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Abstract

Understanding how genetic variation affects distinct cellular phenotypes, such as gene ex-

pression levels, alternative splicing and DNA methylation levels, is essential for better un-

derstanding of complex diseases and traits. Furthermore, how inter-individual variation of

DNA methylation is associated to gene expression is just starting to be studied. In this

study, we use the GenCord cohort of 204 newborn Europeans’ lymphoblastoid cell lines,

T-cells and fibroblasts derived from umbilical cords. The samples were previously geno-

typed for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in

482,421 CpG sites. We observe that methylation sites associated to expression levels are

enriched in enhancers, gene bodies and CpG island shores. We show that while the corre-

lation between DNA methylation and gene expression can be positive or negative, it is very

consistent across cell-types. However, this epigenetic association to gene expression ap-

pears more tissue-specific than the genetic effects on gene expression or DNA methylation

(observed in both sharing estimations based on P-values and effect size correlations

between cell-types). This predominance of genetic effects can also be reflected by the ob-

servation that allele specific expression differences between individuals dominate over tis-

sue-specific effects. Additionally, we discover genetic effects on alternative splicing and

interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a

tissue-specific manner. The locations of the SNPs and methylation sites involved in these

associations highlight the participation of promoter proximal and distant regulatory regions

on alternative splicing. Overall, our results provide high-resolution analyses showing how

genome sequence variation has a broad effect on cellular phenotypes across cell-types,

whereas epigenetic factors provide a secondary layer of variation that is more tissue-
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specific. Furthermore, the details of how this tissue-specificity may vary across inter-

relations of molecular traits, and where these are occurring, can yield further insights into

gene regulation and cellular biology as a whole.

Author Summary

In order to better understand how genetic differences between individuals can cause dis-

eases, it is crucial to understand how genetic variants affect cellular functions in the differ-

ent tissues that compose the human body. From the umbilical cord of 195 newborn babies,

we previously obtained three different cell-types: fibroblasts, T-cells and immortalized

B-cells. From every individual in each cell type we measured four features across the ge-

nome: 1) genetic differences, 2) DNAmethylation, an epigenetic modification of DNA that

can affect its functional state, 3) gene expression—the amount of gene activity, 4) alterna-

tive splicing—which of the different versions of a gene is manifested. We find thousands of

genetic variants of the DNA sequence that affect methylation, gene expression, and splicing.

We show that while these genetic effects often affect multiple cell-types, the strength of

these effects varies between cell-types. Also epigenetic methylation marks of DNA associate

to gene expression and particularly often to splicing. Since abnormalities in gene expres-

sion, DNAmethylation and alternative splicing are associated to diseases, it is important to

continue studying how these traits are inter-related and affected by genetic variation across

cell-types.

Introduction

Understanding how our genome determines the distinct cell-types, tissues and organs that to-

gether make a functional human body is essential for better understanding of complex traits

and susceptibility to disease. Multiples studies have shown how genetic variation among indi-

viduals can affect basic cellular phenotypes, such as gene expression levels [1, 2, 3, 4, 5]. Others

have sought to dissect the tissue-specific genetic architecture of gene regulation [6, 7, 8, 9],

which has been relevant for better understanding non-coding signals detected by genome wide

association studies (GWAS) and complex diseases [10, 11, 12, 13]. Additional studies have also

identified genetic variants associated to alternative splicing using microarrays [14, 15, 16, 17,

18]. Furthermore, RNA-seq technology has allowed initial assessments of differential isoform

usage associated to genetic variation using distinct approaches in lymphoblastoid cell lines

[3, 4, 19]. However, more comprehensive assays in a larger collection of cell-types remain to be

done. More recently, studies have also shown the presence of genetic variation affecting DNA

methylation levels in several cell-types [20, 21, 22, 23]. Deeper studies of this type will be of

great functional value for interpreting the wave of epigenome wide associations studies

(EWAS) to come [24].

The role of DNAmethylation in gene expression variation is not well understood [25]. Even

though it is typically associated to gene silencing [26, 27], recent discoveries have revealed dis-

tinct types of participation of DNA methylation in gene regulation. DNAmethylation in gene

bodies can be positively associated to gene transcription [28, 29]. It can also be a marker of al-

ternative intra-genic promoters [30] and of tissue-specific regulatory elements [31]. Addition-

ally, DNA methylation levels can be affected by transcription factors (TFs) binding at

enhancers [32] and others have reported that DNAmethylation itself can affect the binding of
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TFs such as MYC [33]. Moreover, the differential methylation levels found at exon-intron

boundaries [34] could indicate that DNA methylation might be involved in alternative splicing.

A study found that absence of DNAmethylation can promote inclusion of a CD45 exon by al-

lowing CTCF binding and RNA polymerase II pausing [35] and another study found some

other cases of DNA methylation sites associated to alternative-splicing in cancer patients [36].

Furthermore, relationships between DNA methylation and gene expression in a population

context have been reported to be both positive and negative [20, 22, 23, 36, 37], but they have

not been systematically analyzed in high resolution and compared across tissues.

New sequencing technologies, genome-wide assays and comprehensive genome annotation

are now offering opportunities to interrogate genome function in multiple individuals at the

cellular level. We have previously published the GenCord data of sequenced transcriptomes

and assayed methylation levels in three cell-types of a genotyped cohort of 204 individuals [37]

(see Materials and Methods for a summary). In that study we analyzed the relationships

among genetic variation, DNAmethylation and gene expression in order to infer the passive

and active roles of DNAmethylation in gene regulation. We shed light on the context specifici-

ty of DNAmethylation in gene regulation and on one of the mechanisms by which DNAmeth-

ylation can have a passive role, being influenced by variant levels of TFs among individuals. In

this study we expand our analyses with the objective of addressing the tissue-specificity of the

genetic and epigenetic associations to gene expression, and of allele specific expression. Addi-

tionally, we measure alternative splicing levels and analyze how it is associated to genetic varia-

tion and DNA methylation across cell-types.

Results

Genetic effects on gene expression and DNAmethylation

We previously reported the discovery of cis associations between genetic variation and gene ex-

pression (expressed Quantitative Trait Loci; eQTLs) and between genetic variation and DNA

methylation (methylation QTLs; mQTLs) in primary fibroblasts, EBV-transformed lympho-

blastoid cell lines (LCLs) and primary T-cells of newborn babies, which are shown in Table 1

[37]. Here, we have assessed the level of replication of the LCL eQTLs with those LCL eQTLs

reported in a more powered RNA-seq study using older cell-lines from adult individuals [5].

This yields a replication of about 70% based on proportion of true positive from a P-value dis-

tribution [38] and effect size comparison (S1 Fig.). In this study we have also analyzed the loca-

tion of the previously discovered eQTLs and mQTLs. As observed in previous microarray

studies, highly significant eQTLs cluster close to the TSS [39]. Additionally, when eQTL genes

are classified by whether they are called significant in one, two, or three cell-types, we observe

that eQTLs significant in all cell-types tend to be less distant to the TSS than eQTLs significant

in two cell-types, and these are less distant than those significant in only one cell-type (S2 Fig.).

The same pattern is observed for the LCL eQTLs that were replicated in an independent data

set, as well as for a similar analysis that deals better with winner’s curse (S2C-D Fig.). This rep-

licates the patterns observed in previous studies [6, 22], and although some eQTLs may be mis-

classified due to winner’s curse, this pattern may reflect the importance of distant regulatory

elements, such as enhancers, in tissue-specific regulation. Additionally, we also find a large pro-

portion of eQTLs very close to the transcription end site (TES; S3 Fig.), similar to previous

observations [4, 40]. Also confirming previous studies with lower resolution arrays [20],

highly significant mQTLs are overrepresented close to the interrogated CpG site (P< 1.3E-14;

S4 Fig.). In all cell-types, we observe that the best eQTLs per gene are significantly enriched in

DNase I hypersensitive sites, exons and CpG islands (Fig. 1A; see also S5 Fig.). Also in all cell-

types, mQTLs are significantly enriched in enhancers and insulators, and depleted in last exons
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and introns (Fig. 1B; see also S6 Fig.). Several of these QTLs involve SNPs that have been re-

ported to be associated to various diseases and traits according to literature of genome wide as-

sociation studies [41] (GWAS)- 8, 3 and 4 eQTLs, and 32, 51 and 74 mQTLs, in fibroblasts,

LCLs and T-cells, respectively—although this enrichment is not significant and does not neces-

sarily imply causal relationship between these eQTLs or mQTLs and disease. In conclusion, ge-

netic variants affecting gene expression and DNA methylation levels often overlaps with

functional genomic elements. This also indicates that the DNA sequence variation greatly in-

fluences the level of methylation. The genetic variants affecting DNAmethylation are predomi-

nantly located in distant regulatory regions, as shown here, or in non-CpG island promoters as

shown before [37], rather than inside genes. These results are compatible with the observations

of differential methylation across tissues being predominantly located distant to transcription

start sites [31], and enriched for inter-individual methylation variation associated to genetic

variation [37].

We next sought to study the degree of tissue specificity of eQTLs and mQTLs. Of the signifi-

cant associations at 10% FDR, 47–60% of eQTL genes and 48–66% of mQTL CpG sites are

found in at least two cell-types (S7–S8 Figs.). We then used a more continuous measure of tis-

sue sharing percentage called the π1 statistic [38]. When assessing what proportion of the ef-

fects in a first cell-type are shared with a second cell-type, this statistic estimates the proportion

Table 1. Summary of associations and allele-specific expression analyses in GenCord.

Test Samples Window
size

Phenotype FDR Nominal P-value F L T

eQTLs genotypes and
expression

183(F) 1Mb genes 10% 2.2E-05(F); 3.2E-05(L);
1.8E-05(T)

2433 3372 2115

185(L)

186(T)

mQTLs genotypes and
methylation

107(F) 5kb methylation sites 10% 4.4E-04(F); 7.9E-04(L);
1.3E-3(T)

14189 22411 32318

111(L)

66(T)

eQTMs methylation and
expression

110(F) 50kb genes 10% 7.6E-05(F); 7E-04(L); 6.9E-
04(T)

596 3680 3838

118(L)

66(T)

asQTLs genotypes and alt.
splicing

183(F) 1Mb genes 10% Permutation per exon-exon
link

382 527 380

185(L)

186(T)

asQTMs methylation and alt.
splicing

110(F) 50kb genes 10% Permutation per exon-exon
link

4602 5663 81

118(L)

66(T)

ASE allelic imbalance 178(F) - assayable heterozygous
sites

20%
*

0.005 7162 8211 7747

178(L)

180(T)

Number of significant genes, methylation sites or assayable heterozygous sites in fibroblasts (F), LCLs (L) and T-cells (T). The association analyses on

eQTL, mQTLs and eQTMs were previously reported [37].

* FDR calculated as number of expected over number of observed based on the nominal P-value threshold.

doi:10.1371/journal.pgen.1004958.t001
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of true positives from the full P-value distribution of SNP-exon or SNP-CpG pairs in the second

cell-type, for the pairs that are significant in the first cell-type. LCLs and T-cells share a larger

proportion of genetic effects between them (π1 = 0.52–0.59 in eQTLs and 0.75–0.80 in mQTLs)

than each with fibroblasts (π1 = 0.40–0.47 in eQTLs and 0.46–0.58 in mQTLs; Table 2), as ex-

pected given their closer developmental origin.

To further dissect tissue specificity of genetic effects we compared effect sizes of eQTLs and

mQTLs between cell-types. We measured effect sizes as the scaled expression level or scaled

Figure 1. Enrichment of eQTLs andmQTLs in distinct genomic regions. For distinct genomic regions, the proportion of overlapping eQTLs (A) and
mQTLs (B) (both in red) was compared to the proportion of overlapping null SNPs (black, see Methods for details). We found significant enrichment of eQTLs
in CpG islands, exons and DNase I hypersensitive sites (HSs), and significant enrichment of mQTLs in enhancer and insulator marks, as well as significant
depletion in last exons and introns. One star indicates P< 0.05, two stars indicate P< 5E-04, Fisher’s exact test.

doi:10.1371/journal.pgen.1004958.g001

Tissue-Specific Genetics and Epigenetics

PLOS Genetics | DOI:10.1371/journal.pgen.1004958 January 29, 2015 5 / 25



methylation level difference between the medians of heterozygous individuals and the homozy-

gous individuals for the major allele (S9–S11 Figs.). Hence, effect sizes are quantified in terms

of number of expression or methylation level standard deviations for eQTLs and mQTLs, re-

spectively. The spread of the plots in Fig. 2A-B and the proportion of effect size variance in one

cell-type explained by the other (R2) show that while effect sizes are significantly correlated be-

tween cell-types (all P-values< 2.2E-16), they vary substantially when looking at the union

of eQTLs or mQTLs between any two cell-types (R2 = 0.20–0.37 and 0.18–0.47, respectively;

S1 Table). Effect sizes can also vary when looking only at the set of eQTLs or mQTLs signifi-

cant in both cell-types in each pair wise comparison (R2 = 0.88–0.92 and 0.70–0.79, respective-

ly). Interestingly, we found no strong difference in effect sizes between eQTLs or mQTLs

significant in multiple cell-types and those significant in only one cell-type, except in fibro-

blasts, where eQTLs and mQTLs found significant in more than one cell-type have larger effect

sizes than significant in only one cell-type (S12 Fig.). Overall, our results show that genetic ef-

fects on both gene expression and DNAmethylation have a considerable fraction of shared ef-

fects between cell-types and recapitulate cell-lineage relatedness but there is also substantial

variability among tissues in effects size even among shared QTLs.

Allele-specific expression

Several studies have assessed allele specific expression (ASE) of genes as a complementary ap-

proach to analyze cis-regulatory variation and to understand its effect on coding variation and

disease [3, 4, 42]. In our past study, we used allelic imbalance measures, in assayable heterozy-

gous sites, to show that allele specific expression is predominantly driven by genetic regulatory

variation, finding no significant evidence for being driven by DNA methylation [37]. However,

there are no studies that have globally looked at ASE in several cell-types of the same individu-

als to assay the degree of allele specific expression and its sharing among cell-types. Therefore,

in this study we have analyzed allele specific expression through binomial testing of the allelic

ratio of reads mapping to the assayable heterozygous sites in each individual, after applying

stringent criteria for site inclusion and testing (see Methods). Using sites covered by at least

30 reads and sampling additional reads to exactly 30 reads in order to avoid bias from differen-

tial coverage, the genes we ended up analyzing are of relatively high expression levels. We test-

ed a median of 1748 heterozygote sites per sample, of which a median of 41 (2.4%) show

significant ASE (P< 0.005, 20% FDR, Table 1). Of the ASE signals, 33–40% are significant in

two or more cell-types of the same individual (Fig. 3A), with π1 values of 0.46–0.61 (Table 2),

showing slightly increased sharing between T-cells and LCLs. (see S13 Fig. and S2 Table for re-

sults with 16 read cut-off). It is important to keep in mind that in this and other studies, all

quantitative analyses of the extent of tissue sharing of eQTL, ASE and other features are to

Table 2. π1 statistic representing fraction of effects shared between cell-types. significant in—π1 of P-value distribution in

F-L F-T L-F L-T T-F T-L

eQTLs 0.47 0.42 0.40 0.52 0.45 0.59

mQTLs 0.57 0.58 0.54 0.80 0.46 0.75

eQTMs 0.42 0.25 0.20 0.21 0.13 0.25

asQTLs 0.64 0.63 0.58 0.76 0.62 0.81

asQTMs 0.66 0.002 0.46 0.003 0.47 0.75

ASE* 0.46 0.50 0.47 0.51 0.47 0.61

* π1 using 30 read cut-off and sampling, see S2 Table for 16 read cut-off.

doi:10.1371/journal.pgen.1004958.t002
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Figure 2. Cell-type specific genetic effects on gene expression and DNAmethylation. Effect sizes of expression Quantitative Trait Locus (eQTL)
(A) and methylation QTLs (mQTL) (B) unions for each pair of cell-types. Effect size is measured as the difference in medians of scaled expression or scaled
methylation level (β-value) between heterozygous individuals and the homozygous individuals for the major allele. Hence, effect sizes are quantified in terms
of number of expression or methylation standard deviations changed by an allele modification for eQTLs and mQTLs, respectively. Effect sizes are
significantly correlated among all cell-types (Pearson’s correlation P< 2.2E-16). Coefficient of determination R

2, reflecting the proportion of effect size

Tissue-Specific Genetics and Epigenetics
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some degree dependent on the specific study design and analysis methods. Thus, they should

be interpreted in their specific context.

We then calculated allelic ratio distances between all sample pairs (individual—cell type) as

the median of absolute REFERENCE/TOTAL ratio differences of all the shared heterozygous

sites covered by> = 40 reads in both samples, weighted by the total number of reads covering

the site (see Methods for more details). Genome-wide allelic ratio distances across cell-types

and individuals show that the smallest allelic ratio distances are between cell-types within the

same individual, whereas the distances between the same cell-type of different individuals are

larger (P< 2.2E-16, Fig. 3B). This indicates that ASE reflects regulatory effects of the genome

that are shared between the cell-types within an individual rather than gene expression levels

that are characteristic to each tissue. However, tissue-specificity of regulatory effects is also im-

portant: two individuals are closer to each other when comparing the same cell-type than dif-

ferent cell-types (P< 2.2E-16, Fig. 3B). In this analysis the allelic ratio distance between two

individuals may be genetically driven based on the genotype and phasing of the causal regulato-

ry variant(s). Overall, these results show that although there are many cell-type specific effects

on ASE, the genetic profile of each individual contributes more to the variance of allelic imbal-

ance than cell-type specificity.

variance in one cell-type explained by the other cell-type, is shown in the top left corner of each plot (S1 Table). SNP-exon pairs or SNP-CpG pairs that are
significant in both tissues at 10% FDR are depicted in black, whereas associations significant in only one of the two cell-types compared are in orange
(fibroblasts), blue (LCLs) and purple (T-cells). The R

2 and the spread of the scatter plots show there is a large amount of tissue-specific genetic effects on
gene expression and DNAmethylation.

doi:10.1371/journal.pgen.1004958.g002

Figure 3. Allele-specific expression cell-type and individual effects. (A) Overlap of Allele-Specific Expression (ASE) across cell-types illustrated by the
relative amount of ASE sites (P< 0.005) in each cell-type (x-axis) found in one, two or three cell-types within each individual (y-axis), requiring at least 30
reads per site and further sampling to exactly 30 reads. Number of ASE sites falling in each category is indicated in the squares. F, L and T stand for
fibroblasts, LCLs and T-cells, respectively. 33–40% of the assayable heterozygous sites in the three cell-types of an individual are in ASE in at least two cell-
types (see also S13E Fig.). (B) Distributions of allelic ratio distance (see Materials and Methods) between samples of different (DIFF) or same cell-types
(Cell-tp) or individual (Indivl). All the pair wise differences between distributions have P< 2.2E-16 (Wilcoxon test). Allelic ratio distances between two cell-
types of an individual are smaller than those between two individuals within one cell-type, and these are smaller than those between different individuals and
different cell-types. This indicates a strong genetic load at the individual level, but also an important cell-type specific effect.

doi:10.1371/journal.pgen.1004958.g003
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DNAmethylation and gene expression

In our earlier study, we reported the significant associations between DNAmethylation and

gene expression (expression Quantitative Trait Methylation, eQTMs; Table 1), and we ob-

served that these associations were both positive (pos) and negative (neg)[37]. For the sake of

clarity we plot here the frequency of each, pos-eQTMs and neg-eQTMs (Fig. 4A), with neg-

eQTMs composing 69%, 57% and 51% in T-cells, LCLs and fibroblasts, respectively. The rea-

son for a smaller number of associations in fibroblasts remains unknown and one can hypothe-

size biological reasons (increased immune system plasticity so higher variation in LCL and

T-cell methylation) or technical such as passage effects that are different among the cell types

(gene expression and DNA methylation were measured at different passage numbers in fibro-

blasts and LCLs, but at the same passage number in T-cells). Furthermore, we previously as-

sessed the context specificity of DNAmethylation in gene regulation by identifying the

genomic regions in which there was a differential proportion of pos-eQTMs versus neg-

eQTMs [37]. Here we assess the enrichment of each type of eQTM separately in distinct geno-

mic regions, and we then study their replication across cell-types and their tissue-specificity.

As shown in Fig. 4B, in all cell-types there is a significant depletion for pos-eQTMs in promoter

proximal regions, similar to previous findings in cancer patients [36]. In most cell-types, we

find a significant enrichment for both pos and neg-eQTMs in CpG island shores, gene bodies

and enhancers, whereas we observe a significant depletion in CpG islands (Fig. 4B; S3 Table).

In conclusion, the methylation sites involved in associations to gene expression often overlap

regulatory elements, but in contrast to methylation associated to genetic variation, they also

highly overlap gene bodies, which could reflect different roles of DNA methylation in gene

regulation.

The vast majority of overlapping (significant in both cell-types compared) eQTMs

(86.3–97.3%) have the same sign of correlation in different cell-types (Fig. 4C). We manually

checked the 13.7% discordant associations between fibroblasts and T-cells (S4 Table), and dis-

covered that most of them are highly likely to be true positives and could represent quantifica-

tion of different transcripts (isoforms) that are correlated to methylation positively in one

cell-type and negatively in the other. Indeed, there is a high level of differential isoform use be-

tween fibroblasts and T-cells in general and more strongly so for the isoforms involving the

exons of the discordant eQTMs (see Materials and Methods). However, most eQTMs do not

present opposite associations, so the discordant cases could also be due to other tissue-specific

context differences in those loci and a small degree of false positives.

Looking at the overlap of eQTMs across cell-types (S14 Fig.), ~44% of genes with eQTMs

are observed in two or more cell-types (fibroblasts present a larger percentage of overlap, 63%,

probably due to the small number of associations detected in that cell-type). However, most of

the eQTM genes overlapping among cell-types involve different CpG sites, hence π1 better re-

flects the fraction of CpG-exon associations shared: 0.13–0.42 (Table 2). Furthermore, we cal-

culated effect sizes for eQTMs, by scaling the methylation and expression data and estimating

the linear regression slope of methylation on expression (S15–S16 Figs.), and compared them

across cell-types. Effect size variability between cell-types in eQTMs is much higher than that

of eQTLs and mQTLs, reflected by the low R
2 values that range from 0.003–0.024 for all pair-

wise unions of eQTMs (Fig. 4D, S1 Table). Moreover, when looking at the eQTMs significant

in both cell-types compared, effect sizes vary much less, with 55–87% of the effect size variance

in one cell-type explained by the other. In sum, associations between methylation and expres-

sion are replicated across cell-types at consistent directions (positive and negative, when signif-

icant in each pair of cell-types compared) and their effect size variability (as well as the π1)

indicates a higher degree of tissue-specificity than genetic effects.

Tissue-Specific Genetics and Epigenetics
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Figure 4. Properties of DNAmethylation when associated to gene expression. (A) Number of all significant positive (pos-eQTMs) and negative (neg-
eQTMs) correlations between DNAmethylation and gene expression in fibroblasts (F), LCLs (L) and T-cells (T). A larger number of neg-eQTMs is found in all
three cell-types, but an important part is composed of pos-eQTMs. (B) Percent of pos-eQTMs, neg-eQTMs and null sites that overlap with promoters, CpG
island shores, CpG islands, gene bodies and enhancers. Pos-eQTMs are significantly depleted in promoter proximal regions in all cell-types. In most cases
both positive and negative eQTMs are enriched for CpG island shores, gene bodies and enhancers, and depleted for CpG islands. One star indicates
P< 0.05, two stars indicate P< 5E-04, Fisher’s exact test. (C) Correlation coefficients of eQTMs significant in both cell-types compared for all pair wise
combinations of the three cell-types are plotted. The percentage of discordant cases (associations with opposite sign between any pair of cell-types) is
indicated in the top left corner of each panel. Most eQTMs that are significant in any pair of cell-types have the same sign of association. (D) eQTM effect
sizes are measured as the slope of the linear regression of expression given methylation on scaled values, and compared between cell-types for union of
eQTMs. Black dots are significant eQTMs (same CpG-exon pair) in both the cell-types compared; orange, blue and purple dots are eQTMs significant only in
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Associations to alternative splicing

We then analyzed alternative splicing and how it is associated to genetic variation and DNA

methylation across cell-types. We measured alternative splicing levels using the algorithm

Altrans (Ongen H., Dermitzakis E.T., submitted) that is based on quantifying exon-exon links

between paired reads (see Materials and Methods). To identify associations between SNPs and

alternative splicing (asQTL, alternative splicing Quantitative Trait Locus), we calculated the

Spearman Rank Correlation between alternative splicing levels and SNP genotypes within

1 Mb of TSSs. From the 4,991–5,853 tested genes, at 10% FDR we find 382, 527 and 380 genes

with significant asQTLs in fibroblasts, LCLs and T-cells, respectively (Table 1, S1 Dataset).

Based on the π1 statistic estimation, about 66% of the LCL asQTLs are replicated in the more

powered study of Geuvadis [5] (S17A Fig.). The spearman rank correlation coefficient of our

LCL eQTL effect sizes between each dataset is 0.6 (S17B Fig.). We think differences such as

split mapping (that was performed in the Geuvadis project only) may account for the slightly

lower replication we observe in asQTLs compared to eQTLs. Similar to patterns observed for

eQTLs, highly significant asQTLs tend to cluster close to the TSS and at the TES, and the num-

ber of cell-types in which an asQTL is significant is associated with distance to the TSS (Fig. 5A,

S18 Fig.). By analyzing the best SNP per exon-exon link, we find that asQTLs are significantly

enriched for distinct types of regulatory regions—including active promoters, enhancers,

DNase I hypersensitive sites and CTCF peaks—as well for middle exons, CpG islands, CpG is-

land shores, elongation marks and very strongly for splice region variants (Fig. 5B; S5 Table).

The distance between asQTL SNPs and TSSs is significantly smaller than that observed for

eQTLs (all P< 1.6E-19, Wilcoxon test). Additionally, we observed a 1.9 to 4-fold enrichment of

asQTLs overlapping GWAS SNPs, although this enrichment is marginally (P = 0.026, fibro-

blasts) or not significant (LCLs and T-cells, S5 Table). Overall, these results suggest the genetic

control on splicing occurs in a wide variety of places within (20–30%) and outside (70–80%) of

the gene, with a significant part occurring at distant regulatory regions, which are likely to be in-

volved in tissue-specific alternative splicing.

We next sought to study the degree of tissue-specificity of asQTLs. We observe that 29–44%

of asQTL genes are significant in at least two cell-types (S19A Fig.). Analysis of π1 on specific

SNP-link associations indicates a comparable amount of tissue specificity in asQTLs compared

to eQTLs and mQTLs, estimating 58% to 81% of sharing between cell-types (Table 2). Addi-

tionally, we calculated the effect sizes of asQTLs taking the same approach as in the other traits

(difference in medians of scaled alternative splicing levels between heterozygous and homozy-

gous for the major allele). Comparing effect sizes across cell-types reveals a picture in which

34–46% of the effect size variance of one cell-type is explained by the other when taking the

union of asQTLs (Fig. 5C; S1 Table; S20 Fig.). As expected, R2 substantially increases when

looking solely at the associations reported significant in both cell-types analyzed, ranging from

0.70–0.89.

In order to test whether DNAmethylation is associated to alternative splicing, we per-

formed Spearman rank correlation (SRC) between alternative splicing levels (also measured

with Altrans, see Materials and Methods) and methylation levels of sites within 50 kb on either

side of the TSS. Of the 5,124–6,020 tested genes, 4,602, 5,663 and 81 genes have significant as-

sociations between methylation and alternative splicing at 10% FDR (asQTM, alternative splic-

ing Quantitative Trait Methylation) in fibroblasts, LCLs and T-cells, respectively (Table 1,

fibroblast, LCL and T-cell, respectively, within the pair compared. Coefficient of determination R
2, reflecting the proportion of effect size variance in one cell-

type explained by the other cell-type, is shown in the top left corner of each plot (S1 Table). This shows that there is a large amount of tissue-specific effects
for correlations between DNAmethylation and gene expression.

doi:10.1371/journal.pgen.1004958.g004
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Figure 5. Genetic effects on alternative splicing. (A) Highly significant associations between genetic variation and alternative splicing (asQTLs) cluster
close to the transcription start site (TSS). The top asQTL per exon-exon link is plotted showing its relative distance to the TSS by the level of significance—
log(P-value). Additionally, we observe that associations called significant in three cell-types are closer to the TSS than associations significant in two cell-
types and these are closer than associations significant in only one cell-type. A great part of the genetic control on splicing appears to occur in promoter
proximal regions, and cell-type specific distant asQTLs could reflect that distant regulatory elements are involved in tissue-specific splicing. (B) For distinct
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S1 Dataset; see Materials and Methods). The substantially smaller number of significant associ-

ations found in T-cells may be due to sample size. Interestingly, similar to asQTLs, methylation

sites associated to alternative splicing in LCLs and fibroblasts are significantly enriched for dis-

tinct regulatory regions such as active promoter and enhancer marks, transcription factor bind-

ing peak motifs, CTCF binding peaks and DNase I hypersensitive sites. They are also enriched

for exons in general, but more strongly for middle exons, for elongation chromatin marks, and

to a lesser extent to CpG islands (Fig. 6A; S6 Table). LCL and fibroblast eQTMs are as well sig-

nificantly depleted in poised promoter marks and repressive marks (S6 Table). Enrichments

for T-cell asQTMs were only significant for promoters, CTCF binding peaks, first exons and

CpG island shores (Fig. 6A; S6 Table).

asQTM effects are considerably shared (π1: 0.46 to 0.75) in almost all comparisons (Table 2,

S19B Fig.). They are not well shared when taking the significant associations in fibroblasts or

LCLs and looking at the P-value distribution in T-cells (0.002 to 0.003; Table 2), reflecting the

small number of discoveries possibly driven by small sample size. This lower abundance of as-

sociations in T-cells is also reflected in the comparisons of effect sizes among cell-types (Fig. 6B,

S21 Fig.). However, when comparing effect sizes between fibroblasts and LCL associations, we

get a picture comparable to asQTLs, where R2 is 0.31 and 0.83 for union of and shared associa-

tions, respectively (Fig. 6B; S1 Table). These results reflect a significant amount of sharing

among cell-types but an important amount of tissue-specificity too.

We conclude that genetic variation and DNAmethylation are extensively associated to al-

ternative splicing and these associations also present a wide spectrum in degree of tissue-

specificity. Furthermore, enrichment of asQTLs and asQTMs in CTCF binding sites and exons

may suggest a mechanism where methylation-sensitive CTCF binding affects alternative splic-

ing [35]. Additionally, enrichment of asQTLs and asQTMs in both proximal and distant regu-

latory elements enforces studies that have shown that promoter architecture can influence

alternative splicing (reviewed in [43]) and that exons often physically interact with promoters

and enhancers, and these interactions correlate with alternative splicing events [44].

Discussion

In this study we have provided high resolution analysis of tissue-specificity of allele specific ex-

pression and of the genetic and epigenetic (DNA methylation variation) associations to gene

expression levels and alternative splicing, taking advantage of the large scale data for a popula-

tion of individuals in three cell types. A large number of genetic variants affect gene expression

levels, DNA methylation, and alternative splicing in a cell-type dependent manner. Additional-

ly, we observe that although there is a significant tissue-specific effect on allele specific expres-

sion, the individual component is a higher determinant of allelic imbalance. This reflects the

predominance of the genetic contribution to allele specific expression, over which epigenetic

factors can then contribute to the tissue differences.

genomic regions, the percent of overlapping asQTLs (top SNP per link) in comparison to the proportion of overlapping null SNPs in fibroblasts (F), LCLs (L)
and T-cells (T). We found significant enrichment of asQTLs in splice region variants, active promoters, enhancers, DNase I hypersensitive sites (HSs),
middle exons, CpG islands, elongation marks, CpG island shores and CTCF peaks (see also S5 Table). One star indicates P< 0.05, two stars indicate
P< 5E-04, Fisher’s exact test. (C) Effect sizes of the union of asQTLs (best SNP per exon-exon link) for each pair of cell-types are plotted. Effect size is
measured as the difference in medians of scaled alternative splicing levels between heterozygous individuals and the homozygous individuals for the major
allele. Hence, effect sizes are quantified in terms of number of standard deviations on the alternative splicing levels modified by an allele change. Black dots
depict associations significant in both cell-types compared; orange, blue and purple dots are associations significant in only fibroblasts, LCLs and T-cells,
respectively, within the pair compared. Coefficient of determination R2, reflecting the proportion of effect size variance in one cell-type explained by the other
cell-type, is shown in the top left corner of each plot (S1 Table).

doi:10.1371/journal.pgen.1004958.g005
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Figure 6. Associations between DNAmethylation and alternative splicing. (A) Methylation sites associated to alternative splicing (asQTMs) are
significantly enriched for active promoters, elongation marks, CTCF peaks, middle exons, transcription factor binding (TFB) peak motifs, DNase I
hypersensitive sites (HSs) and enhancer marks; as shown by the higher percentage of overlap in observed asQTMs compared to null sites. One star
indicates P< 0.05, two stars indicate P< 5E-04, Fisher’s exact test (see also S6 Table). For T-cells there was no ChIP-seq data available at the time of
analysis so the data of an LCL was used instead (see Materials and Methods). (B) Effect sizes of the union of asQTMs (best methylation site per exon-exon
link) for each pair of cell-types are plotted. Effect size is measured as the slope of the linear regression of alternative splicing levels given methylation levels
on scaled values. Hence, effect sizes are quantified in terms of number of alternative splicing standard deviations changed by every methylation standard
deviation change. Black dots depict associations significant in both cell-types compared; orange, blue and purple dots are associations significant in only
fibroblasts, LCLs and T-cells, respectively, within each pair compared. Coefficient of determination R2, reflecting the proportion of effect size variance in one
cell-type explained by the other cell-type, is shown in the top left corner of each plot (S1 Table). Given lower sample size in T-cells, there are many less
significant associations and hence, it is difficult to assess cell-type specificity between this cell-type and the rest. Fibroblasts and LCLs show a significant
fraction of shared correlations between DNAmethylation and alternative splicing, and also a high abundance of tissue-specific effects.

doi:10.1371/journal.pgen.1004958.g006
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In line with this, we find that methylation can be associated to gene expression in a positive

or negative manner that is highly replicated across cell-types, but the effect sizes of these associ-

ations appear more cell-type specific than genetic effects on expression and DNA methylation.

The methylation levels that we have measured could involve not only methylation of cytosines

but also hydroxymethylation, which is a mark that has recently been shown to be more com-

mon than anticipated, although on average in low levels [45, 46, 47]. Hence, future studies will

need to further disentangle the positive and negative associations between DNAmethylation

and gene expression.

Finally, we show that DNA methylation is extensively associated to alternative splicing

across the genome, and many of these associations present cell-type specificity. Our discoveries

on genetic and methylation associations to alternative splicing highlight a scenario in which

splicing can be dependent not only on factors occurring within the gene, but also on factors

acting in both promoter proximal and distant regulatory regions. Given that DNAmethylation,

gene expression and alternative splicing changes are implicated in many diseases [13, 24, 48,

49, 50], characterizing the genetic causes of their inter-individual variation provides biological

insights and mechanistic clues to the underlying pathophysiology of complex diseases and

traits.

Materials and Methods

Sample collection, cell growth, experiments (genotype, RNA-seq and DNAmethylation as-

says), data processing and association tests performed for eQTLs, mQTLs and eQTMs are fully

described in [37]. Here we summarize relevant information for these aspects and fully explain

methods used for analyses fulfilled for this study.

Ethics statement

Informed consent was obtained from all human subjects. The local ethics committee at Univer-

sity Hospitals of Geneva has approved this project (CER 10–046).

Genotyping

204 GenCord individuals were SNP genotyped with the Illumina 2.5M Omni chip. After filter-

ing, 1.5 million variants were imputed into the European panel SNPs of the 1000 genomes

Phase 1 release [51] using Beagle v3.3.2 [52] yielding 6.9 million SNPs.

RNA-sequencing and expression quantification

Total RNA was extracted from LCLs, fibroblasts and T-cells and mRNA-enriched cDNA li-

braries were sequenced with Illumina HiSeq2000 or Genome Analyzer II. 49bp paired-end

reads were mapped to the genome with BWA [53]. Uniquely mapped, properly paired,

MAPQ> = 10 reads mapping to merged exons from the GENCODE annotation v10 [54] were

counted. Exons that were considered expressed are those that have at least one read mapped in

at least 90% of the individuals studied. Raw exon counts were scaled to 10M reads per library

and corrected for GC content, insert size mode, primer index and run date by linear regression.

A median of 16 million reads per sample mapped to exons, which yielded sets of 70,800–76,870

normalized expressed exons, belonging to 12,265–12,863 genes.

DNAmethylation quantification

DNA was extracted from LCLs, fibroblasts and T-cells, bisulfite converted and processed

through the 450K Illumina Infinium HDMethylation Assay according to manufacturer’s
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instructions. Probes with 1000 genomes project SNPs and indels at minor allele frequency

>5% or any GenCord SNPs were filtered out. Data was quantile-normalized and the β-value

was chosen as measure of fraction of DNA methylation per CpG site [55]. A final set of

416,117 CpG sites was used for analyses.

Association analyses and multiple test correction

Spearman rank correlation was performed between all the pair wise combinations of geno-

types, exon expression levels and DNA methylation levels using the window sizes indicated in

Table 1. Analyses involving genotypes were done excluding genetic outlier individuals and in-

cluding SNPs with minor allele frequency of>5%. Multiple testing correction was done by per-

muting expression or DNAmethylation levels 1000 times of 1000 genes or 50000 CpG sites

and extracting the median P-value distribution for determining significance (for each gene the

minimum P-value distribution out of all its exons was used). A different process was followed

for associations to alternative splicing (see below).

Allele specific expression analyses

Allele-specific expression analysis was based on binomial testing of allelic ratios over heterozy-

gous sites of each individual. Sites with at least 16 reads mapping with MAPQ> = 10 were test-

ed, excluding those prone to mapping bias [5] (S13 Fig., S2 Table). Ratios were corrected for

reference mapping bias and nucleotide-specific biases per individual library. The same analysis

was repeated with the difference that we required at least 30 reads of coverage per site, and fur-

ther sampling exactly 30 reads per site (Fig. 3A, Table 2).

We calculated allelic ratio distances between all sample pairs (individual—cell type) as the

median of absolute REFERENCE/TOTAL ratio differences of all the shared heterozygous sites

covered by> = 40 reads in both samples, weighted by the total number of reads covering the

site (Fig. 3B). The higher coverage threshold was chosen to avoid random fluctuations of ratios

due to low counts. This metric does not assume that the over-expressed allele is the same be-

tween samples. It intentionally captures also difference due to change of direction between in-

dividuals, as we think it is a valid type of biological variation, driven by difference linkage of

regulatory and ASE variants. In these analyses, we excluded 12 samples where lower coverage

led to the distances being based on fewer sites.

Genomic feature enrichment analyses

The coordinates for the following genomic features were downloaded from the UCSC genome

browser tables [56] and are part of ChIP-seq or DNAseI-seq experiments of the ENCODE

project [57, 58, 59] and of particular groups, some of which have annotated regulatory elements

by learning of chromatin states with ChromHMM [60, 61, 62, 63]: enhancers, insulators, elon-

gation regions, poised promoters, active promoters, repressed regions, CTCF binding peaks

and DNase I hypersensitive sites. We used data from the cell lines GM12878 and NHLF, for

LCLs and fibroblasts, respectively. For T-cells, we used merged DNase I hypersensitive sites re-

ported for Adult CD4+ Th0 and Th1. Given that there was no T-cell specific chromatin marks

reported at the time of analysis, the data of GM12878, a closely related cell-type, were used

instead.

Gene promoters go from −1kb to +2kb relative to the TSS. Gene bodies go from +2kb, rela-

tive to the TSS, to the end of the gene. CpG islands were downloaded from the UCSC genome

browser [56]. CpG island shores are composed of the upstream and downstream 2kb regions

flanking CpG islands. SNPs reported by GenomeWide Association Studies (GWAS) were

downloaded from the NHGRI catalog (accessed on 30 April 2012)[41]. The splice region
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variants were taken from the Phase 1 1000 genomes variants annotation using the Variant Ef-

fector Predictor and Ensembl [51, 64, 65]. The transcription factor binding peak motifs are

based on the ENCODE data and the file was taken from the Phase 1 1000 genomes annotation

sets [51, 59]. We used BEDTools v2.7.1 [66] for processing many of the genomic features

analyzed.

For eQTLs, mQTLs and asQTLs we assessed the enrichment of the best associated SNP per

gene, CpG site or link, respectively, in distinct genomic features by comparing the overlaps ob-

served in associated SNPs and null SNPs, and performing Fisher’s exact test to assess signifi-

cance. The sets of null SNPs were chosen by requiring similar distance, minor allele frequency

and expression or DNAmethylation levels to that found in eQTL and mQTL SNPs, respective-

ly. We further required that the null SNPs are not significantly (P< 0.01) associated to gene ex-

pression (for the null eQTL set) or DNA methylation (for the null mQTL set). For the set of

null SNPs for the asQTLs we required similar distance and minor allele frequency to the

asQTL SNPs.

For pos-eQTMs, neg-eQTMs, and asQTMs (top per link), we assessed the enrichment in

distinct genomic features by comparing the overlaps observed in associated CpG sites and the

null set of CpG sites, and performing Fisher’s exact test to assess significance. The null sets in

this case are all non-eQTM or non-asQTM sites in the array that are within 50kb of a TSS.

Discordant eQTMmanual check

We found 12 eQTM associations with opposite direction between fibroblasts and T-cells. Only

2 of them are singletons, where one CpG site is associated to one exon. However, one of these

exons codifies for alternate processed transcripts, and the other exon codifies for two different

protein-coding genes. This raises the possibility that different transcripts are being quantified

in each cell-type and the same methylation site would be associated to them in opposite ways.

The other 10 associations are highly likely to be true positives. In one example, a CpG site is as-

sociated to 4 different exons of the same gene in the same consistent direction within each tis-

sue (to note, all of these exons code for different isoforms). In another case two different CpG

sites are associated to a single exon in the same consistent direction within each cell-type (this

exon also codes for different isoforms). In a third case, two CpG sites are associated to the same

two exons of a gene in a consistent manner within each tissue (i.e. four positive associations in

fibroblasts and four negative associations in T-cells). These two exons of the same gene also

code for different isoforms. In order to test whether these exons coding for several isoforms

and presenting discordant associations were indeed being expressed in different transcripts be-

tween fibroblasts and T-cells, we used the Altransmethod described below to test for differen-

tial exon-exon link usage. We were able to quantify links for 5 of these exons, and found

highly significant differential link usage between cell-types for all of them. They all have

P-values< 2.28E-67 (t-test) which is the median of 1000 randomly selected exons. Hence, they

are more strongly differentiated than at least half of the other exons selected, however, there is

a high level of tissue-specific isoforms between fibroblasts and T-cells in general.

Alternative splicing quantification

We have developed a novel method for the relative quantification of splicing events that utilizes

the paired-end nature of the RNA-seq experiment (Ongen H., Dermitzakis E.T., submitted). It

uses the paired-end reads, where one read maps to one exon and the other read to a different

exon, to count “links” between two exons. The first exon in a link is referred to as the “primary

exon”. Overlapping exons are grouped into “exon groups” and unique portions of each exon in

an exon group are identified, and subsequently used to assign reads to an exon. The raw link
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counts were normalized utilizing the effects of the first 15 principal components of these

counts. The normalized link counts ascertained from unique regions of exons, which can be de-

rived from parts of the linked exons rather than the whole exons, are divided by the probability

of observing such a link given the empirically determined insert size distribution for each sam-

ple and unique portions of the exons in question, which is referred to as “link coverage”. Final-

ly, the quantitative metric produced is the fraction of one link’s coverage over the sum of the

coverages of all the links that the primary exon makes. We calculated this metric in 5’-to-3’

(forward) and 3’-to-5’ (reverse) directions to capture splice acceptor and donor effects respec-

tively. In the association analyses, we only included links where the primary exon’s exon group

made at least 10 links in the analyzed direction in at least 80% of the individuals and where the

primary exon made at least 5 links in the analyzed direction in at least 30% of the individuals.

Furthermore, links with more than 95% non-variable values across individuals were filtered

out. For calling asQTLs, we have permuted the link ratios and then correlated these to the ge-

notypes in order to calculate an empirical P-value. Specifically, we have permuted the link ra-

tios 100 to a maximum of 100,000 times until we obtain 100 times a permutation P-value lower

than the observed nominal P-value. We then calculate the empirical P-value by dividing the

number of permutation P-values below the nominal P-value divided by the number of permu-

tations performed. Subsequently, we used the qvalue R package on these empirical P-values for

correcting for multiple testing [38].

Supporting Information

S1 Table. Summary of effect size variability analyses.

(DOCX)

S2 Table. π1 statistic, representing fraction of effects shared between cell-types, for sites

with at least 16 reads.

(DOCX)

S3 Table. Assessment of enrichment of eQTMs in distinct genomic regions.

(DOCX)

S4 Table. eQTMs significant in both fibroblasts and T-cells, and with opposite sign of cor-

relation (discordant).

(DOCX)

S5 Table. Assessment of enrichment of asQTLs in distinct genomic regions.

(DOCX)

S6 Table. Assessment of enrichment of asQTMs in distinct genomic regions.

(DOCX)

S1 Dataset. Discovered asQTLs and asQTMs at 10% FDR.

(ZIP)

S1 Fig. Replication of Gencord reported LCL eQTLs in another study.We have estimated

how our LCL eQTL results replicate in an independent dataset recently published (the Geuva-

dis dataset, including 373 European individuals, by Lappalainen et al., 2013). (A) We have

taken Gencord eQTLs and plotted the P-value distribution in Geuvadis, yielding a π1 of 0.69

(estimated fraction of true positives). (B) Plotted are the effect sizes for the Gencord eQTLs in

Gencord (x-axis) and in Geuvadis (y-axis). The Spearman rank correlation coefficient between

effect sizes is 0.73.

(TIF)
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S2 Fig. Clustering of eQTLs around the TSS, by approximation to degree of tissue specifici-

ty. (A) Relative distance of SNP to the transcription start site (TSS; x-axis) by—log(P-value)

(y-axis) of (from left to right) all eQTLs (best per gene), eQTLs genes discovered (significant)

in one cell-type, eQTL genes discovered in two cell-types, eQTLs genes discovered in all three

cell-types, in (from top to bottom) fibroblasts (F), LCLs (L), and T-cells (T). (B) Distributions

of absolute eQTL distance to TSS for eQTLs called significant in one, two or three cell-types.

(C) Distributions of absolute eQTL distance to TSS for LCL replicated eQTLs (P< 0.05 in Geu-

vadis) that are discovered in only LCLs (1), in LCLs and another cell-type (2), in LCLs and the

two other cell-types (3). (D) Union of SNP-exon eQTLs of fibroblasts, LCLs and T-cells (whose

SNP and exon were tested in all three cell-types) that have a P<0.05 in one, two or three cell-

types.

(TIF)

S3 Fig. Distribution of eQTLs before the TSS, in the gene and at the TES. (A) Plotted are the

distributions of eQTLs upstream of the transcription start site (TSS), inside the gene and down-

stream of the transcription end site (TES) by assessing the proportion of QTLs falling in 10kb

windows for upstream of TSS or downstream of TES, and deciles inside the gene (i.e. all genes

fitted to one size). We observe a high proportion of eQTLs not only close to the TSS, but also at

the TES. (B) Using the same bins as described for (A) (x-axis), we have plotted the fold enrich-

ment for cell-type specific eQTLs (genes called significant in only one cell-type; positive y-axis)

and the fold enrichment for shared eQTLs (called significant in at least 2 cell-types; negative

y-axis; i.e. a value of −2 is a 2 fold enrichment for shared eQTLs). This pattern observed further

supports the notion that eQTLs away from the gene tend to be more cell-type specific, whereas

the gene body and proximal flanking regions are enriched for shared eQTLs. However, this

classification method for approximation to cell-type specificity presents some caveats (see

main text).

(TIF)

S4 Fig. Distance of mQTLs to CpG site by level of significance. Relative distance of SNP to

the CpG site (x-axis) by—log(P-value) (y-axis) in fibroblasts (F), LCLs (L) and T-cells (T; left

panels). Distribution of distance to CpG site (y-axis) in expected set (random uniform), ob-

served mQTLs at 10% FDR and highly significant mQTLs (top 25%) in each cell-type (right

panels). All differences between distributions are significant, with all P< 1.3E-14 (Wilcoxon’s

test).

(TIF)

S5 Fig. Assessment of enrichment of eQTLs in distinct genomic regions. For distinct geno-

mic regions, the proportion of overlapping eQTLs was compared to the proportion of overlap-

ping null SNPs. One star indicates P< 0.05, two stars indicate P< 5E-04, Fisher’s exact test.

Fibroblasts (F), LCLs (L), T cell (T).

(TIF)

S6 Fig. Assessment of enrichment of mQTLs in distinct genomic regions. For distinct geno-

mic regions, the proportion of overlapping mQTLs was compared to the proportion of overlap-

ping null SNPs. One star indicates P< 0.05, two stars indicate P< 5E-04, Fisher’s exact test.

Fibroblasts (F), LCLs (L), T cell (T). To note, although there is a significant depletion of

mQTLs in promoters in all three cell-types, this has been shown to be different depending on

whether the promoter has a CpG island or not [37].

(TIF)
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S7 Fig. Overlap of eQTLs and mQTLs across cell-types.Overlap of eQTLs (A) and mQTLs

(B) illustrated by the relative amount of eQTL genes or mQTL sites in each cell-type (x-axis)

found significant in one, two or three cell-types (y-axis). Number of eQTL genes or mQTL

sites falling in each category is indicated in the squares.

(TIF)

S8 Fig. Direction of effect comparisons between cell-types for eQTLs and mQTLs. Correla-

tion coefficients of eQTLs (A) or mQTLs (B) significant in both cell-types compared for all

pair wise combinations of the three cell-types. Percentage of discordant cases (associations

with opposite direction between any pair of cell-types) is indicated in the top left corner of

each panel.

(TIF)

S9 Fig. eQTL effect size calculation example. Distribution of expression levels of an exon

(top) and its eQTL (bottom) for normal (A) and scaled (B) data. Scaled data is calculated by

subtracting the mean and dividing by the standard deviation of normal data. Effect size of

eQTLs is the difference between the median scaled expression level of the homozygous individ-

uals for the major allele and the median scaled expression level of the heterozygous individuals

(medians depicted by red lines). The effect size of this example is 0.56.

(TIF)

S10 Fig. mQTL effect size calculation example. Distribution of DNA methylation levels of a

CpG site (top) and its mQTL (bottom) for normal (A) and scaled (B) data. Scaled data is calcu-

lated by subtracting the mean and dividing by the standard deviation of normal data. Effect

size of mQTLs is the difference between the median scaled methylation level of the homozy-

gous individuals for the major allele and the median scaled methylation level of the heterozy-

gous (medians depicted by red lines). The effect size of this example is −0.9.

(TIF)

S11 Fig. eQTL and mQTL effect size distributions.Histograms depicting the effect sizes dis-

tributions of eQTLs (left panels) and mQTLs (right panels) in each cell-type.

(TIF)

S12 Fig. eQTL and mQTL effect sizes when significant in one or multiple cell-types. Abso-

lute effect size distributions (y-axis) of eQTLs (A) and mQTLs (B) when the gene or CpG site

has a significant eQTL or mQTL, respectively, in one, two or three cell-types (x-axis), in fibro-

blasts (F), LCLs (L) and T-cells (T).

(TIF)

S13 Fig. Allele specific expression summary statistics and overlapping among tissues using

16 read cut-off. (A-E) Results of ASE analyses requiring at least 16 reads per site. (A) Distribu-

tion of number of assayed heterozygous sites per cell-type. (B) Distribution of proportion of

both alleles seen (BAS) per site in each cell-type. (C) Distribution of number of allele specific

expressed (ASE) sites (P< 0.005) per cell-type. (D) Distribution of percent of heterozygous

sites assayed with significant ASE per sample, in each cell-type. (E) Sharing of Allele-Specific

Expression (ASE) illustrated by the relative amount of ASE sites (P< 0.005) in each cell-type

(x-axis) found significant in one, two or three cell-types within each individual (y-axis). Num-

ber of ASE sites falling in each category is indicated in the squares. F, L and T stand for fibro-

blasts, LCLs and T-cells, respectively.

(TIF)
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S14 Fig. eQTM gene overlap across cell-types.Overlap of eQTMs illustrated by the relative

amount of eQTM genes in each cell-type (x-axis) found in one, two or three cell-types (y-axis).

Number of eQTM genes falling in each category is indicated in the squares. 44–63% of genes

with eQTMs are observed in at least two cell-types.

(TIF)

S15 Fig. eQTM effect size calculation examples. Two examples of a pos-eQTM (A) and a

neg-eQTM (B) showing how effect sizes are calculated. In each (A) and (B), the top histograms

show the distributions of expression level of an exon and DNA methylation levels of a CpG site

that are significantly associated (top scatterplot). The bottom histograms show the same distri-

butions for scaled data. Scaled data is calculated by subtracting the mean and dividing by the

standard deviation. Effect size of eQTMs is calculated as the linear regression slope of scaled

data of expression given methylation, as depicted in the bottom scatterplots on the right with

the slope depicted in red and the effect size indicated above the plot.

(TIF)

S16 Fig. eQTM effect size distributions.Histograms depicting the distribution of eQTM ef-

fect sizes in each cell-type.

(TIF)

S17 Fig. Replication of Gencord reported LCL asQTLs in another study.We have estimated

how our LCL asQTL results replicate in an independent dataset recently published (the Geuva-

dis dataset, including 373 European individuals, by Lappalainen et al., 2013). (A) We have

taken Gencord asQTLs and plotted the P-value distribution in Geuvadis, yielding a π1 of 0.66

(estimated fraction of true positives). (B) Plotted are the effect sizes for the Gencord asQTLs in

Gencord (x-axis) and in Geuvadis (y-axis). The Spearman rank correlation coefficient between

effect sizes is 0.6.

(TIF)

S18 Fig. Distribution of asQTLs before the TSS, in the gene and after the TES. Plotted are

the distributions of asQTLs (best per exon-exon link) upstream of the transcription start site

(TSS), inside the gene and downstream of the transcription end site (TES) by assessing the pro-

portion of asQTLs falling in 10kb windows for upstream of TSS or downstream of TES, and

deciles inside the gene (i.e. all genes fitted to one size). We observe a high proportion of asQTLs

close to the TSS and also some enrichment at the TES.

(TIF)

S19 Fig. Overlap of DNAmethylation and genetic variation associations to alternative

splicing among cell-types.Overlap of asQTLs (A) and asQTMs (B) illustrated by the relative

amount of asQTL genes or asQTM genes in each cell-type (x-axis) found significant in one,

two or three cell-types (y-axis). Numbers falling in each category are indicated inside the

boxes.

(TIF)

S20 Fig. asQTL effect size distributions and examples. (A) Distributions of asQTL effect

sizes in fibroblasts (F), LCLs (L) and T-cells (T) (left panels), with a close up vision on the cen-

ter of the distributions (right panels). Effect sizes are calculated as the difference in medians of

scaled alternative splicing levels between heterozygous individuals and individuals homozy-

gous for the major allele. Scaled data is calculated by subtracting the mean and dividing by the

standard deviation of normal data. (B) Plotted are examples of asQTLs with one shown for

each cell-type, with the effect size indicated above each plot.

(TIF)
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S21 Fig. asQTM effect size distributions and examples. (A) Distributions of asQTM effect

sizes in fibroblasts, LCLs and T-cells. (B) Plotted are examples of asQTMs in each cell-type,

with the effect size indicated on the top of each plot. Effect size of asQTMs is calculated as the

linear regression slope of scaled data of alternative splicing levels given DNA methylation lev-

els, as depicted in red in the scatter plots. Scaled data is calculated by subtracting the mean and

dividing by the standard deviation of normal data.

(TIF)
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