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Simple Summary: The histological differential diagnosis of adrenocortical adenoma and carcinoma is
difficult and requires great expertise. MiRNAs were shown to be useful for the differential diagnosis
of benign and malignant tumors of several organs, and several findings have suggested their utility
in adrenocortical tumors as well. Here, we have selected tissue miRNAs based on the literature
search, and used machine learning to identify novel clinically applicable miRNA combinations.
Combinations with high sensitivity and specificity (both over 90%) have been identified that could be
promising for clinical use. Besides being a useful adjunct to histological examination, these miRNA
combinations could enable preoperative adrenal biopsy in patients with adrenal tumors suspicious
for malignancy.

Abstract: The histological analysis of adrenal tumors is difficult and requires great expertise. Tissue
microRNA (miRNA) expression is distinct between benign and malignant tumors of several organs
and can be useful for diagnostic purposes. MiRNAs are stable and their expression can be reliably
reproduced from archived formalin-fixed, paraffin-embedded (FFPE) tissue blocks. Our purpose
was to assess the potential applicability of combinations of literature-based miRNAs as markers
of adrenocortical malignancy. Archived FFPE tissue samples from 10 adrenocortical carcinoma
(ACC), 10 adrenocortical adenoma (ACA) and 10 normal adrenal cortex samples were analyzed
in a discovery cohort, while 21 ACC and 22 ACA patients were studied in a blind manner in the
validation cohort. The expression of miRNA was determined by RT-qPCR. Machine learning and
neural network-based methods were used to find the best performing miRNA combination models.
To evaluate diagnostic applicability, ROC-analysis was performed. We have identified three miRNA
combinations (hsa-miR-195 + hsa-miR-210 + hsa-miR-503; hsa-miR-210 + hsa-miR-375 + hsa-miR-503
and hsa-miR-210 + hsa-miR-483-5p + hsa-miR-503) as unexpectedly good predictors to determine
adrenocortical malignancy with sensitivity and specificity both of over 90%. These miRNA panels
can supplement the histological examination of removed tumors and could even be performed from
small volume adrenal biopsy samples preoperatively.
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1. Introduction

Adrenal tumors are relatively frequent with a prevalence of 4.2% in high-resolution
abdominal imaging studies [1]. Among adrenocortical tumors, adrenocortical carcinoma
(ACC) has a poor prognosis, as less than a third of the patients survive at least 5 years [2–4].
Although ACC is the rarest among adrenal tumors, with an annual incidence of 0.7–2/million,
it is included in the differential diagnosis of any incidentally discovered adrenal mass [3].
Adrenocortical adenoma (ACA) is the most frequent diagnosis (49–69% in surgical series)
among adrenal tumors [5]. In addition to tumors of the adrenal cortex, myelolipoma,
which is invariably benign and contains fat and bone marrow elements, and pheochro-
mocytoma, of an adrenal medullary origin causing severe blood pressure fluctuations,
may also occur [5]. Adrenal glands often harbor metastasis from distinct malignancies;
moreover, adrenocortical hyperplasia, adrenal cyst, adrenal hemorrhage, and, very rarely,
adrenal lymphoma and adrenal tuberculosis should also be kept in mind as potential
adrenal pathologies [6]. The differentiation of adrenocortical adenoma and carcinoma is
often challenging.

Medical imaging is especially helpful in establishing the diagnosis of adrenocorti-
cal malignancy. Tumor size, density, heterogeneity, irregular borders and necrosis are
assessed on CT (computed tomography), and there are also options for further imaging,
e.g., washout CT, MRI (magnetic resonance imaging) or 18FDG-PET-CT (18fluorodeoxygluco
se-positron emission tomography-CT) [5]. Still there is no preoperative blood-borne molec-
ular marker of malignancy. Urinary steroid metabolomics can be helpful [7], but it is not
widely available.

The histological examination of adrenal tumors (including the Weiss-score and modi-
fied Weiss-score) is difficult and requires great expertise. Moreover, significant interobserver
variability and a lack of accuracy in borderline cases are known limitations [8]. Mainly
due to the difficulty of histological examinations, a biopsy of adrenal tumors is not recom-
mended in routine practice and according to the current guidelines [3,5], as it would be
difficult to determine malignancy from a small amount of tissue obtained, and there is a
potential risk of complications (bleeding, pneumothorax) and maybe tumor dissemination
as well [9,10]. The risk of complications linked to adrenal biopsy is not very high (2.5%),
but it has only a sensitivity of 70% for diagnosing ACC [11,12].

For all these reasons there is a great need for additional markers that can help deter-
mine the biological behavior of adrenocortical tumors.

MicroRNAs (miRNA, miR) have long been one of the cornerstones of biomarker
research [13]. MiRNAs are 19–25 nucleotide long evolutionary conserved single stranded
non-coding RNA molecules, most often encoded by their own genes. MiRNAs are the
epigenetic regulators of RNA interference as they regulate up to 30–60% of human genes at
the post-transcriptional level—without altering the very sequence of DNA [14].

miRNAs exert their inhibitory functions on translation via binding to the 3′ untrans-
lated region (UTR) of their target mRNA in the cytoplasm [15]. Besides, it was shown
that miRNAs might act within the cell nucleus by the modification of histone proteins
and transcription itself [16]. Biological functions of miRNAs have been characterized from
abundant sources [17–19]. In tumors, both overexpressed (oncogenic) and underexpressed
(tumor suppressor), miRNAs are known for acting in a tissue specific fashion [20–22].
From a biomarker research point of view the two most important features of miRNAs are
their exceptional stability and reproducibility from fresh frozen tissue, FFPE (formalin-
fixed, paraffin-embedded) samples or even from biofluids (e.g., from blood), and their
marked tissue/cell and disease specificity [23,24]. Currently, there are about 2500 known
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human miRNAs and only a minor part of them has been described in the pathogenesis of
adrenocortical tumors [25–29].

The long-lasting quest for a legit biomarker of adrenocortical carcinoma set our re-
search group to design novel miRNA combination panels as markers of malignancy. Based
on the current literature and bolstered by the state-of-art biostatistics tools, such as artificial
intelligence (AI) implemented through machine learning and neural networks, our aim was
to establish miRNA models with high sensitivity and specificity applicable for clinical use.

2. Materials and Methods
2.1. Tissue Collection and Ethics Approval

A total of 31 ACC, 32 ACA (Table 1) and 10 normal adrenal cortex (NAC) FFPE
samples were recruited in the study. NAC samples were included only to investigate
whether there are differences in the expression of the selected microRNAs between normal,
benign, and malignant adrenocortical tissues. All samples were histologically confirmed
by adrenal expert pathologists. Only specific parts of the blocks were dissected for RNA
isolation. NAC samples were obtained from patients undergoing total nephrectomy for
kidney tumors (females: 5, males: 5, mean age: 36.2 and 55.8, respectively). The discovery
cohort was comprised of 10 ACA, 10 ACC, 10 NAC and the independent validation cohort
contained another 21 ACC and 22 ACA FFPE samples (Table S1).

Table 1. Clinical and main pathological characteristics of the tumor samples included. F: female, M:
male, NF: non-functioning, DHEAS: dehydroepiandrosterone sulfate, DOC: 11-Deoxycorticosterone,
ND: no data.

Cohort/Samples Sex
Mean Age at

Sample Taking
(Years)

Mean Tumor
Size (mm) Ki-67 (%) ENSAT Stage Hormonal Activity

Discovery ACA 10 F 47.5 33.9 - - 7 cortisol
3 NF

Discovery ACC 6 F
4 M 45.2 96.2 10–15 (1–40) 5 II

5 III

3 cortisol
5 NF

1 DOC
1 DOC + cortisol + estradiol

Validation ACA 17 F
5 M 53.9 35 - -

11 cortisol
10 NF

1 DHEAS

Validation ACC 14 F
7 M 55.4 102 25–30 (8–50)

1 I
4 II
5 III

11 IV

7 cortisol
11 NF

2 cortisol + DHEAS
1 cortisol + androgen

The study was approved by the Ethical Committee of the Hungarian Health Council.
All experiments were performed in accordance with applicable guidelines and regulations
and informed consent was obtained from the involved patients.

2.2. Literature Search

Literature search was performed in the PubMed database (https://pubmed.ncbi.nlm.
nih.gov/) using the following search terms: adrenocortical carcinoma; adrenocortical
cancer; adrenal cancer; adrenal tumor; and microRNA. Only original articles were selected.
Most microRNAs included have been described as differentially expressed by multiple
studies. We have selected 16 differentially expressed miRNAs to be included in our
study (Table 2).

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Table 2. List of selected, differentially expressed miRNAs based on literature search that were
included in our study.

miRNAs Expression in ACC References

hsa-miR-7 Down-regulated [30,31]
hsa-miR-9 Up-regulated [32,33]

hsa-miR-21 Up-regulated [34,35]
hsa-miR-195 Down-regulated [30,34,36–39]
hsa-miR-205 Down-regulated [40,41]
hsa-miR-210 Up-regulated [34,39,42,43]
hsa-miR-214 Down-regulated [38,42,44]
hsa-miR-335 Down-regulated [36,38,45]
hsa-miR-375 Down-regulated [42]
hsa-miR-431 Down-regulated [44,46]

hsa-miR-483-3p Up-regulated [34,38,47,48]
hsa-miR-483-5p Up-regulated [30,34,36,38,39,49–51]

hsa-miR-497 Down-regulated [34,38]
hsa-miR-503 Up-regulated [38,42]
hsa-miR-508 Up-regulated [36,44,52]
hsa-miR-511 Down-regulated [42,44,53]

This list includes miRNAs that are extensively described in the literature to be impor-
tant in adrenocortical tumor pathogenesis or differential diagnosis (such as hsa-miR-195
or hsa-miR-483-5p, or hsa-miR-503) [30,34,36–39,42,49–51], and also miRNAs where there is
only limited evidence of pathogenic relevance. By including more miRNAs to be tested
by artificial intelligence, we aimed to increase the chance of finding well-performing
miRNA combinations.

2.3. Sample Processing and RNA Isolation

Total RNA was isolated by RecoverAll Total Nucleic Acid Isolation Kit for FFPE
(catalog number: AM1975, Thermo Fisher Scientific, Waltham, MA, USA). As a spike-in
control for isolation efficiency we used 1 µL of 0.002 fmol/µL syn-cel-miR-39-3p according to
the manufacturer’s protocol for miRCURY LNA RNA Spike-in kit (Qiagen GmbH, Hilden,
Germany, catalog number: 339390) and was added before the nucleic acid isolation step.
Total RNA quantity was measured by NanoDrop 2000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) after isolation and Qubit 4 Fluorometer with Qubit™ hsRNA
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) before reverse transcription. Total
RNA was stored at −80◦C until further processing.

2.4. Analysis of the miRNA Panel Expression by Real-Time RT-qPCR

A 2-step process for RT-qPCR was used. Each sample was processed separately for all
miRNA targets. Ten nanograms of isolated total RNA was used in individual RT reactions.

First, TaqMan miRNA Reverse Transcription Kit (catalog number: 4366596, Thermo
Fisher Scientific, Waltham, MA, USA) and individual TaqMan MiRNA Assay primer mixes
(catalog number: 4427975, Thermo Fisher Scientific, Waltham, MA, USA) were used to
reverse-transcribe total RNA. The expression of hsa-miR-7 (ID: 000386), hsa-miR-9 (ID:
000583), hsa-miR-21 (ID: 000397), hsa-miR-195 (ID: 000494), hsa-miR-205 (ID: 000509), hsa-
miR-210 (ID: 000512), hsa-miR-214 (ID: 002306), hsa-miR-335 (ID: 000546), hsa-miR-375 (ID:
000564), hsa-miR-431 (ID: 001979), hsa-miR-483-3p (ID: 002339), hsa-miR-483-5p (ID: 002338),
hsa-miR-497 (ID: 001043), hsa-miR-503 (ID: 001048), hsa-miR-508 (ID: 001052), and hsa-miR-
511 (ID: 001111) were measured, and as an internal control RNU48 (ID: 001006) along with
cel-miR-39 (ID: 000200) as an external control were used.

For quantification, TaqMan Fast Advanced Master Mix (catalog number: 4444963,
Thermo Fisher Scientific, Waltham, MA, USA), with the matching probe mixes on a
Quantstudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol, was used. Negative control reactions contained
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no cDNA templates, and all samples were measured in triplicate. We used 0,67 µL of
undiluted cDNA as template.

After analysis of the miRNA panel expression by real-time RT-qPCR on the discovery
cohort, we proceeded to validate our best performing combinations by carrying out another
set of real-time RT-qPCR measurements on an independent validation cohort, but with a
further refined group of miRNAs: hsa-miR-9 (ID: 000583), hsa-miR-195 (ID: 000494), hsa-miR-
210 (ID: 000512), hsa-miR-375 (ID: 000564), hsa-miR-483-3p (ID: 002339), hsa-miR-483-5p (ID:
002338), hsa-miR-497 (ID: 001043), hsa-miR-503 (ID: 001048), and hsa-miR-508 (ID: 001052).

2.5. Statistical Analysis

Statistical analysis was carried out with R for Windows version 4.1.1 (R Foundation
for Statistical Computing, 2021, Vienna, Austria). Normalization of miRNAs was per-
formed with the ∆Ct method, in which geometric means of intrinsic “housekeeping gene”
(RNU48) and extrinsic spike-in (cel-miR-39) served as controls (R package NormqPCR).
Down-regulated miRNAs, when presented with no measurable Ct values, were omit-
ted. The order of miRNAs that played prominent role in the group classification of the
samples was determined by the random forest method, using the importance measure
‘mean decrease in accuracy’ (R package randomForest), which was used to strengthen
relationships already known from the literature [54]. The possibility of automatic classi-
fication of samples into ACA or ACC groups was tested by machine learning methods
(R packages nnet and caret) [55,56]. The classification efficiency of possible miRNA com-
binations was examined by neural network-based, 90–10% random learner-tester cross
validation consisting of 10-10-10 known ACC, ACA, and NAC samples. A hidden-layer
neural network-based statistical model was created that randomly selected 9-9-9 samples
per group from 10-10-10 histological specimens (learner data set). Classification efficacy of
the model was tested on the remaining 1-1-1 samples (tester data set). By repeating this
step 1000 times, we were able to determine the miRNA combinations, which had high
specificity and sensitivity for group classification. The analysis was also performed both
on all 30 samples from all three groups and on the 20 samples from benign and malignant
adrenal tumors alone as well. Twenty-four models with at least 90% classification capability
were selected for validation of subsequent machine learning-based classification (Table 3).

During validation, the same ACA and ACC samples were used as previously, and the
43 unknown samples were classified individually, with 10,000 iterations each. The final
estimated group classification of the sample was determined by selecting the most common
value (>50%) from the 10,000 estimates.

Sensitivity and specificity for each model were determined—after revealing the benign
or malignant histological diagnosis of each sample—by comparing the estimated and the
actual groupings from the models. At this point, as a technical step, the ACA group was
designated as the “control” group and the ACC group as the “patient” group. Based on the
differences between the two classifications, we determined the number of correct results
(true positives and negatives), false positive (benign tumor instead of malignant tumor)
and false negative (malignant tumor instead of benign tumor) results.

The percentage of correct classifications in the ACA group and the correct classifi-
cation were compared and plotted by ROC analysis (R package pROC) [57]. Additional
epidemiological measures (e.g., area under curve) were determined using the true group
classifications and the percentages of the estimated classification in the ROC analysis.
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Table 3. The 24 miRNA combination models used in the validation cohort.

Model Number miRNA Combination

1 hsa-miR-9 + hsa-miR-375
2 hsa-miR-9 + hsa-miR-503
3 hsa-miR-375 + hsa-miR-503
4 hsa-miR-210 + hsa-miR-503
5 hsa-miR-375 + hsa-miR-497
6 hsa-miR-483-3p + hsa-miR-503
7 hsa-miR-503 + hsa-miR-508
8 hsa-miR-195 + hsa-miR-503 + hsa-miR-508
9 hsa-miR-195 + hsa-miR-210 + hsa-miR-503
10 hsa-miR-9 + hsa-miR-195 + hsa-miR-503
11 hsa-miR-9 + hsa-miR-210 + hsa-miR-503
12 hsa-miR-9 + hsa-miR-375 + hsa-miR-503
13 hsa-miR-9 + hsa-miR-483-3p + hsa-miR-503
14 hsa-miR-9 + hsa-miR-497 + hsa-miR-503
15 hsa-miR-195 + hsa-miR-375 + hsa-miR-497
16 hsa-miR-210 + hsa-miR-375 + hsa-miR-503
17 hsa-miR-210 + hsa-miR-483-5p + hsa-miR-503
18 hsa-miR-375 + hsa-miR-503 + hsa-miR-508
19 hsa-miR-375 + hsa-miR-483-3p + hsa-miR-503
20 hsa-miR-9 + hsa-miR-195 + hsa-miR-375 + hsa-miR-503
21 hsa-miR-9 + hsa-miR-210 + hsa-miR-483-5p + hsa-miR-503
22 hsa-miR-210 + hsa-miR-375 + hsa-miR-503 + hsa-miR-508
23 hsa-miR-375 + hsa-miR-483-5p + hsa-miR-503 + hsa-miR-508
24 hsa-miR-375 + hsa-miR-497 + hsa-miR-503 + hsa-miR-508

3. Results
3.1. miRNA Expression in the Discovery Cohort by RT-qPCR

RT-qPCR was performed on 10-10-10 known ACA, ACC, NAC FFPE tissue samples
in the discovery cohort. The list of selected miRNAs is presented in Table 2. Random
forest results revealed that hsa-miR-503, hsa-miR-483_3p, hsa-miR-195, hsa-miR-375 and
hsa-miR-483_5p were the top 5 miRNAs to properly group the 30 samples into their re-
spective groups. (Figure 1 presents box plots representing the expression of these five
miRNA in ACA and ACC.) The best performing miRNA combinations (statistical models)
were selected by neural network-based, 90–10% random learner-tester cross validation.
Twenty-four statistical models (Table 3) with at least 90% grouping capability were se-
lected for validation. These 24 models contain the following miRNAs: hsa-miR-9, hsa-miR-
195, hsa-miR-210, hsa-miR-375, hsa-miR-483-3p, hsa-miR-483-5p, hsa-miR-497, hsa-miR-503,
and hsa-miR-508.

3.2. Diagnostic Performance of the miRNA Models by RT-qPCR

In total, 43 independent FFPE samples (22 ACA and 21 ACC) were measured in
the validation cohort by RT-qPCR to establish the utility of selected miRNA combina-
tions as markers of malignancy. Table 4 presents the sensitivity, specificity, area under
curve, positive and negative predictive values of the 24 models. Among these, 3 mod-
els yielded sensitivity and specificity both over 90%: model 9 (hsa-miR-195 + hsa-miR-
210 + hsa-miR-503), model 16 (hsa-miR-210 + hsa-miR-375 + hsa-miR-503) and model 17
(hsa-miR-210 + hsa-miR-483-5p + hsa-miR-503) (Figure 2). False negative (V14, V19) and
false positive (V33) samples are marked in Table S1. These samples were commonly missed
by the three best performing models, whereas Sample V38 has been recognized by Model
17, and not by the two other models. We could not find common or peculiar features in
the falsely classified samples. The values for individual miRNAs are presented in Table 5.
These combination-based predictions are clearly superior to the diagnostic performance of
individual miRNAs.
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Figure 1. Box plots representing the expression of the top five miRNAs relative to the geometric
means of cel-miR-39 and RNU48 in ACA and ACC samples. The top 5 selected miRNAs contributing
to the best performing three models were determined based on artificial intelligence.

Table 4. Diagnostic performance of the 24 miRNA combination models. The best performing three
models are highlighted in bold.

Model
Number Sensitivity Specificity Area under

Curve (AUC)
Negative

Predictive Value
Positive

Predictive Value

1 72.73% 42.86% 56.49% 57.14% 60.00%
2 72.73% 85.71% 81.17% 84.21% 75.00%
3 90.91% 85.71% 90.04% 86.96% 90.00%
4 86.36% 90.48% 88.42% 90.48% 86.36%
5 86.36% 66.67% 76.52% 73.08% 82.35%
6 72.73% 95.24% 86.15% 94.12% 76.92%
7 81.82% 90.48% 85.93% 90.00% 82.61%
8 86.36% 85.71% 87.34% 86.36% 85.71%
9 90.91% 90.48% 90.69% 90.91% 90.48%
10 68.18% 85.71% 78.90% 83.33% 72.00%
11 86.36% 85.71% 88.10% 86.36% 85.71%
12 86.36% 80.95% 83.66% 82.61% 85.00%
13 68.18% 90.48% 82.47% 88.24% 73.08%
14 77.27% 85.71% 80.84% 85.00% 78.26%
15 86.36% 66.67% 76.52% 73.08% 82.35%
16 90.91% 90.48% 90.69% 90.91% 90.48%
17 90.91% 95.24% 92.86% 95.24% 90.91%
18 90.91% 85.71% 90.04% 86.96% 90.00%
19 77.27% 90.48% 85.61% 89.47% 79.17%
20 86.36% 80.95% 85.50% 82.61% 85.00%
21 86.36% 80.95% 85.71% 82.61% 85.00%
22 90.91% 85.71% 90.04% 86.96% 90.00%
23 90.91% 85.71% 88.31% 86.96% 90.00%
24 90.91% 85.71% 89.39% 86.96% 90.00%
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Figure 2. ROC curves of the best performing three miRNA combinations. Model 9: hsa-miR-195 +
hsa-miR-210 + hsa-miR-503 (left upper corner), model 16: hsa-miR-210 + hsa-miR-375 + hsa-miR-503
(right upper corner), model 17: hsa-miR-210 + hsa-miR-483-5p + hsa-miR-503 (down). AUC: area
under curve.

Table 5. Individual diagnostic performance of the miRNAs included in the 24 miRNA combination models.

miRNA Sensitivity Specificity Area under
Curve (AUC)

Negative
Predictive

Value

Positive
Predictive

Value

hsa-miR-9 54.55% 61.90% 59.52% 60.00% 56.52%
hsa-miR-195 86.36% 71.43% 78.90% 76.00% 83.33%
hsa-miR-210 68.18% 80.95% 76.41% 78.95% 70.83%
hsa-miR-375 81.82% 23.81% 53.68% 52.94% 55.56%

hsa-miR-483-3p 54.55% 90.48% 74.57% 85.71% 65.52%
hsa-miR-483-5p 81.82% 90.48% 86.15% 90.00% 82.61%

hsa-miR-497 86.36% 80.95% 83.66% 82.61% 85.00%
hsa-miR-503 81.82% 90.48% 86.15% 90.00% 82.61%
hsa-miR-508 59.09% 52.38% 58.33% 56.52% 55.00%

4. Discussion

The histological diagnosis of adrenocortical tumors is challenging. In this study, we
assessed the applicability for various miRNA combinations established by an artificial
intelligence approach (machine learning and neural networks) that could reliably be utilized
as markers of adrenocortical malignancy.

Sixteen miRNAs were included in our study, based on the literature search, but the
established miRNA combinations include only 5 of these (hsa-miR-195, hsa-miR-210, hsa-
miR-375, hsa-miR-483-5p, and hsa-miR-503). Not surprisingly, this 5-miRNA set includes the
miRNAs that have been described in most adrenocortical tumor studies as differentially
expressed between benign and malignant tumors.
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Hsa-miR-195 was shown to be underexpressed in ACC compared to ACA in various
studies [30,34,36–39]. Furthermore, the underexpression of hsa-miR-195 was associated
with poor outcome, and lower circulating levels of hsa-miR-195 tended to be correlated
with a larger tumor size [30,36,38]. On the other hand, the up-regulation of hsa-miR-195
decreased cell proliferation in human NCI-H295R ACC cells [34]. The gene for hsa-miR-195
is located within the genomic region of 17p13, that was shown to be frequently lost in
adrenocortical tumors [58].

Hsa-miR-210 is a general hypoxamiR as it was shown to be involved in tumor hy-
poxia, thereby, the overexpression of hsa-miR-210 seems to be a common event in various
tumors [59]. Hsa-miR-210 is regulated by the hypoxia-inducible factor 1α (HIF1α), an im-
portant factor in antitumoral therapy resistance [60–62]. It was shown to be overexpressed
in ACC compared to ACA and NAC in multiple studies [34,39,42,43], and also significantly
overexpressed in ACC with distant metastases [38]. High expression of hsa-miR-210 was
associated with poor prognosis [47].

Hsa-miR-375 was shown to be significantly underexpressed in ACC and ACA com-
pared to NAC in our previous study [42]. It targets certain oncogenes, such as AEG-
1/MTDH, PDK1, YWHAZ/14-3-3ζ, YAP and JAK2, in multiple types of carcinomas [63–67].
Reciprocal action between Wnt–β-catenin signaling and hsa-miR-375 has been proposed [68].
The Wnt–β-catenin pathway is an important factor in the pathogenesis of ACC [69,70]. It
was surprising that this miRNA has been included in the models by artificial intelligence,
and even in one of the best performing combinations (Model 16).

Overexpressed hsa-miR-483-5p is considered to be the best marker of adrenocortical
malignancy [26,31,33,35,36,41,47–49,69,70]. However, we have recently shown its limitation
in the differentiation of ACC and adrenal myelolipoma [71]. Hsa-miR-483-5p is coexpressed
with the insulin-like growth factor 2 (IGF2) from the same locus at 11p15.5 [37]. Overexpres-
sion of IGF2 mRNA is a main feature of ACC [72,73]. N-myc downstream-regulated gene
family members 2 and 4 (NDRG2 and NDRG4) were identified as targets of miR-483-5p,
and their expression was inversely correlated with miR-483-5p [74]. Hsa-miR-483-5p is also
an interesting example of miRNA’s tissue and disease specificity as it has been shown to
be down-regulated in Wilms tumors and glioma cells, suggesting its tumor suppressor
activity in these tumors and tissues [75,76].

Hsa-miR-503 has also been described in several adrenal tumor studies [34,36,38,42,43].
Its pathogenic role was also proposed in other malignancies [77,78]. A larger tumor size
has been shown to correlate with the overexpression of hsa-miR-503, and also, a significant
correlation with Weiss-criteria, clinical outcome and survival was revealed [34,38]. Hsa-
miR-503 has previously been described as a direct cell cycle and differentiation regulator in
different cell lines [79,80].

The three best-performing miRNA combinations yielded clearly superior sensitivity
and specificity values than the individual miRNAs included in the combinations (Table 4 vs.
Table 5.) and also than the previous literature data for individual miRNAs (e.g., sensitivity–
specificity: 68.7–93.7; 73.7–100 for hsa-miR-195 and for hsa-miR-483-5p, respectively [33]).
Some literature data, however, show comparable, or even better diagnostic performance
data than our combinations. For example, in our previous study, the combination of hsa-
miR-511 and hsa-miR-503 was associated with 100% sensitivity and 97% specificity [42], and
in Feinmesser’s study a 100% sensitivity and 96% specificity of the hsa-miR-497 and hsa-miR-
34a combination was noted [38]. In most previous studies, however, smaller cohorts were
included, (e.g., only 7 and 17 ACC samples included in the two above mentioned studies,
respectively [38,42]). Different cohort compositions, platforms and statistical methods
might also be accounted for these differences.

Our study certainly has limitations. These include the limited set of miRNAs examined
and the sizes of the cohorts that are larger than in most previous studies but should still be
augmented to assess the clinical utility of the markers identified. Moreover, we performed
our measurements on FFPE samples in a retrospective setup, hence the clinical utility
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of these miRNA combinations should further be examined on fresh frozen samples in a
prospective manner.

Using small sample sizes in machine learning techniques can lead to biased machine
learning performance estimates. To overcome this type of bias, it is recommended to use a
different, new dataset for validation. In our study, both the baseline and validation cohorts
consist of different patients; therefore, our results do not suffer from this type of bias.

Another type of bias can be introduced from using specific types of cross validation. It
was previously reported that using nested types of cross-validation produce unbiased and
robust results [81]. The 90%–10% random learner-tester cross-validation used in our study
belongs to the nested cross-validation family.

The sensitivity and specificity values of the three best performing biomarker com-
binations appear to be promising for clinical introduction. Besides a useful adjunct to
histological analysis of surgically resected tumor specimens, the possible testing of these
microRNA panels on adrenal biopsy samples might also be envisaged. Adrenal biopsy is
currently not recommended in the work-up of adrenal tumors, only in exceptional cases,
mainly due to the difficulties of histological analysis, but there are also some possible
complications [3,5,11,12]. If the diagnosis of malignancy could be reliably established by
using these microRNA panels from small biopsy samples, this might even broaden the
use of adrenal biopsy in preoperative diagnosis and the current recommendations might
be revisited.

5. Conclusions

In this study, novel miRNA marker combinations have been established by artificial
intelligence-based methods showing high sensitivity and specificity that could aid in the
differential diagnosis of benign and malignant adrenocortical tissue specimens. The clinical
utility of these biomarkers should be further validated in even larger sample cohorts, and
their potential use on biopsy samples might also be evaluated. Prospective analysis on fresh
frozen samples is also warranted. These miRNA combinations could help postoperative
histological diagnosis.

6. Patents

Claims for patenting the three best performing biomarker combinations have been
submitted to the Hungarian Intellectual Property Office (P2200007).
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