TE which lead to new approaches
in bladder regeneration. In order to improve the bladder
engineering for clinical application we suggest further
unifications of the strategies and approaches including a
collaborative effort of experts of different fields. With its
complex nature and distinct mechanical properties, the
development of a next generation bioengineered bladder
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tissue requires the combined knowledge and techniques of
material science and cell biology to be successful in future
clinical application.
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