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Tissue of origin determines cancer-associated
CpG island promoter hypermethylation patterns
Duncan Sproul1,2, Robert R Kitchen1,3, Colm E Nestor1,2, J Michael Dixon1, Andrew H Sims1, David J Harrison1,4,

Bernard H Ramsahoye1,5 and Richard R Meehan1,2*

Abstract

Background: Aberrant CpG island promoter DNA hypermethylation is frequently observed in cancer and is

believed to contribute to tumor progression by silencing the expression of tumor suppressor genes. Previously, we

observed that promoter hypermethylation in breast cancer reflects cell lineage rather than tumor progression and

occurs at genes that are already repressed in a lineage-specific manner. To investigate the generality of our

observation we analyzed the methylation profiles of 1,154 cancers from 7 different tissue types.

Results: We find that 1,009 genes are prone to hypermethylation in these 7 types of cancer. Nearly half of these

genes varied in their susceptibility to hypermethylation between different cancer types. We show that the

expression status of hypermethylation prone genes in the originator tissue determines their propensity to become

hypermethylated in cancer; specifically, genes that are normally repressed in a tissue are prone to

hypermethylation in cancers derived from that tissue. We also show that the promoter regions of

hypermethylation-prone genes are depleted of repetitive elements and that DNA sequence around the same

promoters is evolutionarily conserved. We propose that these two characteristics reflect tissue-specific gene

promoter architecture regulating the expression of these hypermethylation prone genes in normal tissues.

Conclusions: As aberrantly hypermethylated genes are already repressed in pre-cancerous tissue, we suggest that

their hypermethylation does not directly contribute to cancer development via silencing. Instead aberrant

hypermethylation reflects developmental history and the perturbation of epigenetic mechanisms maintaining these

repressed promoters in a hypomethylated state in normal cells.

Background
Aberrant DNA hypermethylation of CpG island (CGI)

promoters (promoter hypermethylation) occurs in many

cancers. This epigenetic reprogramming is associated

with the absence of transcription and can occur at a

number of known tumor suppressor genes, suggesting

that it contributes to tumor progression by silencing the

expression of affected genes [1]. Although this model has

been hugely influential, the significance of hypermethyla-

tion at CGIs in cancer has long been debated and ques-

tioned [2-4]. Also, despite intense study, the mechanisms

directing promoter hypermethylation in cancer remain

elusive and it is unclear whether the same mechanism

operates in different cancer types. In colorectal cancer, a

CGI hypermethylator phenotype (termed CIMP) has

been described where hundreds of CGIs become coordi-

nately hypermethylated during tumor progression [5,6].

Similar methylator phenotypes have been reported to

occur in cancers originating from other tissues [7-9]. In

these cases, it is particularly unclear whether hyper-

methylation is the primary event responsible for the

silencing of target genes, however based on the propen-

sity of large numbers of genes to become re-activated by

exposure to DNA de-methylating drugs, it has been sug-

gested that this might be the case [10].

Hypermethylation also plays a role in the regulation of

some genes during normal development, particularly at

imprinted loci and at CGI promoters on the inactive

X-chromosome (Xi) in female mammalian cells [11,12].

During X-inactivation CGI hypermethylation occurs

after gene silencing has already taken place [13,14] and

the initial silencing event does not require DNA
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methyltransferases [15,16]. Absence of the maintenance

methyltransferase, Dnmt1, in mice can lead to reactiva-

tion of the Xi later in development suggesting that in

this case CGI hypermethylation acts as a stabilizing fac-

tor that maintains silencing [15]. Where the temporal

dynamics of gene inactivation have been studied for

autosomal genes, hypermethylation occurs subsequent

to repression by other mechanisms [17].

We have recently shown that genes whose promoters

are hypermethylated in breast cancer cell lines and tumors

are already repressed in the putative lineage of origin and

that when methylation is removed in cancer cell lines,

either pharmacologically or genetically, most hypermethy-

lated genes do not become re-activated [18]. This implies

that the majority of cancer-associated CGI hypermethyla-

tion does not contribute to tumor progression under the

classic model because it occurs at genes that are already

switched off. Others have shown that hypermethylation of

APC frequently occurs in gastric cancer, but at a promoter

that is not utilized in normal gastric tissue [19] and that

RUNX3, whose tumor suppressor gene status is largely

based on the fact that it is frequently methylated in gastric

cancer, is never expressed in the gastrointestinal epithelial

cells that give rise to these tumors [20].

Here, we explore the generality of our observations in

breast cancer by analyzing data derived from 1,154 tumors

arising in 7 different human tissues. We show that varia-

bility in promoter CGI hypermethylation patterns between

tumors is explained by variability in gene expression pat-

terns between normal tissues and it is genes that are

repressed in the pre-cancerous tissue that become prefer-

entially hypermethylated in tumors. Our study represents

the first comprehensive analysis of promoter CGI hyper-

methylation in different human cancers and we propose

that the hypermethylation of repressed CGI promoters is a

common feature of most cancers.

Results
Tissue of origin determines promoter hypermethylation

patterns in cancers

We have previously shown that cell lineage determines

promoter hypermethylation patterns in breast cancer [18].

To examine the generality of these observations in cancers

arising in other tissues, we collected methylation profiling

data from 1,149 tumors of 7 different cancer types: breast

(Gene Expression Omnibus, [21], GEO:GSE31979), color-

ectal (GEO:GSE25062), prostate (GEO:GSE26126), lung

(The Cancer Genome Atlas, TCGA[22]) and ovarian

tumors (TCGA), along with acute-myeloid leukemias

(AMLs, TCGA) and glioblastomas (TCGA) [5,8,23-25].

These datasets were all generated using Illumina Infinium

HumanMethylation27 BeadChip methylation arrays, facili-

tating their cross comparison. We used these data to

define sets of genes that were frequently aberrantly

hypermethylated in each of the seven cancer types (See

Additional file 1, unmethylated in the corresponding nor-

mal tissue and methylated in >20% of cancer samples, see

methods for details). Our analyses were limited to genes

possessing CGI promoters because the hypermethylation

of non-CGI promoters is not always associated with tran-

scriptional repression [26,27]. The number of frequently

hypermethylated genes varied between cancer types with

the greatest number found in colorectal and lung tumors

(382 and 396 genes, respectively) and the least found in

ovarian tumors (100 genes) (See Additional file 2, Figure

S1A). To assess the reproducibility of these lists, we

derived a second set of genes frequently aberrantly hyper-

methylated in breast tumors from a meta-analysis of three

studies [7,18,28]. Of these 316 genes, 81.5% (256) were

found in our original list, a highly significant overlap (P <

2 × 10-16, Fisher’s exact test), demonstrating the reprodu-

cibility of our methodology. In total, 1,009 genes were

prone to hypermethylation by this analysis in at least one

type of cancer, including a number reported to be fre-

quently hypermethylated in cancer (for example, APC,

DAPK1, ESR1, GSTP1, SFRP genes and HOX genes)

[29-31]. None of the 1,009 gene sets were common to all

cancer types and roughly half (503 genes) were unique to

a single cancer type.

The overall levels of DNA methylation at these 1,009

hypermethylation-prone genes varied dramatically within

cancer types but were highest in colorectal tumors and

lowest in ovarian tumors (Figure 1a and Additional file 2

Figure S1B). Examination of the methylation profiles of

the 1,009 genes in the different cancer samples revealed

that 220 of the genes were consistently methylated in can-

cers of different tissues (in at least 5% of samples for each

tissue, Figure 1a). However, 446 of the genes had variable

methylation profiles and were hypermethylated in some

cancer types but not in others (Figure 1a, tick marks). For

example, 86 of the 1,009 hypermethylation prone genes

were never methylated in breast tumors but were methy-

lated in at least one other cancer type. To systematically

analyze sources of variation in the methylation profiles of

the 1,149 samples, we performed principal component

analysis (PCA) on the methylation data for the set of 1,009

hypermethylation prone genes [32]. The first principal

component accounted for around 66% of the variance in

the data and was significantly correlated with the median

methylation level of the 1,009 hypermethylation prone

genes (Figure 1b, R = 0.90, P < 2 × 10-16). The next three

components of the data accounted for 10.4% of the var-

iance in the data and clearly separated out the samples

into the seven different tissue types (Figure 1c). These ana-

lyses indicate that a substantial number of genes are prone

to hypermethylation in multiple cancer types but that the

susceptibility of many other genes to hypermethylation in

cancer is determined by tissue-type specific factors.
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Genes prone to hypermethylation in cancer are not

constitutively expressed

Having defined genes that were prone to hypermethyla-

tion in cancer, we next examined which factors affected

their propensity to become hypermethylated. As a con-

trol, we derived a second set of genes that were resistant

to hypermethylation in cancer (those that were never

methylated in any of the 1,149 cancer samples tested;

2,123 genes). The hypermethylation-prone and -resistant

gene sets were associated with different Gene Ontology

(GO) terms (Figure 2a). In particular, resistant genes

were enriched in housekeeping terms such as ‘Mitotic

Figure 1 Tissue of origin determines promoter hypermethylation patterns in cancers. (a) Cancer type determines tumor methylation

profiles. Shown are heatmaps of methylation levels at the 1,009 hypermethylation prone genes in 7 tumor types. Genes are ordered by their

frequency of methylation in breast cancer and tumors by the number of methylated genes. The black tick marks adjacent to the heatmaps

indicate genes that are never methylated in that tumor type. (b) Most variation between tumors corresponds to levels of methylation at

hypermethylation prone genes. Shown is a scatter plot of the median methylation level at the 1,009 methylation prone genes in each of the

1,149 tumors against its value along the first principal component. Tumors are colored by type. The two values are significantly correlated (R =

-0.90, P < 2 × 10-16). (c) Tumor type specific components exist in tumor hypermethylation patterns. Shown is a three-dimensional scatter plot of

the values of each of the 1,149 tumors along the 2nd, 3rd and 4th principal components. Tumors are colored by type (as in (b)).
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Cell Cycle’, and ‘RNA Processing and Macromolecule

Catabolic Process’ whereas prone genes were enriched

in developmental terms such as ‘System Development’

and ‘Organ Development’. We have previously shown

that genes hypermethylated in breast cancer cell lines

are expressed in a tissue-specific fashion in normal tis-

sues and these functional terms might suggest that

genes hypermethylated in diverse primary cancers also

have tissue-specific expression patterns [18].

We used a method based on information theory to

directly quantify the degree of tissue-specificity in a given

gene’s expression pattern across nine normal tissues that

were profiled by high-throughput mRNA sequencing

(RNA-seq, Sequence Read Archive, SRA:SRA008403)

[33-35], with a higher score equating to a more tissue-spe-

cific pattern of expression. Hypermethylation prone genes

were significantly more tissue-specific than hypermethyla-

tion resistant genes (Figure 2b). We observed similar

results when we defined the specificity of expression from

a panel of 36 tissues profiled on microarrays (See Addi-

tional file 2, Figure S2A, GEO:GSE2361) [36] or varied the

thresholds used to define hypermethylation prone genes

(See Additional file 2, Figure S2B). Furthermore, genes fre-

quently hypermethylated in each of the seven different

cancers were also found to have tissue-specific expression

patterns (See Additional file 2, Figure S2C) as were genes

found to be hypermethylated in colorectal tumors by alter-

native methylation profiling techniques (methyl-binding

domain pull-down and sequencing, MBD-seq, or whole

genome bisulfite sequencing [37-39], Additional file 2,

Figure S2D, SRA:SRA029584 and [40,41]). Therefore,

genes prone to hypermethylation in cancer are robustly

associated with tissue-specific expression patterns in nor-

mal tissues. One possibility is that hypermethylation selec-

tively accumulates at tissue specific genes because the

disruption of many housekeeping genes might be cell-

lethal. However, we found that a set of CGI promoter

genes reported as recurrently mutated in breast tumors

showed no preference towards either tissue specific or

housekeeping expression patterns in normal tissues imply-

ing that the disruption of housekeeping genes is not neces-

sarily lethal, at least to breast tumor cells (See Additional

file 2, Figure S2E). Our analyses show that genes that are

prone to hypermethylation in cancer are distinguished

from those resistant to hypermethylation by their regu-

lated expression pattern in normal tissues.

Aberrantly hypermethylated genes have conserved

promoter regions

Based on genes hypermethylated in multiple cancer cell

lines, one study has suggested that the transcriptional start

sites (TSSs) of genes prone to hypermethylation are

depleted of repetitive elements [42]. We investigated

whether this was also true of our set of hypermethylation

prone genes derived from primary cancers. In our ana-

lyses, all three major classes of repetitive elements (LINEs,

SINEs and long terminal repeats (LTRs)) were depleted

from the TSSs of CGI promoters and to a lesser extent

non-CGI promoters (See Additional file 2, Figure S3A).

However, genes prone to hypermethylation in cancer had

a significantly greater depletion of repetitive elements than

hypermethylation resistant genes (Figure 3a). The greater

depletion from the promoters of hypermethylation prone

genes could be caused by an unknown activity of repetitive

Figure 2 Genes prone to hypermethylation in cancer are not constitutively expressed. (a) Hypermethylation-prone and -resistant genes

are associated with distinct biological processes. Shown are graphs of the percent enrichment or depletion for the 10 most enriched GO

biological process in the hypermethylation resistant and prone gene sets. For each term the enrichment or depletion in both gene sets is

plotted. All terms were enriched or depleted to a significant level for both gene sets (Fisher’s exact tests, P < 0.05). (b) Hypermethylation prone

genes are tissue-specific. Histograms show the distribution of tissue-specificity scores observed for hypermethylation prone and resistant genes.

Specificity scores for prone and resistant gene sets were compared using a Wilcoxon rank sum test. (*** P < 0.001). GO, genome ontology.
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elements in protecting CGIs from aberrant hypermethyla-

tion as has been previously suggested [42]. However, this

model is inconsistent with both the hypermethylation of

repetitive elements in normal tissues and their hypo-

methylation in cancer [43]. Based on our observation that

hypermethylation prone genes have tissue-specific expres-

sion patterns (Figure 2b), we considered an alternative sce-

nario. The expression pattern of tissue-specific genes is

often regulated by elements that lie distant to their promo-

ter [44]. The insertion of a transposable element close to a

tissue-specific gene might be detrimental to its regulation

because it could directly disrupt one of these regulatory

elements or interrupt their interaction with the gene pro-

moter. The depletion of repetitive elements seen at hyper-

methylation prone genes could, therefore, reflect an

evolutionary need to preserve the proper developmental

regulation of these genes.

Many of the bioinformatic techniques used to discover

functional elements in the human genome use compari-

sons of the genomes of multiple species to infer their

presence through evolutionary conservation [45]. There-

fore, a testable consequence of our hypothesis regarding

the presence of regulatory elements in the vicinity of

hypermethylation prone promoters is that we should

detect a greater degree of evolutionary constraint or

conservation around these promoters. We quantified the

level of evolutionary conservation around transcription

start sites using two different measures: one based on

the rate of nucleotide substitutions between species [46]

and the other based on the measurement of the rate of

insertions and deletions between species [47]. The pro-

files of these scores mirrored that of repetitive elements

and the greatest conservation was seen directly over the

TSS (Figure 3b). Conservation was greater downstream

of the TSS relative to the upstream region, probably due

to the presence of exonic sequences. However, hyper-

methylation-prone genes had significantly higher levels

of conservation as measured by both scores, at the TSS

and extending into the upstream and downstream

regions (Figure 3b). Similar results were observed for

Figure 3 Hypermethylated genes have conserved promoter regions. (a) Hypermethylation prone promoters are depleted of repetitive

elements. Shown are graphs of the frequency of LINEs, SINEs and LTRs at 1 kb intervals around hypermethylation prone and resistant TSSs. The

significance of the differences in densities observed at prone and resistant genes were determined using Fisher’s exact tests for the repeat

counts ± 2 kb from the TSSs (*** P < 0.001, ** P < 0.01 and * P < 0.05). (b) Hypermethylation prone promoter regions are evolutionarily

conserved. Shown are graphs of the level of conservation found in 500bp intervals around hypermethylation prone and resistant TSSs.

Conservation was assessed through two different methods: one measuring the rate of basepair substitutions between species, ‘bp Changes’ [46],

and the other measuring the rate of insertions and deletions between species, ‘Indel. Pur.’ [47]. The significance of observed differences between

hypermethylation-prone and -resistant genes was assessed using a Wilcoxon rank sum test for the scores ± 2 kb from the TSSs.

(c) Hypermethylation prone genes are found adjacent to lincRNAs. Shown is a chart of the percent of hypermethylation-prone and -resistant

genes found neighboring a lincRNA [49]. The significance of differences between the gene sets was assessed using Fisher’s exact tests. lincRNA,

long intergenic non-coding RNAs; LTR, long terminal repeat; TSSs, transcriptional start sites.
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hypermethylation prone genes defined from either

MBD-seq or whole-genome bisulfite sequencing profil-

ing of colorectal tumors [37-39] (See Additional file 2,

Figure S3B) suggesting that this property was not an

artifact of data generated from Illumina Infinium arrays.

Recently, long intergenic non-coding RNAs (lincR-

NAs) have been proposed to play a cis regulatory role at

some tissue specific genes [48]. Their presence is there-

fore a further surrogate of regulatory complexity at

nearby genes, so we asked whether lincRNAs were

enriched at hypermethylation prone genes. As predicted,

we found that hypermethylation prone genes were signifi-

cantly enriched in neighboring lincRNAs defined in a

recent comprehensive analysis of human tissues when

compared to hypermethylation resistant genes (Figure 3d)

[49]. Thus, hypermethylation prone genes are normally

expressed in a tissue-specific manner and the vicinity of

their promoters is depleted of repeats and is evolutionarily

conserved compared to hypermethylation resistant genes.

We propose that these characteristics result from an evo-

lutionary need to preserve regulatory elements required

for the proper regulation of genes prone to hypermethyla-

tion in cancer during normal development.

Variation in hypermethylation patterns in tumors is

determined by gene expression patterns in the tissue

of origin

Although repeat occupancy and conservation differ

between hypermethylation-prone and -resistant genes,

these factors displayed overlapping distributions for the

two gene sets (See Additional file 2, Figure S3C and D).

For example, some hypermethylation prone genes comple-

tely lacked SINE elements in the vicinity of their TSSs but

other hypermethylation prone genes were found with

more SINE elements than the average hypermethylation

resistant gene (See Additional file 2, Figure S3C). Also,

repeat occupancy and evolutionary conservation are invar-

iant between different tissues and so do not explain the

variable susceptibility of some genes to hypermethylation

between cancers of different tissues (Figure 1a). Therefore,

there must be other determinants of a gene’s susceptibility

to hypermethylation in a particular cancer.

To uncover such determinants, we considered genes

with variable methylation between tumors (VM genes, 446

hypermethylation prone genes defined as being never

hypermethylated in at least one cancer type, see Additional

file 3 and Figure 1a, tick marks). For comparison, we also

defined a set of 220 consistently methylated (CM) genes

that are methylated in all 7 cancer types (≥5% of samples

of each tumor type, see Additional file 4). Both VM and

CM genes were expressed in a more tissue specific fashion,

depleted in repetitive elements and evolutionarily con-

served compared to hypermethylation resistant genes

(Figure 4a andAdditional file 2, Figure S4A and B). How-

ever, the expression of CM genes in normal tissues was

significantly more tissue-specific than VM genes (Figure

4a). This suggests an inverse relationship between a gene’s

breadth of expression in normal tissues and the number of

cancers in which it becomes hypermethylated; that is,

genes that are expressed in fewer tissues become hyper-

methylated in more tumor types. In support of this rela-

tionship, we observed a significant correlation between a

gene’s specificity of expression in normal tissues and the

number of tumors in which it was frequently hypermethy-

lated (See Additional file 2, Figure S4C).

We have previously demonstrated that a gene’s expression

status in normal cells is linked to its susceptibility to

hypermethylation in breast cancer by showing that genes

repressed in a lineage-specific fashion in the normal breast

are prone to hypermethylation in different subtypes of

breast cancer cell lines and tumors [18]. We, therefore,

examined whether gene expression patterns in normal tis-

sues might explain the differential susceptibility to hyper-

methylation for VM genes in cancer. Examination of the

list of VM genes along with their susceptibility suggested

this might be the case. For example, PAX6 is prone to

hypermethylation in cancer but not in glioblastomas (See

Additional file 3). The gene is vital for the normal develop-

ment of the brain and its expression persists into adult-

hood [50]. Similarly, GFI1 is prone to hypermethylation in

cancer but not in AML and is vital for normal hematopoi-

esis; mice and humans lacking functional GFI1 are neutro-

penic suggesting that GFI1 functions in myleopoiesis and

is expressed in the cells from which AMLs originate

[51,52].

We tested if normal expression patterns determined

hypermethylation susceptibility by considering VM genes

with differential susceptibility in individual cancer types.

VM genes that were frequently hypermethylated in breast

tumors (67 genes) were repressed in the cells of origin of

most breast tumors, luminal epithelial cells [53], as com-

pared to normal breast stromal cells (Figure 4b, GEO:

GSE16997). Conversely, VM genes that were never hyper-

methylated in breast tumors were active in luminal epithe-

lial cells (Figure 4b, 86 genes). Similarly, VM genes

resistant to hypermethylation in colorectal tumors, glio-

blastomas and lung tumors were significantly more active

in the corresponding normal tissue than VM genes prone

to hypermethylation in the same tumor type (Figure 4c,

SRA:SRA008403), and genes that were hypermethylated

in colorectal tumors, as defined by MDB-seq or whole-

genome bisulfite sequencing, were also significantly less

active than those that did not become hypermethylated

(See Additional file 2, Figure S4D). Furthermore, expres-

sion status in normal tissues was predictive of aberrant

hypermethylation in cancer as genes which were repressed
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in normal colon compared to normal liver were signifi-

cantly more likely to be hypermethylated in colorectal

tumors than genes that are active in normal colon but

repressed in the normal liver (Figure 4d, one-sided Wil-

coxon rank sum test P = 1.6 × 10-7, GEO:GSE13471). We

have previously shown a similar preference for genes spe-

cifically repressed in luminal epithelial cells to be hyper-

methylated in breast tumors [18]. Together these analyses

suggest that variability in promoter hypermethylation pat-

terns between cancer types results from the variability in

Figure 4 Expression patterns in normal tissues explain differential susceptibility to hypermethylation in cancer. (a) Consistently

hypermethylated genes are more tissue specific than variably hypermethylated genes. Shown are histograms of tissue-specificity scores (as

Figure 2b) observed at hypermethylation prone genes that were consistently or variably methylated in different tumor types. Differences

between gene sets were tested using Wilcoxon rank sum tests (*** P < 0.001, ** P < 0.01 and * P < 0.05). (b) Variably hypermethylated genes

with differential susceptibility in breast cancer are differentially expressed in normal breast tissue. Shown are boxplots of the relative level of

expression in different cells from normal breast found at VM genes that are either frequently or never hypermethylated in breast tumors [85].

Differences between cellular fractions were tested using Wilcoxon rank sum tests. Lum = luminal epithelial cells, Lum Pro = luminal progenitor

cells, Bas = basal myoepithelial cells, Stroma = breast stromal cells. (c) Variably hypermethylated genes that are prone to hypermethylation in

tumors are repressed in the corresponding normal tissue. Shown are boxplots of the expression levels measured for VM genes with different

susceptibility in individual tumor types in the corresponding normal tissues. Res = never hypermethylated in tumors, Prone = frequently

hypermethylated in tumors. Differences between gene groups were tested using Wilcoxon rank sum tests. (d) Repressed genes are more prone

to hypermethylation than active genes in colorectal cancer. Shown are heatmaps of the methylation levels of CGI promoter genes that are

unmethylated in normal colon tissue and are either activated (left) or repressed (right) in normal colon as compared to normal liver. The 356

repressed genes are methylated to a significantly higher level than the 1,465 active genes (one-sided Wilcoxon rank sum test P = 1.6x10-7). CGI,

CpG island; VM, variably methylated.
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gene expression patterns in normal tissues, and that genes

that become hypermethylated in cancer are repressed in

the pre-cancerous tissue of origin.

Discussion
The aberrant hypermethylation of CGI promoters is of

interest because it correlates with gene silencing and can

occur at tumor suppressor genes [54]. Here, we present the

first comprehensive analysis of CGI promoter hypermethy-

lation in multiple cancer types and show that the genes

that are hypermethylated are already repressed in the nor-

mal tissues that give rise to these tumors (Figure 5a). The

potential for a gene to act as a tumor suppressor is depen-

dent on its activity in a particular cellular context. Our

study, therefore, demonstrates that the major contribution

of general CGI promoter hypermethylation to cancer can-

not be the silencing of tumor suppressor genes because it

affects genes that are already repressed in pre-cancerous

tissue.

During normal development, DNA methylation accu-

mulates at loci that are already repressed and may facili-

tate stable transcriptional repression rather than directly

cause silencing [55]. We have previously demonstrated

that breast cancer cell lines and tumors of different

lineages preferentially hypermethylate genes that are

already silent in their equivalent normal cells [18]. Our

current study extends this to tumors arising in different

tissues and suggests that the hypermethylation of

repressed genes represents a universal principle across all

cancers. Other studies of individual genes also support

this conclusion, for example, RUNX3 is frequently hyper-

methylated in gastric cancers but is never expressed in

normal gastric epithelia [20]. Therefore, CGI promoter

hypermethylation in cancer shares features with pro-

cesses that occur in normal cells and does not necessarily

represent a de novo aberrant mechanism.

Our analyses show that this model applies to the major-

ity of hypermethylated genes found in tumors, but it has

been proposed that within each tumor a few ‘driver’ genes

are directly repressed by hypermethylation [54]. Under

this scenario, the hypermethylation of repressed genes

could be a ‘passenger’ event and is a surrogate of epige-

netic dysregulation. An analogous model is proposed for

genetic mutations in cancer [56,57]. Known tumor sup-

pressor genes are hypermethylated in the tumors we ana-

lyzed but methylation of these genes generally occurs

much more rarely than the hypermethylation of repressed

genes, suggesting that a driver/passenger model may in

fact apply (See Additional file 2, Table S1). For example,

the hypermethylation of BRCA1 only occurs in 12% of

ovarian cancers and 2% of breast cancers. We find that

APC is hypermethylated more frequently (for example, in

33% of colorectal cancers) but it has multiple TSSs and a

promoter that is repressed in normal gastric tissue has

been shown to be the site of hypermethylation in gastric

cancers [19]. Therefore, the significance of frequent APC

hypermethylation depends on whether it occurs at the

major promoter in these tissues. It is unclear whether the

hypermethylation of these potential driver genes occurs as

a by-product of the process that results in the hyper-

methylation of repressed genes or by an alternative

mechanism (for example, the direct selection of epimuta-

tions). It is known that MLH1 is frequently hypermethy-

lated in colorectal tumors that possess a CIMP phenotype

[5]. However, if methylator phenotypes do generally con-

tribute to the repression of driver genes, we would expect

tumors with higher levels of promoter CGI hypermethyla-

tion to demonstrate more aggressive clinical behavior

because they would be statistically more likely to have

inactivated more tumor suppressor genes. Tumors with

methylator phenotypes in colorectal cancer, breast cancer

and glioblastoma correlate with better clinical prognosis

[7,8,58].

Our results confirm a previous observation that the

promoters of genes prone to aberrant hypermethylation

in cancer are depleted of repetitive elements [42]. How-

ever, we suggest that this occurs due to an evolutionary

Figure 5 Model: Variation in tumor hypermethylation profiles

reflects gene expression in normal tissue. (a) Genes repressed in

a tissue-specific manner are prone to hypermethylation in tumors

derived from that tissue. (b) Possible mechanisms that result in the

hypermethylation of repressed CGI promoters in cancer. CGI

promoter hypermethylation could result from either the loss of a

mechanism maintaining CGIs in a hypomethylated state (for

example,TET enzymes) or a gain of de novo methyltransferase

activity at the CGI (whether targeted by transcription factors or

through an increase in levels of the proteins in the cell). CGI, CpG

island.
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need to preserve the regulation of these genes in normal

development rather than as a direct protective effect of

repeats as was suggested [42]. Our conclusion that hyper-

methylation resistant genes are primarily housekeeping

genes is supported by another study that associated the

presence of motifs for general transcription factors with

resistance to hypermethylation in cancer [59]. The fea-

tures we associate with hypermethylation prone genes

overlap with those of genes regulated by Polycomb repres-

sive complexes. For example, the prototypical gene of this

class, HOX genes, are found in clusters that are devoid of

repetitive elements and are regulated by lincRNAs [60,61].

Previous studies have linked promoter hypermethylation

in cancer to Polycomb and the overlap between Poly-

comb-marked genes in embryonic stem (ES) cells and

genes hypermethylated in cancer has been noted [30].

However, the profile of Polycomb marks in a single cell

type is constant and does not account for the variability in

hypermethylated genes between cancers of different tis-

sues. Furthermore, although sets of hypermethylated genes

are statistically enriched in these Polycomb-marked genes,

only 30% to 60% of hypermethylated genes carry these

marks in ES cells [5,18]. Polycomb-marked genes in ES

cells carry bivalent histone modifications and are differen-

tially activated or repressed in alternative cell lineages as

differentiation proceeds [62,63]. It is therefore possible

that these genes are prone to methylation because they

can be repressed in a tissue-specific fashion rather than

because of their association with Polycomb in ES cells.

We find that the aberrant hypermethylation of repressed

genes occurs in all cancer types analyzed implying that a

common mechanism might be responsible for promoter

hypermethylation in all cancers. Although the exact

mechanism remains unknown, our results mean that pro-

posed mechanisms must account for the specificity of

hypermethylation for repressed genes (Figure 5b). For

example, if aberrant hypermethylation results from the

loss of an activity protecting CGIs from hypermethylation

in normal cells [3] then the specificity of hypermethylation

for repressed genes implies that different factors are

responsible for maintaining hypomethylation at repressed

and active CGIs or that hypomethylation is maintained at

active CGIs via multiple redundant mechanisms that are

not all present at the CGI promoters of repressed genes.

TET (ten-eleven translocation) hydroxylase enzymes may

be capable of mediating this protective activity through

their proposed role in DNA demethylation [64] and inhibi-

tion of their enzymatic activity in cancer correlates with

the hypermethylation of CGIs [65]. Aberrant hypermethy-

lation could also result from the recruitment of DNA

methyltransferases (DNMTs) by transcription factors

[66,67]. However, transcription factors also activate genes

and it remains to be demonstrated how these interactions

might result in the specific hypermethylation of repressed

genes. Over-expression of DNMT3B promotes tumorigen-

esis in a mouse model of colorectal cancer and is asso-

ciated with the hypermethylation of specific genes [68].

Higher DNMT3B levels have also been associated with the

CIMP phenotype in human colorectal tumors [69,70].

One of these studies also determined the stage in tumori-

genesis at which different genes became hypermethylated

showing that the repressed gene RUNX3 was the earliest

CGI promoter to show significant change [20,69], suggest-

ing that differences in the expression of DNMTs could be

linked to the hypermethylation of repressed genes.

Here we have shown that differences exist in the aber-

rant hypermethylation profiles of cancers arising in differ-

ent tissue contexts. However, our results also make it clear

that there is heterogeneity in the methylation profiles

within particular types of cancer (Figure 1a). It is unclear

how this heterogeneity arises but some mutations may

play a direct role in its generation, for example, those that

inhibit TET enzyme activity [8,65]. Colorectal cancer has

previously been split into at least three groups based on

methylation profiles: non-CIMP tumors, CIMP-high

tumors associated with BRAF mutations and CIMP-low

mutations associated with KRAS mutations [5,71]. Inter-

estingly, a recent study suggested that CIMP-low tumors

hypermethylate a subset of the genes hypermethylated in

CIMP-high tumors rather than distinct sets of genes [5].

Our own results might also suggest that variation between

cancers in a given tissue can manifest itself as variable

levels of methylation at methylation prone genes rather

than the hypermethylation of alternative gene sets (see

Figure 1a). We have previously shown that differences in

the hypermethylation profiles of breast cancer subtypes of

putatively different cells of origin can arise because of dif-

ferences in gene expression in normal cell populations

[18]. Taken together, these results suggest that the hyper-

methylation of genes that are repressed in the normal cells

of origin can account for the heterogeneity of tumor

methylation profiles and variation in aberrant hypermethy-

lation arises due to variations in the cells of origin or other

factors, such as mutations, that influence the strength of

the repressed gene methylator phenotype.

Recently, hydroxymethylated cytosine (hmC) has been

re-discovered as a DNA modification present at significant

levels in mammalian cells [72]. The Illumina arrays that

were used to generate most of the datasets we have ana-

lyzed are unable to distinguish methylated cytosine (mC)

from hmC [73] and the results we present may relate to

hmC rather than mC marked promoters in cancer. How-

ever, we have confirmed that these results equally apply in

additional datasets derived by MBD pull-down, which is

specific for 5mC (See Additional file 2, Figures S2D, S3B

and S4D). In addition, hmC appears to be generally

depleted in cancer [74-76]. It is likely, therefore, that
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repressed genes are prone to hypermethylation rather than

hyperhydroxymethylation.

Conclusions
In summary, our results argue that the bulk of aberrant

promoter hypermethylation in cancer occurs predomi-

nantly at genes that are repressed in pre-cancerous tissue

and therefore does not directly contribute to tumor pro-

gression by silencing tumor suppressor genes. This epige-

netic alteration is common to all the cancer types we

have analyzed implying that a common mechanism is

responsible for promoter hypermethylation at repressed

genes in all cancers. Future research in this field should,

therefore, focus on confirming whether aberrant hyper-

methylation does directly suppress rare driver genes and

if the mechanism responsible for driver gene suppression

is the same as that acting at repressed genes. Finally, we

would suggest that researchers must exercise caution in

assigning a tumor suppressor status to a gene based on

its propensity to become hypermethylated in cancer.

Materials and methods
Statistical analyses

All statistical analyses were performed using the R sta-

tistical software (version 2.12.1) [77]. Additional

packages used are mentioned under the appropriate

section.

Data sources

Gene expression and methylation data used in this study

were taken from previously published studies. The

sources of the data are indicated in Table 1 and the

number of samples in each dataset in Table 2.

Genome annotation

In order to apply a consistent annotation to the data

used in this study, all data were re-annotated to

Ensembl 54 gene IDs (NCBI36). CpG probes from the

Illumina Infinium arrays were mapped to the closest

Ensembl gene based on TSS location using custom Perl

and R scripts. CpGs that ambiguously mapped to more

than one gene ID were removed from the analysis. CGI

locations were taken from those biologically defined in a

recent study [38]. Similarly, expression data were

mapped as previously described for Illumina expression

arrays [18] or using publically available re-annotations

for Affymetrix expression arrays [78]. RNAseq data were

mapped to Ensembl gene IDs as described below. lincR-

NAs were mapped to neighboring Ensembl gene IDs as

described below.

Processing of methylation data

For data originating from Infinium methylation arrays,

beta values were used as a measure of the methylation

level at a given CpG probe (derived from the intensity

Table 1 Sources of methylation and expression data.

Tissue Type Reference Data Source Type

Breast Tumor [23] GEO (GSE31979) Methylation (Inf 27k)

Colorectal Tumor [5] GEO (GSE25062) Methylation (Inf 27k)

Prostate Tumor [24] GEO (GSE26126) Methylation (Inf 27k)

Glioblastoma [8] TCGA [22] Methylation (Inf 27k)

Lung Tumors [22] TCGA [22] Methylation (Inf 27k)

AML [22] TCGA [22] Methylation (Inf 27k)

Ovarian Tumors [25] TCGA [22] Methylation (Inf 27k)

Normal Tissues [18] GEO (GSE26990) Methylation (Inf 27k)

Normal Tissues [81] GEO (GSE30090) Methylation (Inf 27k)

Colorectal Tumors [38] Publication Supplementary Dataset S1 [40] Methylation (MBD-seq)

Colorectal Tumors [39] SRA (SRA029584) Methylation (MBD-seq)

Colorectal Tumor [37] Author’s Website [41] Methylation (WG bis-seq)

Breast Tumors [7] GEO (GSE26349) Methylation (Inf 27k)

Breast Tumors [18] GEO (GSE26990) Methylation (Inf 27k)

Breast Tumors [28] Author’s Website [82] Methylation (Inf 27k)

Normal Tissues [36] GEO (GSE2361) Expression (Affy 133A)

Normal Tissues [34] SRA (SRA008403) Expression (RNA-seq)

Normal Breast Tissue Cell Fractions [85] GEO (GSE16997) Expression (Ill v3)

Normal Colon and Liver [89] GEO (GSE13471) Expression (Affy 133plus2)

Details of data sources used in each study. The tissue type found in each dataset, the study this data were taken from, the data type and the source of the

original data used are indicated. GEO and SRA accession numbers are included in the table along with links to data from other sources. Inf 27k, Illumina Infinium

HumanMethylation27 BeadChip array; MBD-seq, Methyl Binding Domain pull-down followed by sequencing; WG bis-seq, whole genome bisulfite sequencing; Affy

133A, Affymetrix U133A genechip; Affy 133plus2, Affymetrix U133plus2 genechip; Ill v3,Illumina WG6 V3.0 human beadchips. Data from Noushmehr et al. 2011

(Glioblastoma methylation)[8] and TCGA 2011 (Ovarian tumor methylation)[25] were limited to IDs identified in these publications when downloaded from the

TCGA website[22]. Methylation data from lung tumors and AML were downloaded from the TCGA website on 19 October 2011. AML, acute myeloid leukemia.
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of the methylated, Imeth, and unmethylated, Iunmeth, allele

probes: Imeth /(Imeth + Iunmeth) ). We have previously

shown that these are a reliable estimate of the level of

methylation at a locus [18]. These data were then fil-

tered to remove unreliable values based on the detection

P-value from the Infinium arrays (threshold 0.01).

Methylation data originating from other techniques

(MDB-seq or whole-genome bisulfite sequencing) were

either downloaded as processed data provided by the

authors [37,38] or processed from raw sequencing files

[39]. We first downloaded raw sequencing data from the

SRA [35]. We then aligned these reads to the genome

using Bowtie (version 0.12.7) [79] and the BEDtools

(version 2.12.0) coverageBED tool to quantify the num-

ber of reads at each CGI [80]. The read counts of CGIs

were then normalized for CGI length and the total

number of reads per sample to obtain a reads per kb

per million mapped reads (RPKM) value for each CGI

and the mean value taken from replicates of individual

samples.

Definition of hypermethylation-prone and -resistant

genes

Hypermethylation-prone and -resistant genes were

defined from Illumina infinium array data using beta

value cutoffs (roughly equating to percent methylation

divided by 100). Previously, we have shown that probes

with beta values <0.3 represent unmethylated areas of the

genome [18] and we therefore defined unmethylated

probes on this basis. In cell lines, we have previously

shown that probes with beta >0.7 represent genomic loci

that are fully methylated [18]. However, in a preliminary

analysis, we found that in the breast tumor samples used

here, probes that had beta values >0.7 were also all

methylated in normal breast tissue (data not shown).

Probes that were aberrantly hypermethylated in these

tumors had lower beta values because of the mix of can-

cerous and normal tissue in the samples analyzed. In this

study, we therefore set a beta value threshold of >0.3 to

define methylated probes. We only considered probes

that were located within a CGI and within 200bp of a

TSS that were unmethylated in all available normal sam-

ples from that tissue when defining gene sets (the ‘all’

genes control set for each tumor type). Frequently hyper-

methylated genes for each cancer were defined as genes

satisfying these criteria that were methylated in at least

20% of tumor samples. Similarly, hypermethylation resis-

tant genes satisfied these criteria but were not found to

be methylated in any of the tumors. Genes present in

both lists were then excluded from the analysis as being

of ambiguous status to control for the presence of multi-

ple probes at some genes.

To ensure that the method of gene selection did not

bias our results, we also carried out analyses in which

parameters were varied (See Additional file 2, Figure S2B

and data not shown). We considered two major varia-

tions: we varied the threshold used to define aberrantly

methylated genes and we varied the threshold required to

call genes frequently aberrantly hypermethylated. In the

first case, aberrantly hypermethylated genes were defined

as those for which no probes had beta >0.3 in normal tis-

sue and for which their mean beta value was >0.5 in at

least 20% of cancers of a given type. In the second case,

we varied the percent of samples required for a gene to

be defined as frequently hypermethylated from 10% to

50%.

Two of the datasets used did not contain normal sam-

ples to define probes’ normal tissue methylation status.

Table 2 Dataset sample numbers for cancer methylation data.

Tissue Type Number of Cancer Samples Number of Normal Samples Technology

Fackler Breast Tumors 103 21 Infinium 27k

Fang Breast Tumors 39 2 Infinium 27k

Sproul Breast Tumors 34 2 Infinium 27k

Van der Auwera Breast Tumors 62 10 Infinium 27k

Colorectal Tumors 125 29 Infinium 27k

Illingworth Col. Tum. 5 5 MDB-seq

Xu Col. Tum. 6 3 MDB-seq

Berman Col. Tum. 1 1 WG bis-seq

Prostate Tumors 95 86 Infinium 27k

Glioblastomas 88 2 Infinium 27k

Lung Tumors 66 24 Infinium 27k

AMLs 188 8 Infinium 27k

Ovarian Tumors 484 8 Infinium 27k

Details of the number of methylation profiles analyzed for each cancer type. The cancer type, the number of cancer and normal samples analyzed and the

technology used to generate the methylation profiles in each case are shown. AMLs, acute myeloid leukemias; Col. Tum, colorectal tumors; Infinium 27k, Illumina

infinium Infinium HumanMethylation27 BeadChip array; MBD-seq, Methyl Binding Domain pull-down followed by sequencing; WG bis-seq, whole genome

bisulfite sequencing.
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In these cases, we made use of other datasets. For glio-

blastoma we used the fetal and adult brain samples

from Sproul et al. [18]. For AML we used the whole

blood, neutrophils, B-cells, CD4 and CD8 T-cells, nat-

ural killer cells and CD34+ hematopoeitic stem cells

samples from Calvanese et al. [81]. We then defined the

1,009 hypermethylation prone genes from those being

frequently hypermethylated in at least 1 of the 7 can-

cers, and the 2,123 hypermethylation resistant genes as

those that were never methylated in any of the tumors

analyzed. Consistently and variably prone genes (CM

and VM, respectively) were defined as hypermethylation

prone genes that were methylated in at least 5% of

tumors of each type or never methylated in at least one

tumor type, respectively.

To validate the reproducibility of our method of defining

hypermethylation prone genes, we compared our list of

genes frequently hypermethylated in breast tumors to a

second list defined by the cross-comparison of three inde-

pendent studies [7,18,28]. Data from these studies were

either downloaded from GEO or from the author’s website

(GEO: GSE26349 and GSE26990) [82]. Frequently hyper-

methylated genes were defined as above but only genes

that were frequently hypermethylated in all three datasets

were included in the analysis.

To define frequently hypermethylated and resistant

genes from the Illingworth et al. MBD-seq data, we first

generated lists of CGIs that were unmethylated in all of

the normal colon samples [38]. We then defined those

CGIs that had higher levels of methylation in at least two

of the tumor samples when compared to their matched

normal samples as frequently hypermethylated CGIs.

Resistant CGIs were defined as those that did not show

higher levels of methylation in any of the tumors com-

pared to their matched normal tissues. CGIs were assigned

to genes if their transcription start site was present in the

CGI. Genes present in both frequent and resistant lists

were also removed because their status was ambiguous.

To define genes which were hypermethylated in colorec-

tal tumors from the Xu et al. MDB-seq data [39], we used

one-sided Wilcoxon rank sum tests to find CGIs with sig-

nificantly more reads in tumor samples than normal sam-

ples (P < 0.05). CGIs were assigned to genes if their TSS

was present in the CGI. Using this methodology, we were

unable to define a set of hypermethylation resistant genes.

We defined genes prone to and resistant to hyper-

methylation from the Berman et al. whole- genome bisul-

fite sequencing data [37] as genes with CGI TSSs which

were located in regions defined as methylation-prone or

-resistant in that study. These regions were downloaded

from the author’s website. Genes which were defined as

both methylation-prone and -resistant were excluded as

being of ambiguous status.

Processing of expression data

To process RNA-seq data, raw sequence data for nine

human tissues [34] were downloaded from GEO and con-

verted to FASTQ format using the SRA Toolkit (version

2.1.7). Several technical replicates were available for each

tissue. However, we randomly chose a single replicate in

each case for simplicity and because different tissues had

different numbers of replicates in this dataset. We exam-

ined each sample for per-base and per-read quality and

over-represented kmers using the FastQC software (ver-

sion 0.9.4) [83]. Reads were mapped simultaneously to the

human genome (NCBI version 36/hg18) and a library con-

taining the sequences of all possible exon splice junctions

(Ensembl 54 exons) created using RSEQtools [84]. Reads

were mapped using Bowtie (version 0.12.7) [79] allowing

for a maximum of two mismatched bases and reporting

the single best alignment for each read. RPKM values

were computed for each ENSEMBL gene using reads map-

ping to exons and junctions of its longest transcript.

Processed Illumina gene expression data were down-

loaded from GEO and summarized to individual Ensembl

IDs by taking the mean value of all probes mapped to

that gene [85]. Reported probe detection values were

used to remove genes from the analysis for which all

probes had a value >0.05 in all samples. Affymetrix

expression data were summarized using the RMA algo-

rithm from the Bioconducter affy package and an

updated annotation [78]. Detection calls were also gener-

ated using the MAS5 algorithm in the Bioconducter affy

package.

To define CGI genes that were differentially expressed

between normal colon and normal liver, we assayed for

differential expression in processed expression microar-

ray data using t-tests and Benjamini-Hochberg correction

for multiple testing (assuming unequal variance and with

a false discovery rate (FDR) of 5%). We then refined

these lists to only those that had CGI promoters and had

probes on the Infinium array within 200bp of their TSS

that were unmethylated in normal colon (1,456 colon

active and 356 colon repressed genes) before comparing

methylation levels in colorectal tumors between these

groups.

Analysis of GO-terms

To analyze functional terms, Ensembl Biomart was used

to map gene identifiers to GO biological process terms

(Ensembl 54). Enrichment of specific terms in each gene

list was then assessed using Fisher’s exact test as com-

pared to all genes present on the Infinium array. Terms

that were associated with less than 10 genes on the Infi-

nium arrays were excluded from the analysis. Data were

presented as change in the percent of genes in each set as

compared to the control.
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Definition of tissue specificity of gene expression

The specificity of a gene’s expression pattern in normal

tissues was measured using a method based on informa-

tion theory [33]. A low score indicates that a gene is uni-

formly expressed and a high score indicates that it is

expressed specifically in one tissue. For plotting, we cal-

culated the specificity for all genes and then split them

into five equally sized groups of increasing specificity.

We first removed any genes from the analysis that were

potentially unexpressed in all assayed samples. For

microarray expression data this was done using Affyme-

trix MAS5 detection calls by defining genes that were

‘absent’ in all samples as being unexpressed in all tissues.

For RNA-seq, genes unexpressed in all tissues were

defined as those that had RPKM values of 0 in all tissues.

The specificity of individual gene sets was examined by

plotting their distribution across the five specificity

groups or by plotting the scores themselves. To test sig-

nificance, the specificity scores of gene sets were com-

pared using Wilcoxon rank sum tests.

Definition of genes mutated in breast cancer

Genes reported as mutated in breast cancer were defined

using the Catalogue of Somatic Mutations in Cancer

(COSMIC, [86]) database [87]. Reports of genes mutated

or not mutated in breast cancer samples were down-

loaded from COSMIC biomart (version 52B) and used to

generate two lists of genes: those mutated in at least two

samples and those not mutated in any. Lists were further

limited to only those genes with CGI promoters (341

mutated and 10,117 non-mutated genes). The control set

for this analysis was all CGI promoter genes reported as

analyzed in breast cancer by COSMIC (11,022 genes).

Analysis of repetitive elements at promoters

To define the density of repetitive elements around TSSs,

repetitive element positions were downloaded from the

Repeat Masker track of the University of California, Santa

Cruz (UCSC) genome browser (hg18) [88]. Custom R

scripts were then used to determine whether a repeat of a

given class was present in a particular genomic interval.

Repeats were defined as being present if they overlapped

this interval. Genes were analyzed with respect to their

TSS in non-overlapping 1 kb windows upstream and

downstream of the TSS (with respect to the direction of

transcription). To compare gene sets we plotted the fre-

quency of repeats found at each window within that set.

Differences between sets were tested using Fisher’s exact

tests based upon the density of repeats within a window ±

2 kb from TSSs.

Analysis of evolutionary conservation at promoters

We defined the level of conservation around gene pro-

moters using two different measurements. The first was

based upon the measurement of base substitutions

between 17 vertebrate species [46]. To define this score,

the ‘aggregate’ tool from the Galaxy suite of bioinfor-

matic tools was used to generate mean Phastcons (con-

servation) scores in 500bp windows surrounding each

TSS (using the Phastcons 17-vertebrate alignments from

genome build hg18). The second score was defined

using data on sequences that showed a significant deple-

tion of short insertions and deletions in comparisons of

multiple species [47]. We downloaded the locations of

these sequences from the UCSC browser (hg18) [88]

and then used the coverageBed tool from the BEDtools

suite of bioinformatics tools [80] to calculate the percent

of a given genomic interval occupied by these insertion

and deletion purified sequences. Genes were analyzed

with respect to their TSS in non-overlapping 500bp win-

dows upstream and downstream of the TSS (with

respect to the direction of transcription) by deriving

mean scores for genes in the set. The significance of dif-

ferences between gene sets was tested using the scores

calculated for the window -2 to +2 kb from the TSS and

Wilcoxon rank sum tests.

Analysis of genes neighboring lincRNAs

We used a recent survey of lincRNAs in the human

genome to define genes that had a neighboring lincRNA

[49]. The nearest genic neighbor of each lincRNA was

defined from that study’s supplementary data and the

given Refseq IDs mapped to Ensembl gene IDs. Gene

sets were compared by examining the proportion of

genes that had a lincRNA as their closest neighbor and

significance was tested using Fisher’s exact tests.

Additional material

Additional file 1: 1,009 hypermethylation prone genes. Excel file

containing details of the 1,009 hypermethylation prone genes in the

7 cancer types.

Additional file 2: Supplementary data. PDF file containing four

supplementary figures, one table and their legends.

Additional file 3: 446 variably methylated genes. Excel file containing

details of the 446 variably hypermethylated genes along with their

susceptibility in the different cancer types.

Additional file 4: 220 consistently methylated genes. Excel file

containing details of the 220 consistently hypermethylated genes in the

7 different types of cancer.
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