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The development of implantable neuroelectrodes is advancing rapidly as these tools

are becoming increasingly ubiquitous in clinical practice, especially for the treatment

of traumatic and neurodegenerative disorders. Electrodes have been exploited in a

wide number of neural interface devices, such as deep brain stimulation, which is one

of the most successful therapies with proven efficacy in the treatment of diseases

like Parkinson or epilepsy. However, one of the main caveats related to the clinical

application of electrodes is the nervous tissue response at the injury site, characterized

by a cascade of inflammatory events, which culminate in chronic inflammation, and,

in turn, result in the failure of the implant over extended periods of time. To overcome

current limitations of the most widespread macroelectrode based systems, new design

strategies and the development of innovative materials with superior biocompatibility

characteristics are currently being investigated. This review describes the current state

of the art of in vitro, ex vivo, and in vivo models available for the study of neural

tissue response to implantable microelectrodes. We particularly highlight new models

with increased complexity that closely mimic in vivo scenarios and that can serve as

promising alternatives to animal studies for investigation of microelectrodes in neural

tissues. Additionally, we also express our view on the impact of the progress in the field

of neural tissue engineering on neural implant research.

Keywords: neural tissue response, microelectrodes, foreign body reaction, brain slice cultures, neural tissue

engineering, deep brain stimulation

IMPLANTABLE ELECTRODES IN NEUROLOGICAL
AND NEUROPSYCHIATRIC DISORDERS

Clinical Applications
Recent technological progress in the field of brain-machine interfaces boosted the development of
innovative tools and electrodes for neurophysiological research and neurostimulation applications
to treat neuro disability-related conditions.
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Deep brain stimulation (DBS) is an invasive neurosurgical
operation consisting in the delivery of electrical impulses to
specific areas of the brain by means of implantable electrodes
connected to a pulse generator. The concept of DBS is
the generation of action potentials resulting in beneficial
neurochemical effects, such as the recovery of disrupted
neural circuits and physiological brain function. For specific
applications, DBS is a U. S. “Food and Drug Administration”
(FDA) approved technique which is already applied in the
clinic for a vast number of neurological dysfunctions (Coenen
et al., 2015; Revell, 2015). In patients affected by Parkinson’s
disease, DBS at the level of the globus pallidus or subthalamic
nucleus is able to reduce bradykinesia, dystonia, as well as
walking problems, allowing for substantial improvements in
the quality of life (Ramirez-Zamora and Ostrem, 2018). In
patients affected by dystonia, globus pallidus DBS has been
shown to reduce tremors and involuntary motor contraction,
with persistent effects after several years (Meoni et al., 2017).
For essential tremors, the principal targets for DBS to reduce
tremors with lower stimulation amplitudes and fewer side effects
than previous treatments are the posterior subthalamic area
and the zona incerta (Holslag et al., 2017; Barbe et al., 2018).
In patients with medically refractory epilepsy, long-term DBS
at the level of the anterior nucleus of the thalamus is an
U. S. FDA-approved therapy that is able to reduce epileptic
episodes and ensure perdurable improvements in the quality
of life for years (Salanova, 2018). For the treatment of chronic
and neuropathic pain, DBS is a supported therapy in Europe,
although not currently approved by the U. S. FDA. Several
clinical studies report a reduction of pain in patients with
amputations, post-stroke pain, cranial and facial pain (Farrell
et al., 2018). DBS was also found to be a valid therapeutic
approach for the treatment of psychiatric disorders. Ventral
capsule/ventral striatum DBS is another U. S. FDA-approved
treatment under a humanitarian device exemption for patients
affected by obsessive-compulsive disorder (Karas et al., 2019).
A relevant efficacy of DBS has been also observed for the
treatment of refractory depression. Clinical application of DBS in
patients non-responsive to anti-depressant treatments reported a
remission of depression after chronic stimulation of various brain
targets, with a decrease in negativity and sadness, reduction of
cerebral blood flow at the level of the limbic-cortical circuitry, and
improvements in memory and motor function (Dandekar et al.,
2018; Drobisz and Damborská, 2019).

Spinal cord stimulation (SCS) has shown to be an effective
strategy for the treatment of different diseases. SCS is being
successfully used to treat angina pectoris pain, low back, and
leg pain and peripheral limb ischemia (Song et al., 2014).
Clinical studies reported beneficial effects of SCS combined with
activity-based training in the recovery of motor function and
muscle activation patterns in patients that suffered spinal cord
injury (Rejc et al., 2017).

Besides the applications described above, the use of
implantable electrodes for neurostimulation therapy is
continuing to expand toward many other medical conditions.
DBS has been recently proposed for the treatment of pain,
dystonia and motor symptoms in post-stroke, although

additional investigations are necessary to identify specific brain
districts to improve the effectiveness of the treatment (Elias
et al., 2018). In a study involving patients affected by Tourette
syndrome, DBS of the anterior and posterior globus pallidus,
centromedian thalamus and anterior limb of internal capsule
showed common positive results after 1 year of treatment in
the reduction of motor tic symptoms (Martinez-Ramirez et al.,
2018). Partial improvements have been described in clinical trials
involving patients affected by Alzheimer’s disease, with positive
effects in cognition, reversal of memory and reduction of altered
glucose metabolism (Mao et al., 2018).

As seen above, the progress in neurostimulation technology
and the increased knowledge of the neurophysiology of
the central nervous system (CNS) opened the way to new
therapeutic approaches for the treatment of a vast number
of neurological disorders and neuropsychiatric conditions.
Although well established and approved for some diseases,
additional trials and experimental work need to be conducted to
better define the ideal brain targets, stimulation variables, and
electrode design in order to ameliorate the clinical outcomes.
Due to the impact of the inflammatory response and tissue
encapsulation elicited by traditional DBS macroelectrodes, the
field of neuroengineering is progressing toward the employment
of implantable microelectrodes (Daniele and Bragato, 2014).
Traditional DBS electrodes present several drawbacks such as
the rigidity of the materials employed for fabrication as well as
a high size which exacerbate the neuroinflammatory response
and tissue damage. Although they have a higher activation radius
compared to microelectrodes, macroelectrode implantation is
often associated to a wrong positioning in the interested area
causing a decrease in therapeutic efficacy of DBS (Kloc et al.,
2017; Morishita et al., 2017). In the case of small target
areas, the reduced dimensions of microelectrodes can provide
a better targeting accuracy ensuring an increased therapeutic
efficacy of DBS and tissue integration for chronic applications
(Desai et al., 2012; Du et al., 2017; Ganji et al., 2017). These
miniaturized devices offer additional advantages such as reduced
tissue damage and impedance, increased signal-to-noise ratio and
neuronal activation compared to traditional electrodes (Desai
et al., 2014). A key component contributing to microelectrode
design and, ultimately, to clinical performance is the selection
of the materials for the device. Such materials should not
only satisfy the mechanical and the structural requirements for
the efficient electrochemical performance but also provide a
durable and biocompatible interface with the brain tissue. In the
following section, the current materials used in microelectrode
fabrication are presented.

Current Materials for Microelectrode
Fabrication
For the long-lasting efficient microelectrodes, the material should
not only function properly in vivo but also be biocompatible
and durable for the protection of both the patient and the
device (Szostak et al., 2017). As different materials show
dissimilar behavior in the tissue environment the choice of
the implant material is crucial. To mitigate foreign body
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reactions and corrosion/degradation of the structures, electrical,
chemical, and mechanical properties of materials, such as
chemical composition, crystallinity, surface morphology, the
electrode microstructure, and Young’s modulus (a measurement
of elasticity) need to be carefully considered (Cogan, 2008;
Williams, 2008, 2009). With the advance of the micro-fabrication
techniques, silicon and polymers have been widely employed
as the substrate materials, while metals, carbon nanotubes,
conductive polymers as electrode site materials (Samba et al.,
2015; Yi et al., 2015; Antensteiner and Abidian, 2017).

Typical microelectrodes are designed to have either an
array of microwires or micro-electromechanical system (MEMS)
arrays. Microwires are generally composed of metals such as
gold, tungsten, and stainless-steel, coated with insulators. Two
different types of silicon substrate-based MEMSmicro-machined
electrodes, i.e., the Utah array (Normann and Fernandez,
2016; Wendelken et al., 2017) and the Michigan array
(Kipke et al., 2008; Kiss et al., 2015), have been significantly
exploited for decades. However, a huge mechanical mismatch
between hard metals/silicon (E ∼ 10 to 100 GPa) and soft
brain tissue (0.4–15 kPa) results in substantial strain at the
tissue-electrode interface, causing local physical damage that
result in inflammation and neural degeneration (Polikov et al.,
2005; Harris et al., 2011;Merrill, 2014). The inflammatory process
may hinder the stimulation of neuronal cells, as well as it may
contribute to device failure as a result of electrode degradation
(Kozai et al., 2015a; McCreery et al., 2016). However, it must be
highlighted that not all the microelectrode types exhibit the same
degradation profile or that there is a direct correlation between
electrode failure and the acute inflammatory response (Gaire
et al., 2018a). Several efforts have been reported to overcome
the drawbacks from the mechanical mismatch between electrode
and tissue by implementing materials with lower Young’s
modulus, e.g., flexible and biocompatible polymer substrates
(Trevathan et al., 2019). Polyimide- (Lai et al., 2012) and
parylene-based MEMS (Hess et al., 2011) electrodes have been
heavily investigated for their improved mechanical properties,
easy access to fabricate, and capability to introduce bioactive
molecules at the interface to facilitate long-term interaction with
the tissue. As chronic stimulation electrode site materials, metals
including tungsten, platinum, iridium, tantalum pentoxide, and
titanium nitride have been extensively used for their electrical
charge-injection properties and biocompatibility (Cogan, 2008;
Fattahi et al., 2014; Meijs et al., 2015). For its remarkably
increased charge storage and injection capacity and high
corrosion resistivity, iridium oxide has been also widely utilized
as a coating material (Meyer et al., 2001; Hasenkamp et al., 2009)
to enhance the performance and the durability of the electrode.
Carbon nanotubes (Jiang et al., 2011; Schmidt et al., 2013) and
conducting polymers such as poly(3,4-ethylene dioxythiophene)
(PEDOT) and poly(styrene sulfonate) (PSS) (Cui and Martin,
2003; Pranti et al., 2018) are attracting considerable attention
as alternatives to the metal electrodes and coatings for their
biocompatibility and tunable electrical properties.

An important challenge in microelectrode fabrication for
neural stimulation is the identification of smart materials that
are able to provide enhanced biocompatibility. So far, all the

current microelectrodes are recognized, in the long run, as
foreign bodies by the nervous tissue. As the difference in
Young’s modulus between the electrode and tissue is the main
factor that causes damage and inflammation, most research is
focused on using materials with low Young’s modulus for both
substrates and electrode sites. However, it should be also taken
into account that mechanical strain from the motion artifacts,
such as bending of conducting material, can cause changes in
resistance or capacitance of materials. As a result, this can affect
the electrical signals of the electrode and can result in unintended
performance (Michelson et al., 2019). Thus, the balance between
Young’s modulus and the electrical properties need to be carefully
considered in designing microelectrodes for neural stimulation.

FOREIGN BODY RESPONSE AS A
CAUSE OF IMPLANT FAILURE

The nervous tissue response to implantable microelectrodes is
a complex process characterized by a cascade of biochemical
alterations and chemical reactions occurring at the level of
the tissue-material interface. These biochemical and chemical
alterations may culminate in an undesired foreign body
response. Additionally, changes in the inherent properties
of the electrode after long-term implantation, for example
due to corrosion, may further impair its tissue compatibility
and durability. Body fluids and tissues are highly corrosive
environments characterized by an elevated presence of oxygen,
saline electrolytes, macromolecules and dissolved ions that can
cause the electrochemical detachment of microelectrode surface.
Once surgically implanted, microelectrodes must remain intact
for several years to ensure the efficacy of the therapy and device
functionality. To provide successful integration, reliability, and
durability once implanted in the brain tissue, microelectrodes
must fulfill the following requirements:

• Biocompatibility: the surface of the microelectrode must be
non-toxic for neural cells without causing any adverse effects
to the surrounding tissues.

• Biomimicry: the surface has to mimic the physicochemical and
mechanical characteristics of the extracellular matrix (ECM)
in order to promote neurite outgrowth toward the electrode
surface and to avoid activation and recruitment of glial
cells and fibroblasts that can contribute to the encapsulation
of the electrodes.

• Biostability: microelectrodes need to maintain their physical
integrity, electrochemical stability, and functionality, and
resist the highly corrosive tissue microenvironment without
undergoing any structural modification.

Microelectrode implantation causes unavoidable damage to
the tissue, triggering a series of neuroinflammatory reactions,
which are part of the natural wound healing process that
can seriously affect the stimulating site integrity and hamper
the electrochemical performance in long-term implantations
(Salatino et al., 2018). The complexity of such a process can be
described by dividing it into two coupled factors: biotic factors,
represented by the effects of cells and tissue reactions occurring
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at the surface; and the abiotic factors, related to the characteristic
of the material itself.

Biotic factors include the blood-brain barrier (BBB) rupture,
protein absorption at the material surface, immune cells and
fibroblast recruitment, increased production of radical ions,
cell death and the formation of the insulating glial scar
around the electrode surface, which hampers blood supply and
ionic equilibrium at the injury site. The abiotic factors are
represented by the physicochemical surface modifications such
as the dissolution of passive films, material-related impedance,
the failure of the stimulating site integrity, the formation of
electrochemical cells at the level of the surface that can evolve in
crevices or pits. Biotic and abiotic factors cannot be considered
as two separated processes, as they are strictly dependent and
occur simultaneously interacting in different manners during the
lifetime of the electrode. The complexity of such a process is
not totally understood and further research is needed to clarify
whether the contributions of these interrelated factors occur and
what are the most effective intervention strategies.

In this section, we will provide a description of the main
cascade of biochemical and cellular events occurring upon brain
microelectrode implantation with a focus on the biotic reactions.

The process that leads to glial scar formation due to
implantation and can culminate in the encapsulation of an
implant can be divided into two phases (Figure 1). An acute
phase that starts immediately after device implantation and
characterized by BBB dysfunction and glial cell activation,
followed by a chronic phase characterized by an immune
response and the development of a glial scar around the implant.

The first and one of the most critical events occurring during
device implantation is the rupture of the BBB. The implantation
causes a break at the level of the endothelial vessels, with a
reduction of blood flow and oxygen supply, accumulation of
plasma proteins and pro-inflammatory factors, and myeloid
cell infiltration (Kozai et al., 2015b). Cell membrane damage
by mechanical stress causes an increase in Ca2+ concentration
either by its release through the pores in the cell membrane
and by disturbances in the electrochemical potential of Na+

channels, which lead to membrane depolarization (Eles et al.,
2018; Salatino et al., 2019). Membrane depolarization, in turn,
leads to the increase in intracellular Ca2+, neurotransmitters
release from presynaptic terminations (Eles et al., 2018), resulting
in excessive production of reactive oxygen species (ROS)
due to mitochondrial damage (Ereifej et al., 2018). The BBB
breach has been shown to be crucial in the triggering of
biochemical pathways responsible for neuronal degeneration and
glial activation (Saxena et al., 2013). Some plasma proteins such
as globulins, fibrinogen, thrombin, plasmin, and albumin can
accumulate at the injury site through the BBB gap and can be
adsorbed at the electrode surface.

Microglia
Glial activation represents the main cellular event involved in
the neuroinflammatory response. As the resident macrophage
cells of the brain, microglia are ubiquitous in the CNS, and they
become activated to carry out their neuroprotective functions
immediately after electrode implantation. Once activated, they

act as principal effectors of the neuroinflammatory response and
can orchestrate the process through cross-talk with astrocytes and
oligodendrocytes. It is already been accepted that microglia exist
in “pro-inflammatory” and “anti-inflammatory” phenotypes.
The former is the “classical activation” phenotype, in which
cells secrets pro-inflammatory cytokines and contribute to
neuronal injury; in the case of the latter phenotype cells secret
anti-inflammatory cytokines and contribute to tissue remodeling
and repair, phagocytosis of cell debris, as well as antagonize
pro-inflammatory activity. In the early hours post-implantation,
pro-inflammatory microglia secrete pro-inflammatory cytokines
and chemokines such as interleukins IL-1α, IL-1β, IL-6, tumor
necrosis factor (TNF-α), monocyte chemoattractant protein 1
(MCP-1) (Sawyer et al., 2014), ROS and reactive nitrogen
species (RNS), determiningmassive immune cell recruitment and
additional cytokine production (Hermann et al., 2018a). The lack
of oxygen redox homeostasis acts directly on microglia, astroglia
and endothelial cells causing activation of metalloproteinase,
downregulation of tight junctions and adherens junction genes in
the first hours after BBB injury (Bennett et al., 2018), facilitating
the entrance of infiltrating macrophages, which will also have a
crucial role in neurodegeneration (Ravikumar et al., 2014).

Astrocytes
Astrocytes are another type of neuroglia that is very affected after
implantation. Astrocytes perform many functions, including
biochemical support of endothelial cells that form the BBB,
supplying of nutrients to the nervous tissue, maintenance of
extracellular ion balance, having a key role in the repair and
scarring process of the brain. In analogy to microglia, astrocytes
exist in a pro-inflammatory phenotype and an anti-inflammatory
phenotype. Pro-inflammatory astrocytes are activated by
pro-inflammatory microglia and secret neurotoxins creating
a hostile environment for neuronal and oligodendrocytes
regeneration. Pro-inflammatory astrocytes are activated by
Il-1β, TNF-α and complement component 1q (C1q) from
microglia, responding immediately to electrode implantation
and changes in neuronal activity, accumulating in the vicinity
of the microelectrode during the first week after implantation
(Liddelow et al., 2017). At this level, astrocytes alter the neuronal
viability causing neuronal loss, reduction of fiber density and
overexpression of glial fibrillary protein (GFAP) and vimentin,
which are critical for their change in morphology and extension
of the protrusions at the injury site (Woolley et al., 2013;
Moeendarbary et al., 2017).

Neurons
The neuronal loss also occurs immediately after implantation.
The mechanical stress caused by electrode entry into the tissue
leads to axonal morphological changes, neuronal membrane
disruption with the formation of axonal blebs as an indication
of neuronal damage. Oxidative stress in neurons is caused
by the increase in intracellular calcium through glutamate-
N-methyl-D-aspartate receptor (NMDA) activation, as well
as by ROS and RNS produced by microglia and astrocytes,
causing mitochondrial dysfunction. Neuronal degeneration and
neuroinflammation are exacerbated by the persistent secretion
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FIGURE 1 | Schematic timeline representation of the reactions involved in the process of neural tissue response to implantable microelectrodes. The acute phase of

inflammation is characterized by BBB disruption and neuronal death due to mechanical insult followed by glial activation and immune cell recruitment at the injury

site. Microelectrode performance may be hampered at this level due to mechanical mismatch with the tissue accompanied by a temporary recovery. In the chronic

phase of inflammation, a glial fibrotic scar surrounds the microelectrode impeding material and stimulating site integrity that, ultimately, may result in implant failure.

of proinflammatory cytokines and glial fibrillary proteins
deposition by microglia and astrocytes, finally forming the
glial scar (Figure 1). As a consequence of this neuronal
death at the tissue-electrode interface, the distance between
electrode and synapses grows in time, hampering electrical
stimulation performance.

Oligodendrocytes
Oligodendrocyte cell death will also occur at the implantation
site. Either due to cell membrane damage or as a result of
neuronal cell death or axonal degeneration. Oligodendrocytes
play the important function of ensuring axonal support and
myelin production and maintenance. In the acute phase of

foreign body reaction, oligodendrocytes become highly sensitive
to oxidative stress by ROS and RNS as well as excitotoxic damage
by glutamate oversignaling. Apoptosis of oligodendrocytes leads
to demyelination and can also culminate in neuronal death
depending on the extent of the event. In the adult brain,
one can find not only myelinating oligodendrocytes but also
cells in the form of neuron-glia antigen 2-expressing glial
cells (NG2) precursors, which are present from development
to the adult phase, denominated oligodendrocyte progenitor
cells. In vivo studies showed that new NG2 precursors become
activated by proinflammatory factors secreted by reactive
microglia and can be seen migrating to the injury site 12 h
post-implantation (Wellman and Kozai, 2018). But there, NG2
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precursors preferentially differentiate to astrocytes and further
move toward the implant participating in the formation of the
glial scar, not contributing to the turnover of new myelinating
oligodendrocytes (Wellman et al., 2018a).

The Glial Scar
Over 2 weeks post-implantation, in the chronic phase of the
process, it has been observed that astrocytes and microglia
have their protrusions extended toward the material surface
creating a non-permeable barrier between the implant and
the tissue over 2 weeks post-implantation (Wellman and
Kozai, 2017). At this stage, fibroblasts have reached the
inflammation core from meninges and secret ECM proteins
such as fibronectin, type IV collagen, laminin, and chondroitin
sulfate proteoglycans, also contributing to the formation of
the glial scar and the encapsulation of the microelectrode
at the parenchymal level (Dias and Göritz, 2018). This
insulating barrier constitutes a hostile environment that hampers
electrophysiological performance due to the absence of contact
between microelectrode and neurons, leading to the failure of the
implant over extended periods of time (Figure 1).

Despite all the efforts that have been carried out to study
the dynamics of glial scar in injury and disease, additional
investigations are required to understand the specificities of the
foreign body response in the context of electrode implantation,
to uncover the most effective intervention strategies to promote
microelectrode integration in the CNS (Salatino et al., 2018).
Besides, it is important to take in consideration that other
aspects can influence glial scar heterogeneity, such as the type
of microelectrode material used, the cerebral anatomical district

of implantation, as well as the pathological context in which it
is applied. Hence, the use of modeling systems that can mimic
specific in vivo pathological conditions is a great opportunity
to move toward the establishment of innovative approaches on
which to base future microelectrode design.

EXPERIMENTAL MODELS TO STUDY
FOREIGN BODY RESPONSE TO NEURAL
IMPLANTS

Despite the great advances achieved in neural interface
technology, some questions related to the molecular and cellular
events involved in nervous tissue response to implantable
microelectrodes remain unanswered. Several in vivo studies have
been performed to identify critical aspects and design solutions
to inhibit glial encapsulation in chronic applications. However,
due to their cost, time consumption and complexity in vivo
models are not ideal systems to investigate the detailed cues
of tissue-electrode interactions. With this purpose, substantial
research has been focused on the development of relevant
in vitro biological platforms of increased complexity to test
new materials and biosurfaces, which can offer a controlled and
reproducible platform for high-throughput screenings. In the
following paragraphs, we provide an overview of the current
in vitro/ex vivo/in vivo models employed in microelectrode
research, as well as a description of new promising 3D in vitro
technologies with increased complexity that can be of added value
to future investigations in this field (Figure 2).

FIGURE 2 | Schematic representation of the current and promising in vitro/ex vivo models with increased physiological relevance for the screening of materials and

coatings for the development of implantable microelectrodes.
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In vitro Models
One of the main goals in the design and testing of new
materials as well as coatings for microelectrodes is to reduce
glial cell activation while allowing/inducing neuronal synaptic
activity. In vitro 2D cultures represent the simplest model to
investigate the impact of materials properties on the cellular
response (Table 1).

Immortalized Cell Line Cultures

The use of relevant immortalized cell lines can provide
significant insights regarding material biocompatibility and
can contribute to the study of cell-microelectrode material
interactions. The experimental conditions are controlled in terms
of cell identity, adaptability, and reproducibility. Immortalized
cell lines are simple to culture, can be grown for indefinite
periods of time, maintaining genotypic stability and allowing
the readily generation of large amounts of cells for analysis.
Fibroblasts are one of the most well-characterized cell types to
study the biocompatibility and the cell-adhesion properties of
metals and coatings for biomedical devices. These cells play a
critical role in the formation of the fibrotic scar in the late
phases of inflammation. The modulation of their adhesion and
interactions with the implants is crucial for ensuring a stable
device performance. Fibroblast cell lines such as L929 and
NIH/3T3 have been widely used to conduct standard material
biocompatibility and cytotoxicity testing in accordance with
the International Organization for Standardization (ISO) norm
10993-5. The latter defines a series of test methods employing
cell monolayers in contact with the material or with material
extracts to assess toxicity. In particular, the mouse embryonic
NIH/3T3 fibroblasts are a well-characterized cell type used by
FDA for biocompatibility testing of materials and coatings for
neural devices. Namely, these were employed to assess surface
properties of various preparations of polymeric conductive
materials for neural devices applications (Mantione et al., 2016;
Rejmontová et al., 2016; Hadler et al., 2017; Morin and He, 2017;
Wang J. et al., 2018).

Given their central role in orchestrating nervous tissue
response to microelectrodes, glial cell were also employed to
investigate the effects of new surfaces and designs on cell
adhesion, morphology and activation (Persheyev et al., 2011;
Ereifej et al., 2013b; Lee et al., 2014). Bérces et al. (2018)
employed the immortalized murine microglial cell line BV-2
to investigate the effects of nanotopography on silica and
platinum surfaces and compared their behavior with neural
stem cells. They showed that while BV-2 cells grew indifferently
on nanostructured and non-coated samples, neural stem cells
grown on nanostructured surfaces displayed a decrease in cell
viability, adhesion and a tendency to adhere to each other
instead of to the surface. C6 glioma cells were employed to
investigate the biocompatibility of Pt-grown carbon nanofibers
coatings for enzymatic glutamate biosensors and compared to
Ni-grown nanofibers, showing that cells exhibit different cell
adhesion and morphology at different dimensions of nanofibers
(Isoaho et al., 2018). Several studies have been conducted
to investigate the biocompatibility and the effect of surface
properties, like roughness and topography, on neuronal cells. Rat

pheochromocytoma PC12 neuronal cell lines are the most used
to study the ability of new biomaterials to promote neuronal
adhesion and neurite outgrowth (Klymov et al., 2015; Li et al.,
2015). Wandiyanto et al. (2018) have recently shown that
PC12 cells grown on anti-bactericidal titanium nanostructures
displayed enhanced proliferation, differentiation and neurite
outgrowth compared to non-nanostructured surfaces. Tasnim
et al. (2018) recently investigated, using the SH-SY5Y cell line,
the biocompatibility of graphene oxide coating for commercially
available 316 stainless steel. They showed that graphene oxide
coating enables cell adhesion, proliferation and viability, as well
as reduces ROS production compared to bare 316 stainless steel.
Nissan et al. (2017) also employed SH-SY5Y to investigate the
nanotopographical effects of silver nanoline coatings, showing
that cells positively respond by increasing neurite outgrowth and
branching points compared to unmodified silica wafers.

While immortalized cell lines are a versatile and readily
available tool in the early phases of material testing (Table 1),
these do not have the same biological relevance and response
of their primary counterparts or even. Immortalized cell lines
display evident phenotypic and physiological differences from
the cell type of origin. These differences can be due to the cell
source (many times tumor samples), immortalization process,
the propagation and differentiation protocols, as well as the
culture conditions and medium composition (Kaur and Dufour,
2012; Lorsch et al., 2014). Consequently, despite being from a
similar cell type, immortalized cells can display different viability,
metabolic and adhesive properties, as well as different expression
profiles and cytotoxic responses to materials. In the context
of neurophysiological investigations, they can display different
electrophysiological responses to stimulations/recordings, thus
they are not the best candidates to serve as models to
recapitulate the pathophysiology of diseases (Xicoy et al., 2017).
Therefore, results obtained with these cells require validation and
comparison with more relevant experimental models. Primary
cell lines are a more reliable cell type as they do not have a tumor
origin or were not manipulated, and, therefore, more closely
recapitulate the characteristics of neural cells in vivo.

Primary Cell Cultures

Primary cells represent the most used and reliable cell type for
in vitro studies because they are similar to cells involved in
the tissue response in vivo (Table 1). These cultures are not
always the first choice due to experimental constraints, like ethics
and economic issues. However, they are an excellent tool to
study cell behavior prior to in vivo studies. CNS neural primary
cells are obtained by dissociation of excised CNS tissue explants
and subsequent isolation and plating. For in vitro studies, CNS
primary cells are most commonly obtained from animal models
like rat and mouse, as one has very limited access to human CNS
biopsies. With the recent advances in neuronal cell derivation
from (human) pluripotent stem cells, neuronal cultures derived
from these cell sources are emerging as a powerful tool for in vitro
modeling (Song et al., 2016; Chen W. et al., 2018).

In vitro primary neuronal cultures are widely employed in
microelectrode research for the testing of new surface modified
materials with improved biocompatibility and to investigate the
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TABLE 1 | Current and novel models explored for the study of biocompatibility of materials for neural applications and assessment of electrochemical performance and

durability of implantable microelectrodes.

Model Specifics Purpose of the study References

Immortalized cell cultures BV-2 mouse microglia cell line Cellular responses to nanotextured silicon

surfaces

Persheyev et al., 2011

C6 rat astrocytoma cell line Effect of nanopatterned poly(methyl

methacrylate) surfaces on astrocyte

reactivity

Ereifej et al., 2013b

PC-12 rat pheochromocytoma cell line Biocompatibility of polyurethane/poly(vinyl

alcohol) hydrogel coatings

Li et al., 2015

SH-SY5Y human neuroblastoma cell line Cytotoxicity of nanostructured Pt-coatings Boehler et al., 2015

NIH/3T3 mouse embryonic fibroblast cell

line

Cytocompatibility of polyaniline surfaces Rejmontová et al., 2016

L929 mouse fibroblast cell line Cytotoxicity of

poly(3,4-ethylenedioxythiophene):

glycosaminoglycan (PEDOT:GAG)

Mantione et al., 2016

NIH/3T3 mouse embryonic fibroblast cell

line

Biocompatibility of hydrophilic copolymers Hadler et al., 2017

Primary cell cultures Primary microglia Cellular responses to nanostructured

titanium oxide surfaces

De Astis et al., 2013

Primary rat microglia Response of microglia to P(TMC-CL) Pires et al., 2015

Primary mouse hippocampal neurons Effects of nanotopography on neuronal cell

signaling

Onesto et al., 2017

Primary rat hippocampal neurons Biocompatibility of

poly(3,4-ethylenedioxythiophene) doped

with poly(styrene sulfonate) MEAs

Koutsouras et al., 2017

Primary human dermal fibroblasts Study of surface nano-topography and

chemistry on collagen I and III production

Bachhuka et al., 2017

Primary rat cortical neurons Development of a MEA-based in vitro

model for drug screening

Bradley et al., 2018

Primary rat cortical and spinal cord

Astrocytes

Response of astrocytes to fiber surface

nanotopography

Johnson et al., 2018

2D mixed cell cultures Primary rat mixed microglia, astrocytes and

oligodendrocytes

2D in vitro glial scar assay to test

biocompatibility of insulating silicone

polymer coatings

Achyuta et al., 2010

Primary rat astrocytes derived from

neurospheres and rat embryonic spinal

cord cells

2D in vitro model of spinal cord injury for

drug screening

Boomkamp et al., 2012

Primary rat mixed neurons, microglia,

astrocytes and oligodendrocytes

2D in vitro glial scar assay to test cellular

responses of dip-coated PEG films

Sommakia et al., 2014

Rat primary astrocytes and dorsal root

ganglia neurons

2D in vitro model of spinal cord injury to

study isotropic-to-anisotropic cellular

transitions

Zuidema et al., 2015

Primary cortical neurons and astrocytes Cellular responses to nanoporous gold

surfaces

Chapman et al., 2016

3D in vitro cultures Primary rat microglia and astrocytes Hyaluronic-based hydrogel as a 3D model

to test electrode biocompatibility

Jeffery et al., 2014

Primary mouse mixed neurons, microglia,

astrocytes and oligodendrocytes

Alvetex membrane scaffold as a 3D culture

for high-throughput screening

Smith et al., 2015

Primary rat cortical neurons and astrocytes Alginate-based hydrogel as a 3D model of

glial scar

Rocha et al., 2015

Primary rat mixed neurons, microglia,

astrocytes and oligodendrocytes

Type I collagen-based hydrogel as a 3D

model of glial scar

Spencer et al., 2017a

Primary rat mixed microglia, astrocytes and

oligodendrocytes

Hyaluronic acid-based hydrogel as a 3D

model of glial scar

Koss et al., 2017

PC-12, C6, human iPSC and rat primary

dorsal root ganglia neurons

Type I collagen-based 3D hydrogel for

high-throughput study of

neurodegeneration

O’Rourke et al., 2017

Organotypic cultures Rat organotypic hippocampal slices Biocompatibility of silicon-based electrode

arrays

Kristensen et al., 2001

(Continued)
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TABLE 1 | Continued

Model Specifics Purpose of the study References

Rat organotypic brain slices Biocompatibility of nanopatterned

polydimethylsiloxane

Ereifej et al., 2013a

Mouse organotypic spinal cord slices Characterization of the ability of 3D

meshed-carbon nanotubes to support

neurite regrowth

Usmani et al., 2016

Chicken embryo organotypic brain and liver

slices

Cyto-biocompatibility of thin-film transistors Leclerc et al., 2017

Brain organoids Human induced pluripotent stem cells

(hiPSC) derived organoids

Model of autosomal recessive primary

microcephaly

Gabriel and Gopalakrishnan, 2017

Human embryonic stem cells (hESCs)

derived organoids

Testing functionalized borosilicate glass

capillaries for glutamate detection

Nasr et al., 2018

Human primary microvascular endothelial

cells, perycites, and astrocytes, mixed iPSC

derived oligodendrocytes, microglia and

neural stem cells

3D spheroid model of BBB for

High-Throughput neurotoxicity screening

and disease modeling

Nzou et al., 2018

Microfluidics hiPSC-derived neurons and astrocytes High-throughput screening of neurotoxic

compounds

Wevers et al., 2016

Ventral spinal cord motoneurons, rat

primary meningeal fibroblasts and

astrocytes

In vitro model of glial scar Li et al., 2017

Pre-differentiated hiPSC lines derived from

skin fibroblasts

Brain organoids on chip for the study of

impaired neurogenesis induced by

cadmium

Yin et al., 2018

In vivo models Unilateral 6-OHDA injection in adult rats to

model nigrostriatal degeneration of

Parkinson’s disease

Analysis of c-fos expression after DBS of

the pedunculopontine tegmental nucleus

Saryyeva et al., 2011

Unilateral 6-OHDA injection Adult rats to

model nigrostriatal degeneration of

Parkinson’s disease

Analysis of subthalamic nucleus-DBS on

behavioral performance

Badstuebner et al., 2017

Rat model of retinitis pigmentosa Analysis of a fully organic retinal prosthesis

to treat degenerative blindness

Maya-vetencourt et al., 2017

Induction of status epilepticus through

injection of pilocarpine in adult rats

Study of long-term DBS of the anterior

thalamic nucleus

Ferreira et al., 2018

BV-2, mouse microglia cell line (CVCL_0182); C6, rat astrocytoma cell line (CVCL_0194); DBS, deep brain stimulation; C-fos, transcription factor subunit (OMIM: 164810);

hESCs, human embryonic stem cells; hiPSC, human induced pluripotent stem cells; L929, mouse fibroblast cell line (CVCL_AR58); MEA, multi-electrode array; NIH/3T3,

mouse embryonic fibroblast cell line (CVCL_0594); 6-OHDA, 6-hydroxidopamine (5-(2-aminoethyl)benzene-1,2,4-triol); PEDOT:GAG, poly(3,4-ethylenedioxythiophene):

glycosaminoglycan; PEG, poly(ethylene glycol); PC-12, rat pheochromocytoma cell line (CVCL_F659); P(TMC-CL), poly(trimethylene carbonate-co-epsilon-caprolactone);

SH-SY5Y, human neuroblastoma cell line (CVCL_0019).

effects of surface topographies in the enhancement of neuronal
adhesion, neurite outgrowth and electrochemical performance
(Chapman et al., 2016; Catt et al., 2017; Seyock et al., 2017;
Zöndör and Thoumine, 2017).

The use of single isolated cell types, despite being useful
for the investigation of specific biochemical and morphological
responses once in contact with a surface, excludes the possibility
to study cell interaction with the material in the presence of
the glial and neuronal cells crosstalk. A common approach to
improve the in vitro assays is the use of mixed glial cultures
with neuronal cells, obtained in a single isolation procedure,
as a strategy to mimic the environmental characteristics and
cellular events involved in astrogliosis. The use of mixed
glial cells allowed to increase the physiological relevance
of in vitro testing and to monitor the neuroinflammatory
process and microelectrode modifications under manageable and
reproducible conditions. Mixed glial and neuronal cultures were
used as an efficient in vitro glial scar model for the screening
of new design coatings for microelectrodes (Achyuta et al., 2010;

Sommakia et al., 2014) (see Table 1 for examples). However,
despite useful and cost-effective if compared to in vivo studies,
primary neural cell cultures also present limitations. The isolation
procedures are challenging and require appropriate expertise
(Uysal et al., 2018). In addition, primary cell lines do not divide
(as in the case on neurons) or do not divide indefinitely as
immortalized cell lines, hence the number of cells obtained for
each isolation is substantially reduced, limiting the number of
experiments and the amount of sample for molecular studies
(Gordon et al., 2014). Besides the difficulty in their manipulation,
primary neural cells, are isolated in early stages of development,
therefore they can result unapt for the study of processes that
are only observed in the adult or lead to unaccurate results,
as some cellular responses can only be observed in early stages
of development. The neural differentiation protocols, including
for embryonic stem cells (ESCs) or induced pluripotente
stem cells (iPSCs), are also laborious and expensive and can
lead to different maturation properties (Verpelli et al., 2013;
Engel et al., 2016).
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Common to conventional immortalized and primary cell
cultures conducted in 2D substrates, is the loss of the ECM
composition and structure, cell-ECM and cell-cell interactions
(namely, the neuronal network), and cell mechanics of the tissue
of origin, which, inevitably, results in a different cell behavior
compared to in vivo (Tekin et al., 2018). Thus, conventional
cell cultures cannot provide detailed information about the
interactions of electrode materials with the neural tissue in the
initial phases of acute injury or the process of foreign body
response in pathological environments. Whence, the necessity of
developing complementary models in order to properly study the
host reaction to microelectrodes.

3D in vitro Cell Cultures

With progress in the field of tissue engineering, one is
observing an increase in the number of reports of mixed culture
systems conducted in 3D scaffolds (Table 1). The use of 3D
matrices provides additional dynamics to the application of
in vitro platforms for glial scar modeling, offering a valid and
reproducible system to implement microelectrode research prior
to in vivo studies. Several types of 3D scaffolds for neural
cultures have been developed. These engineered scaffolds can
be based on natural or synthetic materials (mostly polymers).
These constitute a great improvement for in vitro studies
in terms of increase in complexity and open the way to
a vast window of applications in nervous system modeling
(Ko and Frampton, 2016). Jeffery et al. (2014) developed a
photocrosslinkable and tunable hyaluronic acid-based hydrogel
scaffold for mixed glial cultures and high throughput screening
of microelectrode materials. A commercially available synthetic
polystyrene scaffold was shown to support neuronal cell growth
and differentiation. It has been already tested for the development
of a 3D model of neuroinflammation employing embryonic
primary cortical neurons that are able to grow, interact and
form networks possessing electrical activity in the presence of
mixed glial cultures (Smith et al., 2015). We have proposed
the use of a alginate-based simple and reproducible astrocyte
3D culture system that mimics many features of astrogliosis
(Rocha et al., 2015). Using this platform, we established the
ECM mechanical properties as a key modulator of astrogliosis.
Spencer and coworkers developed a type-1 collagen gel with
mixed primary embryonic neural cultures as an in vitro model
of glial scar to investigate the effects of micromotion around
neural implants (Spencer et al., 2017a). Koss et al. (2017) recently
developed a hyaluronic acid-based 3D hydrogel model to study
the process of glial scar formation in response to implantable
microelectrodes. The biocompatibility of this system allows
the encapsulation of primary oligodendrocytes, microglia and
astrocytes and has shown to reproduce the typical features of the
in vivo glial scar process.

The additional advantage of using 3D systems is the possibility
to manipulate and tune scaffold composition through the
incorporation of different matrix components and bioactive
factors to promote cell survival, migration, and differentiation
in a 3D context. The objective is to generate 3D structures
with mechanical and structural properties as similar as possible
to the ones of the CNS tissue (see Table 1 for examples).

Despite the great advances in this field, these systems still present
some constraints. Some biomaterials used for scaffold production
are characterized by a high modulus compared to the neural
tissue and can lead to altered cell viability, proliferation, and
differentiation. Conversely, soft biomaterials are more difficult to
handle. The design of matrices with a nanosized microstructure
and topographical cues that fully mimic the one found in
the nervous tissue was still not attained. The procedures of
cell extraction for molecular analysis after testing, scaffold
processing, and imaging becomemore challenging in 3D, limiting
high-throughput studies. Additional complications are related
to the cell culture conditions: 3D scaffolds can constitute a
physical barrier that limits oxygen perfusion, nutrient supply
and accumulation of toxic compounds that can cause cellular
alterations or apoptosis. Optimizations are still required to
ensure a versatile cell encapsulation for different cell types and
controlled culture conditions as close as possible to the in vivo
environment. This is even more challenging in the context of
disease modeling, where cells must be induced to display specific
pathological profiles.

It is expectable in the future that the continuous progresses
attained in the tissue engineering field, particularly related
to improved scaffolds/matrices development, will allow the
development of better in vitro systems that recapitulate neural
tissue architecture, in an effort to minimize the gap between
in vitro and in vivo experiments.

Ex vivo Models
The development of 3D in vitro models of brain tissue, as
stated above, represents an attractive tool for researchers working
in the neurosciences field and their use in microelectrode
research would have a great impact on the screening of new
biomaterials for biomedical applications. However, additional
optimizations are still required to allow a consistent application
in neuroscientific research. A potential alternative that enables
researchers to get closer to in vivo conditions is the use of ex vivo
excised brain/spinal cord tissues.

Organotypic Cultures

Tissue explants can be extracted from euthanized animals or
obtained from human biopsies and cultured in vitro. The great
advantage of organotypic cultures compared to artificial in vitro
systems is the preservation of the native cytoarchitecture with the
maintenance of intact neuronal networks. Although several types
of ex vivo models have been described in literature (Mii et al.,
2013; Nery et al., 2015; Jones et al., 2016; Neville et al., 2018), brain
slice cultures from rodents are the most established and widely
used as a system of election for neurophysiological investigations,
neuropharmacology and as a model of disease. The procedure
consists in the isolation of specific districts from the whole
brain, their dissection in slices and incubation under controlled
conditions. The possibility to obtain several slices from a single
animal constitutes an additional advantage in terms of reduction
of the number of animals for experiment and of related costs.

Brain slice cultures have been well established from different
brain regions (Table 2). Two types of brain slices preparations
exist: acute slices from the adult brain, with a short life and
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TABLE 2 | Organotypic cultures as a model of neurological and neurodegenerative diseases.

Disease Type of organotypic slice Induction of disease References

Parkinson′s disease Parasagittal nigrostriatal slices Slices incubation with 6-hydroxydopamine

(6-OHDA)

Kearns et al., 2006

Organotypic midbrain slices Transfection with truncatedα-synuclein (A53T) Zach et al., 2007

Nigrostriatal organotypic slices Mechanical cutting of dopaminergic fibers from

substantia nigra to striatum

Cavaliere et al., 2010

Ventral mesencephalon organotypic

slices

Unilateral microinjection of 6-hydroxydopamine

(6-OHDA)

Stahl et al., 2011

Sagittal nigrostriatal slices mechanical transection of the medial forebrain

bundle

Daviaud et al., 2014

Coronal nigrostriatal slices Injection of rotenone Ullrich and Humpel, 2009

Cerebellar nigrostriatal slices Slices incubation with

1-methyl-4-phenylpyridinium (MPP+)

Chong et al., 2015

Epilepsy Organotypic hippocampal slices Slices incubation with Kainic acid Järvelä et al., 2011; Jung et al., 2013

Organotypic hippocampal slices Slices incubation with kainic acid or n-methyl

di-aspartate

Prasad Tripathi and Ayyannan, 2017

Organotypic hippocampal slices Slices incubation in a Neurobasal/B27

serum-free medium

Magalhães et al., 2018

Alzheimer disease Organotypic hippocampal slices P301S Alzheimer disease mouse model Mewes et al., 2012

Organotypic coronal brain slices Co-transfection with amyloid precursor protein

cDNA or human tau4R0N cDNA

Van Kanegan et al., 2016

Organotypic hippocampal slices APPsdl mouse model Penazzi et al., 2017

Organotypic hippocampal slices 3xTg-AD mouse model Croft and Noble, 2018; Jang et al.,

2018

Traumatic brain injury Organotypic hippocampal slices Focal mechanical trauma at the CA1 region Schoeler et al., 2012; Krings et al.,

2016

Organotypic hippocampal slices Tissue deformation by mechanical stretching Choo et al., 2013; Lamprecht et al.,

2017

Stroke Organotypic coronal brain slices Exposure to oxygen glucose deprivation Wang et al., 2006;

Organotypic hippocampal slices Exposure to oxygen glucose deprivation Hall et al., 2009

Spinal cord injury Organotypic spinal cord slices Exposure to hypoxic condition Kim H.M. et al., 2010

Organotypic spinal cord slices Slices incubation with kainic acid Mazzone and Nistri, 2014

Organotypic spinal cord slices Mechanical damage using weight drop model

of injury

Labombarda et al., 2013; Pandamooz

et al., 2019

APPsdl, amyloid precursor protein gene mutation; A53T, point mutation human α-synuclein protein; CA1, “Cornu Ammonis” 1 hippocampal region; MPP+, (1-Methyl-4-

phenylpyridin-1-ium); 6-OHDA, 6-hydroxidopamine [5-(2-aminoethyl)benzene-1,2,4-triol]; P301S, microtubule associated protein Tau (OMIM 157140 genetic mutation);

tau4R0N, human microtubule associated protein tau, transcript variant 3, mRNA; 3xTg-AD, transgenic Alzheimer disease mouse model.

mainly used for electrophysiological recordings, and organotypic
slices from neonatal animals. The latter are the most diffused
ex vivo platforms for the study of many physiological and
pathological conditions, thanks to the possibility to reproduce,
by external intervention, the hallmarks of diseases that occur
in vivo (Magalhães et al., 2018). The great success of
this system is due to the simplicity of the procedure and
manipulation by mechanical or pharmacological treatment, as
well as the possibility to perform electrophysiological recordings
on bioelectric activity. Based on these features, organotypic
cultures can constitute an ideal model for the long-term
assessment of the complex host reaction to microelectrodes or
for high-throughput biocompatibility studies of new materials
and surfaces. Nevertheless, few works can be found in the
open literature (Kristensen et al., 2001; Huuskonen et al., 2005;
Ereifej et al., 2013a; Usmani et al., 2016; Leclerc et al., 2017).
A possible explanation for this fact could be related to the
preferential use of in vivo models as the gold standard for

microelectrode testing. Although necessary for the translation
of new materials to the clinic, in vivo experiments have ethical
issues, they are expensive, time-consuming and unapt for
screening studies due to their complexity. The great advances
achieved by in vitro/ex vivo systems can be the successful
strategy to accelerate microelectrode research prior to in vivo
testing. The controllable and reproducible conditions make them
suitable to identify strategies to mitigate neuroinflammation,
to prevent the early biochemical and corrosion-related events
at the interface electrode-neural tissue and to impair foreign
body response. Nevertheless, although organotypic cultures
maintain the 3D cytoarchitecture, slice preparation causes an
unavoidable axotomy of the brain tissue and neuronal death.
This physical damage is accompanied by loss of blood flow,
and consequently jeopardize oxygen perfusion and nutrient
supply. As occurs in primary neural cultures, organotypic
cultures are derived from animals in early stages of development
and require extensive periods of culture for their maturation
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for use in post-developmental studies and assessment of
pathophysiological processes. Another important caveat is the
lack of the BBB and circulating immune cells. In the context of
testing materials for neural devices, we previously showed that
these factors play a crucial role in the process of foreign body
response. BBB dysfunction and cell infiltration are also associated
with several neuropathological processes. This can limit the
physiological relevance of organotypic cultures for disease
modeling (Humpel, 2016). Hence, researchers are developing
innovative approaches combining microfluidic technologies with
cellular vascular structures to mimic BBB microarchitecture and
improve culture conditions for long term studies (Xu et al.,
2016). These authors proposed a new and dynamic in vivo-like
three-dimensional microfluidic system to replicate the BBB
in vivo. Despite these limitations, organotypic cultures are still
one of the most relevant models and can represent a fascinating
tool to reduce the differences between in vitro and in vivo studies
(some examples are present in Tables 1, 2).

Finally, as a duty of each and every scientist, the use of
in vitro/ex vivo models must be encouraged in order to improve
the ethical acceptability of research in the fulfillment of the
principles of Replacement, Reduction, and Refinement (3R’s)
(Lossi and Merighi, 2018).

In vivo Models
Different types of in vivo studies have been carried out in
microelectrode research to evaluate therapeutic efficacy,
durability and safety of microelectrodes. In this type of
studies rats and mice are the most common model of
choice. The animal disease models that are used to assess the
efficacy of neurostimulation therapies are several (Table 1).
The main categories are represented by animal models
of neurodegenerative disease such as Parkinson’s disease
(Badstuebner et al., 2017; Musacchio et al., 2017), Alzheimer’s
disease (Leplus et al., 2018), epilepsy (Desai et al., 2016),
sensory-motor deficits due to spinal cord injury (Capogrosso
et al., 2018), blindness (Tang et al., 2018), hearing loss conditions
(Allitt et al., 2016) and ischemic models (Yang et al., 2017).
Large animals such as cats, dogs, sheep, pigs, and non-human
primates, are used for chronic studies on the efficacy and
safety of neural stimulators. They concern the analysis of both
biotic and abiotic reactions on the tissue-electrode interface in
long-term experiments (Shepherd et al., 2018). The employment
of large animals for these types of investigations is recommended
because their anatomy perfectly mimics the environment in
which microelectrodes will be applied, allowing the use of
all the device components in their real size. Moreover, the
full inflammatory component is present in vivo as opposed
to in vitro/ex vivo models. The surgical procedure in in vivo
experiments generally consists in the exposition of the skull in
a deeply anesthetized animal, the production of one or more
drills in the vicinity of the target region, the insertion of the
neural implant in a specific site and fixation of the plugs with
dental cement, followed by continuous monitoring to assess
the recovery of the animal, integrity of device and/or efficacy of
the therapy (Fluri et al., 2015). Besides the damage caused by
electrode implantation, the majority of in vivo experiments are

carried out by tethering the animal to an external component
through cables, causing severe discomfort. To overcome this,
new wireless microstimulation technologies were developed to
ensure better freedom of movement, allowing the reduction
of distress (Fluri et al., 2017; Pinnell et al., 2018). Besides the
use of animal models of disease, chimeric mice models have
found great utility for answering important biological questions
concerning the role of different cell types in the process of foreign
body response. Chimeras are animal models with two or more
different genotypes experimentally obtained by transplanting
cells or organs from another organism. Bone marrow chimeric
mice were employed to investigate the contributions of different
cells in the mechanism of foreign body response (Ravikumar
et al., 2014). Sawyer et al. (2014) generated chimera mice
between wild type and MCP-1 knock out mice, assessed the
key-role of MCP-1 in the enhancement of neuronal loss and
showed that its inhibition can be an effective strategy to
prolong the lifetime of implantable microelectrodes. Bedell and
co-workers recently developed chimeric mice lacking cluster
of differentiation 14 (CD-14) genes in myelinating cells and
blood-derived macrophages. They demonstrated that targeting
CD-14 in blood-derived macrophages improved microelectrode
performance in long term experiments (Bedell et al., 2018a).
Genetically engineered animal models are another successful
tool in microelectrode research. Mice lacking specific genes
involved in neuroinflammation and immunity were employed
to investigate the biochemical pathways involved in the foreign
body response, the identification of pharmacological targets
(Kozai et al., 2014; Bedell et al., 2018b; Hermann et al., 2018a,b)
and material testing (Lee et al., 2017). Mice carrying cell specific
fluorescent tags have been shown to provide great advantages
in the study of the contribution of different cells in a single
animal as well as a valuable alternative to immunostaining
steps (Sunshine et al., 2018; Eles et al., 2019). Gaire and
colleagues recently developed a quadruple-labeled mouse
with specific fluorescent tags for oligodendrocytes, microglia,
neurons, and astrocytes and investigate the process of nervous
tissue response to “Michigan” array silicon microelectrodes
(Gaire et al., 2018b).

Substantial improvements have been implemented in the
quality and quantity of in vivo investigations: new bio-imaging
tools were applied in microelectrode research to make in vivo
works more explanatory. Two-photon laser scanning microscopy
allows imaging of living animals with elevated resolution. It has
been used to investigate the nervous tissue response to new
electrode coatings (Eles et al., 2017), glial cells characterization
(Wellman and Kozai, 2018) or live calcium imaging (Kondo
et al., 2017). Optical coherence tomography is a minimally
invasive technique that has been proposed to be used in
combination with two-photon laser scanning microscopy to
provide high resolution angiography of damaged tissues around
microelectrodes (Hammer et al., 2016). As an alternative to
laborious histological and staining procedures on sectioned
brains, x-ray micro CT scanning has been proposed as a
high-resolution, time and cost saving procedure that allows a 3D
x-ray scanning of the entire brain to quantify and characterize the
lesions caused by electrode implantation (Masís et al., 2018).
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The growing scientific interest in neural interfaces in the last
decades is confirmed by the multitude of in vivo works focused
on the testing of new and fully biocompatible coatings (Du
et al., 2017; Spencer et al., 2017b; Shen et al., 2018; Vitale et al.,
2018), less invasive implantation strategies (Tawakol et al., 2016;
Shoffstall et al., 2018b) and new designs with improved electrical
performance (Ferlauto et al., 2018; Xu et al., 2018) and with
longer durability.

Despite being considered the ultimate model to test
microelectrode prior clinical tests, in vivo models present
some important drawbacks as previously mentioned. An
important aspect to consider is the elevated costs and time
required for animal experiments, as well as the resulting ethical
constraints. In vivo experiments are complex and demand
adequate facilities and technical expertise. As discussed above,
transgenic mice offer great advantages, however, they have an
extremely high cost due to their production and maintenance.
More importantly, the effects of such modifications can lead
to altered phenotypes that depart from the real scenario. In
the context of device testing, in vivo experiments are quite
laborious and require long periods of time to assess the long-
term performance of microelectrodes or the biological and
behavioral effects of specific neurostimulation therapies. The
complexity and invasiveness of the experimental techniques do
not always enable scientists to identify the early biochemical and
material-related events at the interface electrode-neural tissue
and the strategies to mitigate neuroinflammation.

Despite these weaknesses, in vivo studies constitute the
gold-standard for the investigations on neural implants, where
the results obtained by previous in vitro testing find their effective
validation. They represent the final step in the long process of
microelectrode design and testing before the application in the
clinic. A rigorous progression along all the steps determines the
success of new technologies. This is even more important in
the case of new materials or designs, where a careful preclinical
assessment is necessary to minimize the risk of failure once
applied to human patients.

FUTURE PERSPECTIVES

Increasing Complexity
Preclinical studies are paramount in the development and testing
of new materials for neural implants. As a consequence, the
demand for more reliable in vitro/ex vivo models is growing
to satisfy the need for assessing of the increasing number of
new materials being proposed for this application, improve the
quality of device testing and reduce the time between prototyping
and commercialization of new products. As discussed in the
previous section, several in vitro models and new platforms
have been described in the literature (Table 1), but they
still need to be explored, tested and eventually adapted for
microelectrode research.

The use of ex vivo platforms from tissue explants can
represent a valuable solution that fits perfectly these purposes.
Brain organotypic cultures have been widely used in the last
years as an excellent model for a great number of applications.

They were employed to study physiological (Svensson and
Chen, 2018), and pathological conditions (Tan et al., 2017)
or for the screening of new therapeutics (Minami et al.,
2017). Furthermore, several organotypic cultures have been
established as models of neurological and neurodegenerative
diseases (Table 2), for which neural implants have been proposed
as therapeutic strategies. This places organotypic models that
mimic a pathological environment in a privileged position to
serve as platforms for microelectrode testing and a potential
strategy to move closer to the in vivo scenario. Moreover, thanks
to the preservation of intact neural circuitry, organotypic cultures
are particularly suitable to perform electrophysiological studies,
analyze microelectrode performance and assess astrogliosis.

Developments in the stem cell biology field have also
contributed to the establishment of new in vitro models of
human disease, aiming at an increase of complexity to reach
the relevance of the in vivo environment, while maintaining the
controllability and manageability of in vitro systems. Organoids,
self-organized 3D tissue cultures derived from stem cells, are
currently leading these technologies and have already been
developed for the majority of human tissues, including the
brain. More recently, the advances in hiPSC reprogramming
techniques are also contributing to a better performance of
organoid platforms in mimicking human disease and serve
as testing platforms for personalized medicine (Perkhofer
et al., 2018). Lancaster and Knoblich (2014) the preparation
of cerebral organoids prepared from hiPSC. The described
methodology allows cell aggregates cultured in Matrigel to
mimic native brain tissue, originating different developing brain
regions, namely, cerebral cortex, ventral telencephalon and
retinal, among others, within 1 to 2 months. iPSC derived
organoids represent an innovation in the field of in vitro
disease modeling, offering a great opportunity to investigate
pathophysiological mechanisms of neurological diseases with
elevated reliability (Ho et al., 2018; LaMarca et al., 2018; Sun
et al., 2018) and can also contribute to the field of implantable
microelectrodes. In fact, Ormel et al. (2018) demonstrated
that organoids can innately develop microglia and have a
response to inflammatory stimuli that recapitulates neurons-glia
interactions in vivo. This is an important aspect since glial
cells, particularly microglia, are involved in a great variety of
pathophysiological mechanisms.

Great advances in vitro modeling have been also achieved
thanks to the application of microfluidics combined with 3D
in vitro cultures (Rocha et al., 2016). Microfluidic platforms
consist of polymer-based platforms for in vitro culture of cells
that allow control and manipulation of microenvironment and
fluids (see Figure 3 for relevant examples). The use of these
microdevices brings in vitro models to a whole new level,
thanks to the possibility of modifying spatial organization by
isolating specific districts and simulate 3D tissue architecture of
the native tissue. These systems allow the continuous control
of external conditions, conferring an added value to in vitro
technology, and giving the possibility to reproduce new biological
features that are not possible to achieve with conventional
culture systems (as discussed in section “Organotypic Cultures”
for the case of the BBB). Wang and colleagues developed an
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FIGURE 3 | Schematic representations of 3D microfluidic systems. (A) Schematic view of a microfluidic device for 3D cell culture composed by a vascular channel

(VC) for primary human brain-derived microvascular endothelial cells (hBMVEC), and a brain chamber for primary cell-derived human neurons, pericytes and

astrocytes culture in a type I collagen matrix. Reprinted from Brown et al. (2015) with the permission of AIF publishing. (B) 3D microfluidic platform for the

establishment of a neurovascular unit (NVU) including blood-brain barrier (BBB). The NVU is characterized by a VC composed by a co-culture of HUVEC and Primary

human lung fibroblasts, and a secondary NC composed by a co-culture of neurons and astrocytes. Adapted with permission from Bang et al. (2017).

(C) Organ-on-a-chip device for 3D culture and differentiation of brain organoids, showing an enlarged view of the component parts and a flow chart showing the

development stages of hiPSCs-derived brain organoids (Wang Y. et al., 2018) published by the Royal Society of Chemistry. (D) Vertical cross-section view of a

perforating multi-electrode array (MEA) integrated in a PDMS device for long-term culture, live imaging, recording and stimulation of brain tissues and 3D cultures

(Killian et al., 2016).

organ-on-a-chip system for long-term culture of brain organoids
under controlled conditions. Brain organoids were cultured
on Matrigel scaffolds with a sided channel for the culture
medium supply and a central perfusion channel, allowing a
continuous culture medium flow and providing an improved
proliferation and neural differentiation compared to static culture
conditions (Wang Y. et al., 2018). Liu et al. (2018) combined
multielectrode array technology with a microfluidic perfusion
system for organotypic hippocampal slices as a platform for
high throughput drug discovery. Microfluidic vascular models
have been developed and applied to brain-on-a-chip platforms,
enabling scientists to improve the quality of culture conditions
and get even more close to in vivo dynamics (Osaki et al., 2018;
Wang, 2018). New microfluidic devices that model the BBB
were fabricated and tested on 2D and 3D cultures, showing that
BBB integrity and permeability simulates in vivo characteristics
(Chin and Goh, 2018). Adriani et al. (2017) developed a 3D

neurovascular chip composed by a central hydrogel co-culture
of rat primary neurons and astrocytes, and two lateral channels
hosting human umbilical vein endothelial cells and human
cerebral microvascular endothelial cells. Bang et al. (2017)
developed a 3D microfluidic BBB platform with a vascular
channel (VC) composed by a co-culture of human umbilical
vein endothelial cells and primary human lung fibroblasts
directly interfacing with a neural channel (NC) composed
by a co-culture of primary rat neurons and astrocytes to
simulate the neurovascular unit. They showed that this platform
displayed permeability, cellular contacts and synaptic structures
comparable to the in vivo BBB, suggesting its great potential
for the drug screening for neurological diseases. Microfluidic
technology can conduct in vitro culture system to a more
complex and realistic level providing many advantages and
details that cannot be extracted with conventional in vivo
models, such as the easy manipulation, low cost, and the
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possibility to investigate more intimately key mechanisms of
diseases. These characteristics perfectly fit with ideal biological
platforms for the testing of microelectrode materials developed
in the last decades. 3D microfluidic systems can eliminate some
of the limitations of 3D in vitro technology, creating new
high-fidelity throughput systems that can improve the testing
performance and reduce the cost and time for pre-clinical
assessment. An additional advantage is the possibility to induce
specific pathological features by external treatment for long-term
experiments, offering the possibility to investigate in advance

microelectrode performance and nervous tissue response under
disease conditions.

Design Solutions and New Materials for
the Improvement of Microelectrode
Durability and Biocompatibility
Despite remarkable developments in implantable
microelectrodes for neuroprosthetics and DBS, additional
investigations are still required to address the biocompatibility

FIGURE 4 | New strategies for deep brain stimulation using functional nanoparticles. (A) A schematic description of magnetothermal effect on transient receptor

potential cation channel subfamily V member 1 (TRPV1) cells. (B) Comparison of the neuron reactivity under different conditions. Figures from Chen et al. (2015),

reprinted with permission from AAAS. (C) A schematic description of nanoparticle-mediated near infrared (NIR) upconversion optogenetics. (D) Hippocampal local

field potential response under NIR stimulation under different conditions. (E) In vivo experimental description of NIR stimulation of the ventral tegmental area of mice.

Figures from Chen S. et al. (2018), reprinted with permission from AAAS.
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and the long-term durability issues. A critical issue is reducing
the physical stress, local inflammation and electrode degradation
caused by the reaction between electrode and tissue interface
while maintaining the electrical sensitivity of the electrode
(Prodanov and Delbeke, 2016). To tackle these issues,
multiple material-based strategies regarding this problem
have been suggested, including (i) chemical modification
of the electrode materials, (ii) new design of electrode
structures, and (iii) non-invasive and wireless approach
using functional nanoparticles.

Biological and non-biological electrode modifications,
especially through the surface coating of substrates and electrode
sites, are the most commonly used strategies to improve
interfacial mechanical mismatch (Aregueta-Robles et al., 2014).
Advances in fabrication approaches for integrating conductive
polymers (Kim et al., 2018), shape-memory polymers (Shoffstall
et al., 2018a), hydrogels (Crompton et al., 2007; Frampton et al.,
2007) and carbon nanotubes (Baranauskas et al., 2011; Bareket-
Keren and Hanein, 2012) onto complex electrode structures,
provide not only a chronically stable neural interface, but also an
improvement in the electrode performance. The reduced surface
area combined with low impedance and sensitivity provided
by such materials make them suitable for either stimulation
and recording applications (Vitale et al., 2015; Du et al., 2017;
Pancrazio et al., 2017; Wang et al., 2019).

The additional advantage is that the bioactivemolecules can be
attached to the coating surfaces to increase stimulating/recording
sensitivity. Employing composite materials for electrodes and
coatings has also emerged as a promising strategy for upgrading
electrode functionalities and biocompatibility. Heo et al. (2016)
have reported improved biocompatibility in polyimide-based
microelectrodes by coating them with PEG hydrogels containing
Poly lactic-glycol acid (PGLA) microspheres loaded with the
anti-inflammatory drug. On the other hand, Zhou et al.
(2013) proposed a carbon nanotube doped PEDOT composite
coating material onto the Pt electrode. They showed that this
coating makes the electrode more stable with enhanced charge
transfer capacity and tissue-electrode interaction.While chemical
modification of materials is still being suggested as an efficient
way of protecting both electrode and brain tissue, the long-term
stability issue caused by the degradation and delamination of
coating materials still remains as the challenge that needs to be
overcome (Green et al., 2008).

Another attempt to reduce the immune response while
enhancing functionality is to introduce new microelectrode
designs. The development of the fabrication techniques of
soft materials has enabled the production of ultrasoft and
ultrathin electrodes with complex designs that minimize the
mechanical mismatch of the electrode-tissue interface (Weltman
et al., 2016). Recently, Kim et al. have fabricated ultrathin
polyimide-based polymer electrodes covered by bioresorbable
silk film. They successfully demonstrated the integration of the
ultrathin electrodes with a complex structure by allowing the
silk to be dissolved and resorbed. This procedure encouraged
the spontaneous wrapping process driven by the capillary effect
at the material-tissue interface, generating greatly improved
biocompatibility (KimD.H. et al., 2010). Carbon nanotube-based

soft fiber microelectrodes have also proved to have low
impedance and effective therapeutic stimulation along with
single-neuronal-unit signal detectable resolution, owing to their
high surface area and electrical conductivity (Vitale et al., 2015).
Compared to the similar dimension and surface environment,
ultra-soft and ultra-thin electrodes have a great potential
to significantly reduce inflammatory tissue response in the
long-term scale (Du et al., 2017). However, as mentioned
earlier, the balance between flexibility/softness and the electrical
performance should be carefully considered when designing
these type of electrodes (Wellman et al., 2018b). Implementing
functional nanoparticles are attracting increasing attention as
a non-invasive and remotely controllable method. Chen et al.
(2015) succeeded in utilizing the magnetothermal effect of
nanoparticles for DBS (Figures 4A,B). They injected Fe3O4

magnetic nanoparticles in the ventral tegmental area of mice and
exposed them to the external magnetic field. When magnetic
nanoparticles are exposed to the AC magnetic field, stimulation
of neurons at the targeted brain region was triggered by
the dissipated heat from the magnetothermal effect. Wireless
neural stimulation was successfully performed 1 month after
injection. Moreover, lower glial activation, less macrophage
accumulation and neuronal loss have been reported compared
to a stainless steel implant. Chen S. et al. (2018) recently
proposed optogenetic treatment by shining near infrared light to
molecular tailored upconversion nanoparticles (Figures 4C–E).
They injected nanoparticles into the ventral tegmental area of the
brain to stimulate deep neurons and successfully demonstrated
that light treatment on upconversion nanoparticles can induce
dopamine release from dopaminergic neurons, activation of
inhibitory neurons, inhibition of hippocampal excitatory cells,
and memory recall. Magnetoelectric nanoparticles are another
great candidate for neural stimulation. It has been already proven
that the piezoelectric materials can generate electric signals under
the acoustic wave and can induce neural cell differentiation (Chen
et al., 2019). As ferromagnetism and ferroelectricity are coupled
to each other, applied external magnetic field can induce variation
in electric polarization of nanoparticles, causing a change of
the electronic structure at the particle surface and therefore
facilitating stimulation of the tissue deep inside the brain (Kargol
et al., 2012; Guduru et al., 2015). As a non-invasive stimulating
method, implementing magnetoelectric material is attracting
significant attention. While these approaches using nanoparticles
have great potential, biocompatibility and cellular uptake of these
functional particles still remain as a problem to be solved (Adjei
et al., 2014; Behzadi et al., 2017).

CONCLUDING REMARKS

The field of the brain-machine interface is exponentially growing
and comprises an important source of progress in many
aspects of neurosciences. The application of bionic systems,
neural prosthetics and neurostimulation for restoring/treating
severe neuro-debilitating conditions and neurological diseases
has attracted the interest of many researchers and clinicians. All
these technologies require the use of implantable microelectrodes
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to interface with the CNS. They represent an essential tool
that serves as a link between the electronic components
and the neuronal networks, in order to ensure a stable
electrochemical communication over time. Great success has
been achieved by the clinical application of neural prosthetics
in the improvement of the quality of life of patients that suffer
from sensory-motor deficits. DBS has become a treatment of
choice for movement disorders and neuropsychiatric diseases
and is proving to be a relevant alternative for a multitude of other
pathological conditions.

The recent progress in microfabrication techniques made
possible the development of microelectrodes capable of
simultaneous recording and stimulation with improved cell
selectivity and spatial resolution. Despite the improvements
in device fabrication, biocompatibility and electrochemical
performance for long-term applications, unfavorable nervous
tissue response and microelectrode failure are still significant
limitations. The process of nervous tissue response to
microelectrodes has been described by an acute and chronic
phase. The acute phase represents the most critical step
characterized by a series of pathological reactions triggered by
BBB dysfunction and glial activation. The persistence of this
neuroinflammation is responsible for the immune response and
the formation of the glial scar in the chronic phase, which may
lead to microelectrode failure. A better understanding of the
signaling pathways involved in the acute and chronic responses
is required in order to develop new design strategies to mitigate
neuroinflammation and promote a successful integration. Several
surface modified microelectrodes have been designed to provide
minimal damage and establish a minimally reactive interaction
with the brain tissue. However, additional studies are necessary
to comprehend some of the key-cellular mechanisms implicated
in the process of the glial scar formation around microelectrodes
that remain to be elucidated. An important aspect in which
research must be focused on is the binary role of the glial scar:
several studies report a neuroprotective function of the glial
scar in many pathological conditions, and its modulation has
been suggested as a therapeutic approach to improve neuronal
recovery and tissue regeneration. In the case of chronically
implanted microelectrodes, the participation of the various
glial subtypes to the nervous tissue response and how their
activation states can be influenced to soften tissue damage and
avoid rejection are still unclear aspects. Toward this end, the
use of appropriate experimental models can provide significant
advantages in the development and testing of biocompatible and
durable neural devices.

In this review, we provide an overview of the current
and potential experimental in vitro, ex vivo, and in vivo
models to investigate the mechanisms of foreign body
response to implantable microelectrodes. The progress in
3D tissue engineering and disease modeling opened the way
toward the development of in vitro biological platforms
with increased complexity and physiological relevance to be
used for high-throughput studies before moving to in vivo
animals. Organotypic culture systems are widely established
ex vivo platforms which offer the possibility to simulate
several pathological conditions and to isolate specific cerebral

regions, ensuring the preservation of tissue architecture and
synaptic organization for electrophysiological studies. While
the use of organotypic culture systems as screening platforms
for novel microelectrodes is still limited, their application is
expected to grow in the near future, not only for the reasons
mentioned earlier but also because these systems can contribute
to significantly minimize the use of animal models. Additional
implementations have been also achieved in vivo studies.
Despite being considered the gold-standard for microelectrode
safety and efficacy studies, the principal limitation of in vivo
experiments is the difficulty to monitor tissue response in
the initial phases of injury. New advanced neuroimaging
techniques open a new window of opportunities to improve
the relevance of in vivo assessment thanks to the possibility
to study biochemical processes, cell behavior and structural
modifications in real time with elevated resolution. The advent
of iPSC technology has enabled to simulate more closely the
pathophysiological cues that occur in human diseases, offering
the relevant advantage to recapitulate molecular and biological
characteristics of the human brain. Success is also being achieved
by the use of microfluidic systems combined with 3D cell cultures
and/or iPSC-derived organoids, which allowed for integrating
mechanical and physiological dynamics to simulate organ-like
functions and responses. They represent a cost-effective
compromise between the versatility of in vitro models and
physiological relevance of in vivo models, offering the possibility
to model pathophysiological cues under simulated conditions.

In conclusion, researchers have now a great variety of
relevant models that can be adopted to improve microelectrode
research in all the phases of development and to address the
scientific unknowns related to the nervous tissue response to
microelectrodes. Ultimately, with further improvements of these
in vitro models, one can expect the creation of optimal milieus,
which can substantially replace animal experimentation for
large scale studies.
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