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Abstract

Background: Over the last ten years, there has been explosive development in methods for measuring gene

expression. These methods can identify thousands of genes altered between conditions, but understanding these

datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to

associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and

to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does

not include anatomical information.

Results: We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a

website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its

verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude.

We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in

WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify

tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated

due to pathogen infection in C. elegans.

Conclusions: Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using

Python’s standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and

provides users with a text and graphic representation of the results.
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Background
RNA-seq and other high-throughput methods in biology

have the ability to identify thousands of genes that are

altered between conditions. These genes are often corre-

lated in their biological characteristics or functions, but

identifying these functions remains challenging. To inter-

pret these long lists of genes, biologists need to abstract

genes into concepts that are biologically relevant to form

hypotheses about what is happening in the system. One

such abstraction method relies on Gene Ontology (GO).

GO provides a controlled set of hierarchically ordered

terms [1, 2] that provide detailed descriptions about

the molecular, cellular or biochemical functions of any

gene. For a given gene list, existing software programs

can query whether a particular term is enriched [3–6].
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One area of biological significance that GO does not

include is anatomy. One way to address this shortcom-

ing is to use a ‘tissue ontology’ that provides a complete

anatomical description for an organism (e.g.‘tissue’, ‘organ’

or ‘specific cell’), in this case for C. elegans. Such an

ontology has been described previously for this organ-

ism [7]. Cells and tissues are physiologically relevant

units with broad, relatively well-understood functional-

ities amenable to hypothesis formation. The C. elegans

database, WormBase [8], maintains a curated list of gene

expression data from the literature. Here we provide a new

framework that analyzes a user-input list for enrichment

of specific cells and tissues.

Another problem frequently associated with GO enrich-

ment analysis is that it is often difficult to interpret due

to the large number of terms associated with a given gene

(which we refer to as ‘result verbosity’). DAVID, a com-

mon tool for GO enrichment analysis, clusters enriched
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terms into broad categories [9], whereas PANTHER

[3, 10] attempts to solve this issue by employing a manu-

ally reduced ontology, GOslim (pers. comm., H. Yu and P.

Thomas). To reduce verbosity, we have filtered our ontol-

ogy using a small set of well-defined criteria to remove

terms that do not contribute additional information. To

our knowledge, such filtering has not been performed in

an algorithmic fashion for a biological ontology before;

indeed, DAVID does not employ term trimming a pri-

ori of testing, but rather fuzzy clustering post testing

to reduce the number of ontology terms. Other prun-

ing methods do exist (see for example [11, 12]), but the

pruning is query-dependent or generates a brand new

‘brief ontology’ which satisfies a set of logic relation-

ships and has certain connectivity requirements. We do

not propose to regenerate a new ‘brief ontology’, but

instead we use our approach to select those nodes that

have sufficient annotated evidence for statistical testing.

We believe our trimming methodology strikes a good

balance between detailed tissue calling and conservative

testing.

We have developed a tool that tests a user-provided

list of genes for term enrichment using a nematode-

specific tissue ontology. This ontology, which is not a

module of Gene Ontology, is verbose. We select nodes

from the ontology for statistical testing using an algo-

rithmic approach, outlined below, that reduces multiple

hypothesis testing issues by limiting testing to terms that

are well-annotated. The results are provided to the user

in a GUI that includes a table of results and an auto-

matically generated bar-chart. This software addresses a

previously unmet need in the C. elegans community for

a tool that reliably and specifically links gene expression

with changes in specific cells, organs or tissues in the

worm.

Results

Generating a gene-tissue dictionary by specific node

selection

Reducing term redundancy through a similaritymetric

For our tool, we employ a previously generated cell and

tissue ontology for C. elegans [7], which is maintained

and curated by WormBase. This ontology contains thou-

sands of anatomiy terms, but not every term is equally

well-annotated. As a first step to generate our tissue

enrichment software, we wished to select tissue terms that

were reasonably well-annotated, yet specific enough to

provide insight and not redundant with other terms. For

example, nematodes have a number of neurons that are

placed symmetrically along the left/right body axis, and

are functionally similar. These left/right neuronal pairs

(which are sisters in the ontology) have almost identical

annotations, with at most one or two gene differences

between them, and therefore we cannot have statistical

confidence in differentiating between them. As a result,

testing these sister terms provides no additional informa-

tion compared with testing only the parent node to these

sisters. To identify redundancy, we defined two possible

similarity metrics (see “Methods” section and Fig. 1a) that

can be used to identify ontology sisters that have very high

similarity between them. Intuitively, a set of sisters can

be considered very similar if they share most gene anno-

tations. Within a given set of sisters, we can calculate a

similarity score for a single node by counting the number

of unique annotations it contains and dividing by the total

number of unique annotations in the sister set. Having

assigned to each sister a similarity score, we can identify

the average similarity score for this set of sisters, and if

this average value exceeds a threshold, these sisters are not

considered testable candidates. An alternative method is

check whether any of the scores exceeds a predetermined

a) b) c)

Fig. 1 Schematic representation of trimming filters for an acyclical ontology. a The parent node (green) contains at least as many annotations as the

union of the two sisters. These two sisters share annotations extensively, as expressed by the overlap in the Venn diagram, so they qualify for

removal. b Nodes with less than a threshold number of genes are trimmed (red) and discarded from the dictionary. Here, the example threshold is

25 genes. Nodes ǫ , ζ , η, shown in red are removed. c Parent nodes are removed recursively, starting from the root, if all their daughter nodes have

more than the threshold number of annotations. Nodes in grey (ǫ , ζ , η) were removed in the previous step. Nodes α,β shown in red are trimmed

because each one has a complete daughter set. Only nodes γ and δ will be used to generate the static dictionary
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threshold, and if so remove this sister set from the ontol-

ogy. We referred to these two scoring criteria as ‘avg’ and

‘any’ respectively.

Terminal branch terms and parent terms can be safely

removed in an algorithmic fashion

Another problem arises from the ontology being scarcely

populated. Many nodes have 0–10 annotations, which we

consider too few to accurately test. To solve this issue,

we implemented another straightforward node selection

strategy. For a given terminal node, we test whether the

node has more than a threshold number of annotations.

If it does not, the node is not used for statistical test-

ing. The next higher node in the branch is tested and

removed recursively until a node that satisfies the con-

dition is found. At that point, no more nodes can be

removed from that branch. This completion is guaranteed

by the structure of the ontology: parent nodes inherit all of

the annotations of all of their descendants, so the number

of annotated terms monotonically increases with increas-

ing term hierarchy (see Fig. 1b). In this way, we ensure

that our term dictionary includes only those tissues that

are considered sufficiently well annotated for statistical

purposes.

Additionally, we reasoned that for any parent node

if all its daughters were selected for testing, there was

no additional benefit to test the parent. We removed

parent nodes from the analysis if all their daughter

nodes passed the annotation threshold (see Fig. 1c). We

called this a ceiling filter. Applying these three filters

reduced the number of ontology terms by an order of

magnitude.

Filtering greatly reduces the number of nodes used for

analysis

By itself, each of these filters can reduce the number of

nodes employed for analysis, but applying the filters in

different orders removes different numbers of nodes (not

all the filters are commutative). We chose to always exe-

cute annotation and similarity thresholding first, followed

by the ceiling filter. For validation (see below) we made

a number of different dictionaries. The original ontology

has almost 6,000 terms of which 1675 have at least 5 gene

annotations. After filtering, dictionary sizes ranged from

21 to a maximum of 460 terms, which shows the number

of terms in a scarcely annotated ontology can be reduced

by an order of magnitude through the application of a

few simple filters (see Table 1). These filters were used to

compile a static dictionary that we employ for all analyses

(see “Validation of the algorithm and optimizing param-

eter selection” section for details). Our trimming pipeline

is applied as part of each new WormBase release. This

ensures that the ontology database we are using remains

up-to-date with regards to both addition or removal of

Table 1 Parameter specifications and number of tissues for all

dictionaries

Annotation cutoff Similarity threshold Method No. of terms
in dictionary

25 0.9 any 460

25 0.9 avg 461

25 0.95 any 466

25 0.95 avg 468

25 1 any 476

25 1 avg 476

33 0.9 any 261

33 0.9 avg 255

33 0.95 any 261

33 0.95 avg 262

33 1 any 247

33 1 avg 247

50 0.9 any 83

50 0.9 avg 77

50 0.95 any 82

50 0.95 avg 81

50 1 any 70

50 1 avg 70

100 0.9 any 45

100 0.9 avg 35

100 0.95 any 42

100 0.95 avg 36

100 1 any 21

100 1 avg 21

The ‘Method’ column refers to the trimming criterion for the similarity metric. We

used two such criteria, ‘any’ and ‘avg’.‘any’: For a given sister set, if any sister had a

similarity exceeding the corresponding threshold, all sisters were removed from the

final dictionary. ‘avg’: For a given sister set, if the average similarity across all the

sisters in the set was greater than the corresponding threshold, all sisters were

removed from the final dictionary

specific terms as well as with regard to gene expression

annotations.

Tissue enrichment testing via a hypergeometric model

Having built a static dictionary, we generated a Python

script that implements a significance testing algorithm

based on the hypergeometric model. Briefly, the hyper-

geometric model tests the probability of observing ni
occurences of a tissue i in a list of size M if there are mi

labels for that tissue in a dictionary of total size N that

are drawn without replacement. Mathematically, this is

expressed as:

P(ni|N ,mi,M) =

(mi
ni

)(M−mi
N−ni

)

(N
ni

)
. (1)
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Although a user will input gene IDs, we test the num-

ber of ocurrences of a term within the gene list, so a

single gene can contribute to multiple terms. Due to the

discrete nature of the hypergeometric distribution, this

algorithm can generate artifacts when the list is small. To

avoid spurious results, a tissue is never considered signifi-

cant if there are no annotations for it in the user-provided

list.

Once the p-values for each term have been calculated,

we apply a standard FDR correction using a Benjamini-

Hochberg step-up algorithm [13]. FDR corrected p-values

are called q-values. Genes that have a q-value less than

a given alpha are considered significant. Our default set-

ting is an alpha of 0.1, which is a standard threshold

broadly agreed upon by the scientific community (see for

example [14–16]). This threshold cannot be altered in the

web GUI, but is user tunable through our command-line

implementation.

Users input a gene list using any valid gene name for

C. elegans. These names are processed into standard

WormBase gene IDs (WBGene IDs). The program returns

a table containing all the enriched terms and associated

information such as number of terms in gene list and

expected number of terms. Finally, the program can also

return a bar chart of the enrichment fold change for the

fifteen tissues with the lowest measured q-values. The

bars in the graph are sorted in ascending order of q-

value and then in descending order of fold-change. Bars

are colored for ease of viewing, and color does not con-

vey information. Our software is implemented in an easy

to use GUI (see Fig. 2; alternatively, users can interface

with TEA via python, see Additional file 1). Anatomy

terms are displayed in human-readable format followed

by their unique ontology ID (WBbt ID). In summary,

each time the ontology annotations are updated, a new

trimmed ontology is generated using our filters; in paral-

lel, users can submit their gene lists through WormBase

for testing, with results output in a number of formats

(see Fig. 3).

Validation of the algorithm and optimizing parameter

selection

We wanted to select a dictionary that included enough

terms to be specific beyond the most basic C. elegans

tissues, yet would minimize the number of spurious

results and which had a good dynamic range in terms

of enrichment fold-change. Larger tissues are correlated

with better annotation, so increasing term specificity is

associated with losses in statistical power. To help us

select an appropriate dictionary and validate our tool, we

used a set of 30 gold standards based on microarray and

RNA-seq literature which are believed to be enriched in

specific tissues [17–24]. These data sets are annotated

gene lists derived from the corresponding Expression

Cluster data in WormBase. Some of these studies have

been used to annotate gene expression, and so they did

not constitute an independent testing set. To correct

this flaw, we built a clean dictionary that specifically

excluded all annotation evidence that came from these

studies.

As a first attempt to select a dictionary, we generated

all possible combinations of dictionaries with minimal

annotations of 10, 25, 33, 50 and 100 genes and simi-

larity cutoffs of 0.9, 0.95 and 1, using ‘avg’ or ‘any’ sim-

ilarity thresholding methods (see Table 1). The number

of remaining ontology terms was inversely correlated to

the minimum annotation cutoff, and was largely insensi-

tive to the similarity threshold in the range we explored.

Next, we analyzed all 30 datasets using each dictionary.

Because of the large number of results, instead of ana-

lyzing each set of terms individually, we measured the

average q-value for significantly enriched terms in each

dataset without regard for the perceived accuracy of the

terms that tested significant. We found that the simi-

larity threshold mattered relatively little for any dictio-

nary. We also noticed that the ‘any’ thresholding method

resulted in tighter histograms with a mode closer to

0. For this reason, we chose the ‘any’ method for dic-

tionary generation. The average q-value increased with

decreasing annotation cut-off (see Fig. 4), which reflects

the decreasing statistical power associated with fewer

annotations per term, but we remained agnostic as to

how significant is the trade-off between power and term

specificity. Based on these observations, we ruled out

the dictionary with the 100 gene annotation cut-off: it

had the fewest terms and its q-values were not low

enough in our opinion to compensate for the trade-off in

specificity.

To select between dictionaries generated between 50, 33

and 25 annotation cut-offs, and also to ensure the terms

that are selected as enriched by our algorithm are reason-

able, we looked in detail at the enrichment analysis results.

Most results were comparable and expected. For some

sets, all dictionaries performed well. For example, in our

‘all neuron enriched sets’ [18, 20] all terms were neuron-

related regardless of the dictionary used (see Table 2). On

the other hand, for a set enriched for germline precur-

sor expression in the embryo [18], the 50 cutoff dictionary

was only able to identify ‘oocyte WBbt:006797’, which is

not a germline precursor although it is germline related;

whereas the two smaller dictionaries singled out actual

germline precursor cells—at the 33 cutoff, our tool iden-

tified the larval germline precursor cells ‘Z2’ and ‘Z3’

as enriched, and at the 25 gene cutoff the embryonic

germline precursor terms ‘P4’,‘P3’ and ‘P2’ were identified

in addition to ‘Z2’ and ‘Z3’. We also queried an intes-

tine precursor set [18]. Notably, this gene set yielded no

enrichment when using the 25 cutoff dictionary, nor when
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Fig. 2 Screenshot of results from the web GUI. After inputting a gene-list, the user is provided with the results. An HTML table is output with

hyperlinks to the ontology terms. A publication-ready graph is provided below, which can be saved by dragging to the desktop. The graph is

colored for better visualization; color is not intended to convey information. The graph and the table show anatomy terms in human-readable

format, followed by their unique WBbt ID. Finally, lists of the genes used and discarded for the analysis are also presented
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Fig. 3 TEA Workflow. The complete ontology is annotated continuously by WormBase curators. After each update, the ontology is processed to

remove uninformative terms, and the remaining terms are used for statistical testing. Users can select a gene list and input it into our tool using our

WormBase portal. The gene list is tested for enrichment using the trimmed ontology, and results are output in tabular and graphic formats for analysis

using the 50 cutoff dictionary. However, the 33 cutoff

dictionary identified the E lineage, which is the intestinal

precursor lineage in C. elegans, as enriched. Both of these

results capture specific aspects of C. elegans that are well

known to developmental biologists.

Not all queries worked equally well. For example, a

number of intestinal sets [18, 21] were not enriched

in intestine-related terms in any dictionary, but were

enriched for pharynx and hypodermis. We were surprised

that intestinal gene sets performed poorly, since the

intestine is a relatively well-annotated tissue.

Fig. 4 Kernel density estimates (KDE) for 30 gold standard datasets.

We ran TEA on 30 datasets we believed to be enriched in particular

tissues and pooled all the results to observe the distribution of

q-values. The mode of the distribution for dictionaries with annotation

cut-offs of 100 and 50 genes are very similar; however, when the

cut-off is lowered to 25 genes, the mode of the distribution shifts to

the left, potentially signalling a decrease in measurement power

We assessed the internal agreement of our tool by using

independent gene sets that we expected to be enriched

in the same tissues. We used two pan-neuronal sets

[18, 20]; two PVD sets [18, 24]; and two GABAergic sets

[18, 19]. Overall, the tool has good internal agreement. On

most sets, the same terms were enriched, although order

was somewhat variable (see Fig. 5), and most high-scoring

terms were preserved between sets. All comparisons can

be found online in our Github repository (see Availabil-

ity of data and materials). The complete list of gene sets

and results can also be found in Additional files 2, 3 and

4. Overall, the dictionary generated by a 33 gene annota-

tion cutoff with 0.95 redundancy threshold using the ‘any’

criterion performed best, with a good balance between

specificity, verbosity and accuracy, so we selected this

parameter set to generate our static dictionary. As of this

publication, the testable dictionary contains 261 terms.

Applying the tool

We applied our tool to the RNA-seq datasets developed

by Engelmann et al. [25] to gain further understanding

of their underlying biology. Engelmann et al. exposed

young adult worms to 5 different pathogenic bacteria or

fungi for 24 h, after which mRNA was extracted from

the worms for sequencing. We ran TEA on the genes

Engelmann et al. identified as up- or down-regulated.

Initially we noticed that genes that are down-regulated

tend to be twice as better annotated on average than

genes that were up-regulated, suggesting that our under-

standing of the worm immune system is scarce, in spite

of important advances made over the last decade. Up-

regulated tissues, when detected, almost always included

the hypodermis and excretory duct. Three of the five sam-

ples showed enrichment of neuronal tissues or neuronal
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Table 2 Comparison of results for a GABAergic neuronal-enriched gene set from Watson [20] showing that results are similar

regardless of annotation cutoff

Tissue Q value33 Q value50 Enrichment fold change33 Enrichment fold change50

Nerve ring WBbt:0006749 0.005 0.0015 2.7 2.7

Nervous system WBbt:0005735 0.005 0.0015 1.4 1.4

Dorsal nerve cord WBbt:0006750 0.005 0.0015 3.8 3.8

Retrovesicular ganglion WBbt:0005656 0.011 0.0034 5 5

Ventral nerve cord WBbt:0005829 - 0.022 - 2.4

We ran the same gene list on a dictionary with a minimum annotation cutoff of 50, similarity threshold of 0.95 and similarity method ‘any’ versus another with a minimum

annotation cutoff of 33, similarity threshold of 0.95 and similarity method ‘any’. In the table, columns are labeled with their significance value (Q-value) or enrichment fold

change followed by a hyphen and a number which indicates which the cutoff for the dictionary that was used for testing. Not all tissues are present in either dictionary.

Hyphens denote not-applicable values, which occurs when a particular tissue is not present in both dictionaries

precursor tissues among the down-regulated genes. As

an independent verification, we also performed GO anal-

ysis using PANTHER on the down-regulated genes for

D. coniospora. These results also showed enrichment in

terms associated with neurons (see Fig. 6). A possible

0 1 2 3 4 5 6 7 8

Enrichment Fold Change
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Fig. 5 Independently derived gene sets show similar results when

tested with the same dictionary. Set 1) GABAergic gene set from

Watson [20]. Set 2) GABAergic gene set from Spencer [18].

Arrowheads highlight identical terms between both analyses. All

terms refer to neurons or neuronal tissues and are GABA-associated.

Dictionary with cutoff: 33; threshold: 0.95; method: ‘any’

explanation for this neuronal association might be that

the infected worms are sick and the neurons are begin-

ning to shut down; an alternative hypothesis would be that

the worm is down-regulating specific neuronal pathways

as a behavioral response against the pathogen. Indeed,

several studies [26, 27] have provided evidence that C. ele-

gans uses chemosensory neurons to identify pathogens.

Our results highlight the involvement of variousC. elegans

neuronal tissues in pathogen defense.

Discussion
We have presented a tissue enrichment analysis tool

that employs a standard hypergeometric model to test

the C. elegans tissue ontology. We use a hypergeo-

metric function to test a user-provided gene list for

enrichment of anatomical terms in C. elegans. Our

hope is that the physiological relevance of anatomi-

cal terms will enable researchers to make hypotheses

about high-dimensionality data. Specifically, we believe an

enriched term may broadly suggest one of two hypothe-

ses: if a list is enriched in a particular anatomical

region, that anatomical region is affected by the exper-

imental treatment; alternatively, the anatomical regions

that are enriched reflect biologically relevant interac-

tions between tissues. We believe the first hypothesis

is a reasonable one to make in the case of whole-

worm RNA-seq data for example, whereas the sec-

ond hypothesis may be more plausible in cases where

a researcher already knows what tissues a particular

gene list came from, as may be the case in single-cell

RNA-seq.

Our tool relies on an annotation dictionary that is con-

tinuously updated primarily with data from single gene

qualitative analyses, does not require retraining and does

not require ranked genes. To our knowledge, this is the

first tool that tests tissue enrichment in C. elegans via

the hypergeometric method, but similar projects exist for

humans and zebrafish [28, 29], highlighting the relevance

of our tool for high-dimensionality biology. Chikina et al.

[30] have previously reported a tissue enrichment model
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GO Enrichment Analysis

TEA
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Fig. 6 D. coniospora gene enrichment analysis and tissue enrichment analysis results. We compared and contrasted the results from a gene

enrichment analysis program, pantherDB, with TEA by analyzing genes that were significantly down-regulated when C. elegans was exposed to

D. coniospora in a previously published dataset by Engelmann et al. [25] with both tools. a pantherDB screenshot of results, sorted by p-value. Only

top hits shown. b TEA results, sorted by q-value (lowest on top) and fold-change. Both pantherDB and TEA identify terms associated with neurons

(red square). The two analyses provide complementary, not redundant, information

for C. elegans based on a Support Vector Machine classi-

fier that has been trained onmicroarray studies. SVMs are

powerful tools, but they require continuous retraining as

more tissue expression data becomes available. Moreover,

classifiers require that data be rank-ordered by some met-

ric, something which is not possible for certain studies.

Furthermore, this tissue enrichment tool provides users

with enrichment results for only 6 large tissues. In con-

trast, our tool routinely tests a much larger number of

terms, and we have shown it can even accurately iden-

tify enrichment of embryonic precursor lineages for select

data sets.

We have also presented the first, to our knowledge,

ontology term filtering algorithm applied to biomedical

ontologies. This algorithm, which is very easy to execute,

identifies terms that have specificity and statistical power

for hypothesis testing. Due to the nature of all ontologies

as hierarchical, acyclical graphs with term inheritance,

term annotations are correlated along any given branch.

This correlation reduces the benefits of including all terms

for statistical analysis: for any given term along a branch,

if that term passes significance, there is a high probabil-

ity that many other terms along that branch will also pass

significance. If the branch is enriched by random chance,
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error propagation along a branch means that many more

false positives will follow. Thus, a researchermight bemis-

led by the number of terms of correlated function and

assign importance to this finding; the fact that the branch-

ing structure of GO amplifies false positive signals is a

powerful argument for either reducing branch length or

branch intracorrelation, or both. On the other hand, if

a term is actually enriched, we argue that there is little

benefit to presenting the user with additional terms along

that branch. Instead, a user will benefit most from testing

sparsely along the tree at a suitable specificity for hypoth-

esis formation. Related terms of the same level should

only be tested when there is sufficient annotation to dif-

ferentiate, with statistical confidence, whether one term is

enriched above the other. Our algorithm reduces branch

length by identifying and removing nodes that are insuf-

ficiently annotated and parents that are likely to include

sparse information.

We endeavoured to benchmark our tool well, but our

analysis cannot address problems related to spurious term

enrichment. Although we were unable to determine false-

positive and false-negative rates, we do not believe this

should deter scientists from using our tool. Rather, we

encourage researchers to use our tool as a guide, integrat-

ing evidence from multiple sources to inform the most

likely hypotheses. As with any other tool based on sta-

tistical sampling, our analysis is most vulnerable to bias

in the data set. For example, expression reports are neg-

atively biased against germline expression because of the

difficulties associated with expressing transgenes in this

tissue [31]. As time passes, we are certain the accuracy and

power of this tool will improve thanks to the continuing

efforts of the worm research community; indeed, with-

out the community reports of tissue expression in the first

place, this tool would not be possible.

Conclusions
We have built a tissue enrichment tool that employs a tis-

sue ontology previously developed by WormBase. We use

a simple algorithm to identify the best ontology terms for

statistical testing and in this way minimize multiple test-

ing problems. Our tool is available within WormBase or

can be downloaded for offline use via ‘pip install’.

Methods

Fetching annotation terms

We used WormBase-curated gene expression data,

which includes annotated descriptions of spatial-temporal

expression patterns of genes, to build our dictionary. Gene

lists per anatomy term were extracted from a Solr doc-

ument store of gene expression data from the WS252

database provided by WormBase [8]. We used the Solr

document store because it provided a convenient access to

expression data that included inferred annotations. That

is, for each anatomy term, the expression gene list includes

genes that were directly annotated to the term, as well as

those that were annotated to the term’s descendant terms

(if there were any). Descendant terms were those con-

nected with the focus term by is_a/part_of relationship

chains defined in the anatomy term ontology hierarchy.

Filtering nodes

Defining a similaritymetric

To identify redundant sisters, we defined the following

similarity metric:

si =
|gi|

|
⋃k

i=0 gi|
(2)

Where si is the similarity for a tissue i with k sisters; gi
refers to the set of tissues associated with tissue i and |g|

refers to the cardinality of set g. For a given set of sisters,

we called them redundant if they exceeded a given simi-

larity threshold. We envisioned two possible criteria and

built different dictionaries using each one. Under a thresh-

old criteron ‘any’ with parameter S between (0, 1), a given

set of sisters j was considered redundant if the condition

si,j > S (3)

was true for any sister i in set j. Under a threshold cri-

terion ‘avg’ with parameter S, a given set of sisters j was

considered redundant if the condition

E[ si]j > S (4)

was true for the set of sisters j (see Fig. 1a).

Since nodes can have multiple parents (and therefore

multiple sister sets), a complete set of similarity scores was

calculated before trimming the ontology, and nodes were

removed from the ontology if they exceeded the similarity

threshold at least once in any comparison.

Implementation

All scripts were written in Python 3.5. Our software relies

on the pandas, NumPy, Seaborn and SciPy modules to

perform all statistical testing and data handling [32–34].

Additional files

Additional file 1: TEA Tutorial. Tutorial for users interested in using our

software within a python script. (PDF 161 kb)

Additional file 2: Folder Structure for SI files 3 and 4. A file detailing the

folder structure of the zipped folders 3 and 4. (PDF 138 kb)

Additional file 3: Golden Gene Sets. A list of all the genes used for our

benchmarking process. (ZIP 74 kb)

Additional file 4: Results. A folder containing a complete version of the

results we generated for this paper. (ZIP 1597 kb)
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