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Abstract: Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety
of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In
this work, we report a comprehensive study on the genome-wide identification and characterization
of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were
grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure
and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene
structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting
elements involved in the stress response were identified in the promoter region of RcTPS genes,
suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed
that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under
osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide
a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well
as addressing the link between terpene biosynthesis and abiotic stress responses in roses.

Keywords: rose; terpene synthase; genome-wide analysis; expression pattern; abiotic stress

1. Introduction

Terpene synthases (TPSs) are important enzymes involved in the biosynthesis of ter-
penes, a class of compounds related to plant growth and development that attract insect
pollinators and respond to multiple biotic or abiotic stresses [1–4]. Generally, the precursors
of terpenoids are two isomeric C5 compounds, isopentenyl diphosphate (IPP) and dimethy-
lallyl diphosphate (DMAPP) [5]. In most plants, IPP and DMAPP are the products of two
separate pathways, the cytosolic mevalonic acid (MVA) pathway and the plastid methylery-
thritol phosphate (MEP) pathway [6]. IPP and DMAPP are subsequently condensed into
farnesyl diphosphate (FPP), geranyl diphosphate (GPP), and geranylgeranyl diphosphate
(GGPP), which are the direct precursors of terpenes (Figure 1). Finally, FPP is converted
into sesquiterpenes (C15) in the cytosol, while GPP and GGPP are converted into monoter-
penes (C10) and diterpenes (C20), respectively, in plastids by TPSs [3,7,8]. These terpene
skeletons are further modified by various enzymes, such as cytochrome P450-dependent
monooxygenases (CYPs), methyltransferases, dehydrogenases and acyltransferases, to
form additional compounds [9,10].
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Figure 1. Terpene biosynthesis pathway in the rose. Black arrows indicate that the biosynthetic step 
has been identified in rose or other species. Blue arrows indicate putative steps with unknown en-
zymes. AACT, acetoacetyl-CoA thiolase; CCD, carotenoid cleavage dioxygenase; CMK, 4-(cytidine 
5’-diphospho)-2-C-methyl-D-erythritol kinase; DMAPP, dimethylallyl diphosphate; DXR, 1-deoxy-
D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; FPP, 
farnesyl diphosphate; FPPS, farnesyl diphosphate synthase; G3P, glyceraldehyde 3-phosphate; 
GGPP, geranylgeranyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GPP, geranyl 
diphosphate; GPPS, geranyl diphosphate synthase; HDR, 1-hydroxy-2-methyl-2-butenyl 4-diphos-
phate reductase; HDS, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase; HMBPP, 1-hydroxy-
2-methyl-2-(E)-butenyl 4-diphosphate; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; HMGS, 
3-hydroxy-3-methylglutaryl CoA synthase; IDI, isopentenyl diphosphate isomerase; IPP, isopen-
tenyl diphosphate; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase; MDS, 2-C-me-
thyl-D-erythritol 2,4-cyclodiphosphate synthase; MVD, 5-diphosphomevalonate decarboxylase; 
MEP, 2-C-methyl-D-erythritol 4-phosphate; MVA, mevalonic acid; MVK, mevalonate kinase; 
NUDX1, nudix hydrolase1; PMK, 5-phosphomevalonate kinase; TPS, terpene synthase. 
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Figure 1. Terpene biosynthesis pathway in the rose. Black arrows indicate that the biosynthetic
step has been identified in rose or other species. Blue arrows indicate putative steps with unknown
enzymes. AACT, acetoacetyl-CoA thiolase; CCD, carotenoid cleavage dioxygenase; CMK, 4-(cytidine
5’-diphospho)-2-C-methyl-D-erythritol kinase; DMAPP, dimethylallyl diphosphate; DXR, 1-deoxy-
D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; FPP,
farnesyl diphosphate; FPPS, farnesyl diphosphate synthase; G3P, glyceraldehyde 3-phosphate; GGPP,
geranylgeranyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GPP, geranyl diphos-
phate; GPPS, geranyl diphosphate synthase; HDR, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate re-
ductase; HDS, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase; HMBPP, 1-hydroxy-2-methyl-
2-(E)-butenyl 4-diphosphate; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; HMGS, 3-hydroxy-
3-methylglutaryl CoA synthase; IDI, isopentenyl diphosphate isomerase; IPP, isopentenyl diphos-
phate; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase; MDS, 2-C-methyl-D-erythritol
2,4-cyclodiphosphate synthase; MVD, 5-diphosphomevalonate decarboxylase; MEP, 2-C-methyl-D-
erythritol 4-phosphate; MVA, mevalonic acid; MVK, mevalonate kinase; NUDX1, nudix hydrolase1;
PMK, 5-phosphomevalonate kinase; TPS, terpene synthase.

TPS proteins are classified into two types, I and II, based on their structure and reaction
mechanism [7,11,12]. Type I TPS proteins contain conserved DDXXD and NSE/DTE
motifs near the C-terminus and are known to play important roles in the metal-dependent
ionization of prenyl diphosphate substrates [13–15]. Type II TPS proteins contain a DXDD
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motif near the N-terminus that catalyzes the formation of copalyl diphosphate (CPP)
through protonation-induced cyclization of GGPP [3,16]. The TPS family is phylogenetically
divided into seven subfamilies, one of which, TPS-c, represents the type II TPSs, while the
remaining subfamilies, TPS-a, TPS-b, TPS-d (gymnosperm-specific), TPS-e/f, TPS-g and
TPS-h (specific to Selaginella moellendorffii), are type I TPS proteins [3,7,17].

To date, the TPS family has been identified in various plant species, such as Ara-
bidopsis thaliana [18], Vitis vinifera [19], Solanum lycopersicum [20,21], Malus domestica [22],
and Eucalyptus grandis [23], Citrus sinensis [24], Setaria italica [25], Camellia sinensis [26],
Dendrobium officinale [27] and Aquilaria sinensis [28]. The number of TPS genes varies widely
between different species. V. vinifera has the largest known TPS gene family with as many
as 69 putatively functional TPS genes, while there is only one functional TPS gene that has
been identified in Physcomitrella patens [29]. Previous studies have characterized several
monoterpene synthases and predicted the TPS family genes in the rose [30,31]. However,
to date, no comprehensive study of the TPS family has been reported in the rose.

Rosa spp., an economically important genus belonging to the Rosaceae family, are
cultivated worldwide for their high ornamental properties and cosmetic and medicinal
properties [32]. Modern roses have inherited many traits, mainly floral, including their
scent, from both European and Chinese lineages through years of artificial hybridiza-
tion [33]. Terpenoids, benzenoids/phenylpropanoids and fatty acid derivatives are the
three major classes of scented compounds in R. chinensis [31]. In particular, monoterpenes
represent up to 70% percent of the scent content in some cultivars [34]. Like other plant
species, in roses the sesquiterpenes and norterpenes are synthesized in cytosol and plastids,
respectively [30,35]. However, instead of being synthesized by TPSs in the plastids, the
acyclic monoterpenes in roses are synthesized in the cytosol by a noncanonical enzyme
named NUDX1, which is different from other plants [34] (Figure 1).

Roses have to cope with many abiotic stresses, such as heat stress and water deficit
caused drought stress, which severely limit their growth and flowering [36,37]. Drought
stress reduces the number of petals and the length of the flower bud of roses [38]. High-
temperature conditions were reported to promote flower abscission, and to decrease an-
thocyanin pigmentation and the size of petals in the rose [39,40]. Volatile terpenes as
constituents of floral scent not only play significant roles in attracting pollinator, but they
have also been shown to be involved in the response to abiotic stresses in plants [1,26],
which is mainly because some of the terpenes (such as isoprene and some monoterpenes)
can maintain the stability of cell membrane structure under stress conditions and elimi-
nate the damage caused by the stress-induced accumulation of reactive oxygen species
(ROS) [41–43]. Thus, understanding how TPS genes respond to such stresses in roses will
help to develop strategies to improve their tolerance.

In this report, we identified and analyzed TPS family members in R. chinensis, a major
modern roses progenitor, at the genome-wide level and investigated the gene structure,
conserved motifs, phylogenetic relationships, tissue-specific expression profiles and expres-
sion patterns under abiotic stresses. The present research provides a valuable foundation
that will help to understand the role of rose TPS genes during development and the stress
response, as well their regulation and evolution, and will help to provide ideas for breeding
new rose varieties with stronger resistance.

2. Materials and Methods
2.1. Plant Materials and Treatments

R. chinensis ‘Old Blush’ plants were grown in temperature and light-controlled growth
chamber (25 ◦C, 60% relative humidity, 150 µE light intensity, 16 h light/8 h darkness).
The plants were cultivated in separate pots (10 × 10 × 9 cm) containing a mixture of peat
moss, vermiculite and perlite (3: 2: 1) and were irrigated twice a week. For heat treatment,
3-year-old rose plants were watered once before treatment and then incubated at 35 ◦C
for 24 h, Petals were harvested at 0, 6, 12, 24 h post-treatment. For drought treatment,
the plants were irrigated once before treatment using a 200 mM mannitol solution until it
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dripped out from the pot bottom. Petals were harvested at 0, 12, 24, 48 h post-treatment. All
samples were immediately frozen in liquid nitrogen and stored at −80 ◦C until use. Total
RNA was extracted using EASYspin plant RNA extraction kit (AidLab, Beijing, China) and
genomic DNA was removed by on-column DNAse digestion. RNA was quantified using
the NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and
RNA integrity was assessed by standard denaturing 1% TBE agarose gel electrophoresis. A
total amount of 1 µg RNA was then reverse transcribed into cDNA using the TRUEscript
RT MasterMix (AidLab, Beijing, China) with the following conditions: 42 ◦C for 20 min
and 85 ◦C for 5 s. The cDNA was then diluted 10-fold and stored at −20 ◦C for qRT-PCR.

2.2. Identification of TPS Genes in R. chinensis

The reference rose genome sequence used in this study was downloaded from the
R. chinensis ‘Old Blush’ genome website (https://lipmbrowsers.toulouse.inra.fr//pub/
RchiOBHm-V2/, accessed on 24 February 2022) [31]. A. thaliana TPS (AtTPS) protein
sequences were collected from the Arabidopsis Information Resource (https://www.
arabidopsis.org/, accessed on 24 February 2022) [44] (Table S1). AtTPS were used as query
sequences by BLASTP searches [45] (e-value 1 × 10−6) against the Rose’s protein sequences
to predict the TPS family genes in R. chinensis. In parallel, we downloaded two specific TPS
domains (PF03936 and PF01397) in the Pfam database (http://pfam.xfam.org/, accessed
on 24 February 2022) and used HMM search tool [46] to identify the rose RcTPS genes as
well. The genes obtained by the two approaches above, were compared and each predicted
gene was subsequently verified through the SMART (http://smart.embl.de/, accessed
on 24 February 2022) and NCBI-CDD searches (https://www.ncbi.nlm.nih.gov/cdd/,
accessed on 24 February 2022) to further confirm the completeness of the TPS domain.
Subcellular localization was predicted using the tools Plant-mPLoc (http://www.csbio.
sjtu.edu.cn/bioinf/plantmulti/, accessed on 24 February 2022) and pLoc-mPlant (http:
//www.jcibioinfo.cn/pLoc-mPlant/, accessed on 24 February 2022).

2.3. Chromosomal Distribution, Duplication Event of RcTPS Genes

Duplication event of TPS family genes in rose genome was analyzed using MCScanX
program with default parameters [47]. The chromosome position of each RcTPS gene
was mapped on the assembled R. chinensis ‘Old Blush’ genome (https://lipmbrowsers.
toulouse.inra.fr//pub/RchiOBHm-V2/, accessed on 24 February 2022) [31], using TBtools
software [48].

2.4. Gene Structure, Conserved Motif and Phylogenetic Analysis

Multiple sequence alignments between the TPS protein sequences of R. chinensis, A.
thaliana, S. lycopersicum and M. domestica were performed using MEGA7.0 software [49].
Neighbor-joining (NJ) method was used to construct the phylogenetic tree with bootstrap
replications set to 1000 and other parameters set as default values. The information of
exon-intron structures was downloaded from the R. chinensis ‘Old Blush’ genome website
(https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/, accessed on 24 February
2022) [31]. Conserved motifs of TPS proteins were analyzed using MEME program (http://
www.meme-suite.org, accessed on 24 February 2022). The maximum number of predicted
motifs in the parameters was set to 10, and the other parameters were set as default. The
map of gene structure and conserved motifs was drawn using TBtools software.

2.5. Analysis of Cis-Acting Elements in the Promoter Region of RcTPS Genes

For each identified RcTPS gene, 2000-bp sequence located upstream ATG translation
initiation codon, was extracted from the R. chinensis ‘Old Blush’ genome sequence [31],
and was then submitted to the PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/, accessed on 24 February 2022) to predict cis-acting elements.

https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://pfam.xfam.org/
http://smart.embl.de/
https://www.ncbi.nlm.nih.gov/cdd/
http://www.csbio.sjtu.edu.cn/bioinf/plantmulti/
http://www.csbio.sjtu.edu.cn/bioinf/plantmulti/
http://www.jcibioinfo.cn/pLoc-mPlant/
http://www.jcibioinfo.cn/pLoc-mPlant/
https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
http://www.meme-suite.org
http://www.meme-suite.org
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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2.6. Gene Expression Analysis Based on Transcriptome Data

Raw transcriptome data from nine different tissues (roots, stems, leaves, stamens,
pistils, green petals in the flower buds (FB_GP), color-changing petals in the flower buds
(FB_CP) and pink petals in the flower buds (FB_PP), and pink petals of the open flowers
(OF_PP)), were downloaded from NCBI under BioProject PRJNA546486 [50] and BioProject
PRJNA351281 [51]. The SRA files were converted to FASTQ files using the SRA toolkit
(http://www.ncbi.nlm.nih.gov/Traces/sra/, accessed on 24 February 2022). Then the
FastQC software [52] was used to assess read quality, and Trimmomatic [53] was used
to discard low quality portions of reads (QUALITY: 15, LEADING: 20, TRAILING: 20,
MINLEN: 50, SLIDINGWINDOW: 5: 20). The reads were subsequently mapped to R.
chinensis ‘Old Blush’ genome with HISTA2 [54] and the bam files were processed to analyze
gene expression quantitatively using StringTie [55] with default parameters. Fragments
per kilobase per million mapped reads (FPKM) values were used to evaluate transcript
abundance of RcTPS genes. The heat map of expression profiles of RcTPS genes in different
tissues was drawn using the TBtools software. The expression levels of RcTPS genes are
expressed by log2-based FPKM with row standardization, other parameters were set as
default parameters.

2.7. qRT-PCR Analysis of RcTPS Genes under Different Treatment

Primers used for quantitative real-time PCR (qRT-PCR) analysis were designed by
NCBI primer blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on
24 February 2022) according to the CDSs of genes (Table S5). Reaction was performed
using PowerUp SYBR Green Master Mix (ABI, Carlsbad, CA, USA). qRT-PCR was carried
out in 384-well plates in a 10 µl volume on QuantStudio 6 and 7 Flex Real-Time PCR system
(ABI, Carlsbad, CA, USA) with the following cycling parameters: heating at 95 ◦C for 2 min,
40 cycles of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 15 s, and extension at 72 ◦C
for 1 min. Each sample was conducted with three biological replicates and melt curves
were generated to check the non-specific amplification for each well. The glyceraldehyde-
3-phosphate dehydrogenase (RcGAPDH) was used as housekeeping gene to normalize
samples [56]. The relative expression values and error values were calculated using the
comparative CT(2−∆∆CT) method [57]. Gene expression values were log2 transformed and
the TBtools software was used to generate the heatmaps. Statistical analysis was performed
using one-way ANOVA along with Duncan’s multiple range test using SAS version 9.4
(SAS Institute), and P <0.05 were considered significant.

3. Results
3.1. Identification, Classification and Properties of RcTPS Genes

To identify TPS genes in the R. chinensis genome, we performed a BLASTP search
using known A. thaliana TPS protein sequences as queries. To further verify the identity of
the detected rose TPS sequences, the hidden Markov model (HMM) profile of the conserved
C-terminal domain (PF03936) and N-terminal (PF01397) domain of TPSs was downloaded
from the Pfam database [58] and used as a query in the HMM search. All putative TPS
genes were further confirmed by SMART [59] and NCBI-CDD searches for the presence of
the complete domain. We identified 49 TPS gene candidates in the R. chinensis ‘Old Blush’
genome (named RcTPS01 to RcTPS49; Table 1). The lengths of the proteins encoded by
these RcTPS genes varied from 455 (RcTPS07) to 857 (RcTPS49) amino acids. The predicted
isoelectric points ranged from 5.06 (RcTPS43) to 8.91 (RcTPS47). The protein molecular
weights varied between 52.89 kDa (RcTPS07) to 98.52 kDa (RcTPS49). According to two
widely used subcellular localization predictors (Plant-mPLoc [60] and pLoc-mPlant [61]),
14 RcTPS proteins were predicted to be chloroplastic TPSs. The remaining 35 RcTPS pro-
teins were predicted as chloroplastic or cytoplasmic TPSs.

http://www.ncbi.nlm.nih.gov/Traces/sra/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Characterization of TPS family identified in R. chinensis.

Gene Accession Number Chr AA
(aa)

MW
(kDa) pI Subcellular

Localization Subfamily

RcTPS01 RchiOBHm_Chr6g0265741 6 567 65.92 5.16 Chloroplast a/Cytoplasm b TPS-a
RcTPS02 RchiOBHm_Chr5g0023641 5 724 81.88 5.72 Chloroplast a, b TPS-e/f
RcTPS03 RchiOBHm_Chr5g0044191 5 565 65.40 5.25 Chloroplast a/Cytoplasm b TPS-a
RcTPS04 RchiOBHm_Chr7g0210371 7 565 65.34 5.07 Chloroplast a/Cytoplasm b TPS-a
RcTPS05 RchiOBHm_Chr3g0475221 3 560 64.87 5.17 Chloroplast a, b TPS-a
RcTPS06 RchiOBHm_Chr5g0059511 5 557 64.72 5.95 Chloroplast a/Cytoplasm b TPS-a
RcTPS07 RchiOBHm_Chr6g0246011 6 455 52.89 6.07 Chloroplast a/Cytoplasm b TPS-a
RcTPS08 RchiOBHm_Chr5g0059541 5 544 62.75 5.19 Chloroplast a/Cytoplasm b TPS-a
RcTPS09 RchiOBHm_Chr5g0004631 5 583 67.00 5.14 Chloroplast a, b TPS-b
RcTPS10 RchiOBHm_Chr1g0326061 1 580 66.90 5.22 Chloroplast a/Cytoplasm b TPS-a
RcTPS11 RchiOBHm_Chr3g0474501 3 560 64.58 5.17 Chloroplast a, b TPS-a
RcTPS12 RchiOBHm_Chr7g0228501 7 539 62.16 5.43 Chloroplast a/Cytoplasm b TPS-a
RcTPS13 RchiOBHm_Chr6g0252721 6 569 65.74 5.59 Chloroplast a/Cytoplasm b TPS-b
RcTPS14 RchiOBHm_Chr5g0065101 5 557 64.23 5.18 Chloroplast a/Cytoplasm b TPS-a
RcTPS15 RchiOBHm_Chr6g0245751 6 557 64.36 5.35 Chloroplast a/Cytoplasm b TPS-a
RcTPS16 RchiOBHm_Chr5g0038101 5 565 65.25 5.66 Chloroplast a/Cytoplasm b TPS-a
RcTPS17 RchiOBHm_Chr1g0326251 1 556 64.54 5.21 Chloroplast a/Cytoplasm b TPS-a
RcTPS18 RchiOBHm_Chr6g0246001 6 559 64.70 5.57 Chloroplast a/Cytoplasm b TPS-a
RcTPS19 RchiOBHm_Chr3g0484891 3 566 64.99 5.49 Chloroplast a/Cytoplasm b TPS-b
RcTPS20 RchiOBHm_Chr2g0160561 2 570 65.43 5.62 Chloroplast a/Cytoplasm b TPS-b
RcTPS21 RchiOBHm_Chr1g0313881 1 562 65.05 5.11 Chloroplast a/Cytoplasm b TPS-a
RcTPS22 RchiOBHm_Chr3g0474411 3 560 64.74 5.15 Chloroplast a/Cytoplasm b TPS-a
RcTPS23 RchiOBHm_Chr1g0326391 1 556 64.54 5.37 Chloroplast a/Cytoplasm b TPS-a
RcTPS24 RchiOBHm_Chr6g0305391 6 570 65.88 5.07 Chloroplast a, b TPS-a
RcTPS25 RchiOBHm_Chr5g0037011 5 555 64.33 5.25 Chloroplast a, b TPS-a
RcTPS26 RchiOBHm_Chr5g0036921 5 561 65.14 5.36 Chloroplast a/Cytoplasm b TPS-a
RcTPS27 RchiOBHm_Chr5g0060571 5 473 54.87 5.86 Chloroplast a/Cytoplasm b TPS-a
RcTPS28 RchiOBHm_Chr4g0418071 4 564 64.74 5.16 Chloroplast a/Cytoplasm b TPS-a
RcTPS29 RchiOBHm_Chr2g0162311 2 852 96.91 6.12 Chloroplast a, b TPS-e/f
RcTPS30 RchiOBHm_Chr6g0274871 6 553 63.26 5.49 Chloroplast a/Cytoplasm b TPS-a
RcTPS31 RchiOBHm_Chr5g0023471 5 799 90.14 5.58 Chloroplast a, b TPS-e/f
RcTPS32 RchiOBHm_Chr1g0326071 1 546 62.85 5.37 Chloroplast a/Cytoplasm b TPS-a
RcTPS33 RchiOBHm_Chr1g0331211 1 583 67.49 5.28 Chloroplast a, b TPS-b
RcTPS34 RchiOBHm_Chr5g0038021 5 565 65.52 5.63 Chloroplast a/Cytoplasm b TPS-a
RcTPS35 RchiOBHm_Chr5g0004761 5 580 66.13 6.17 Chloroplast a/Cytoplasm b TPS-g
RcTPS36 RchiOBHm_Chr5g0059501 5 557 64.72 5.95 Chloroplast a/Cytoplasm b TPS-a
RcTPS37 RchiOBHm_Chr5g0004711 5 544 62.64 5.09 Chloroplast a, b TPS-g
RcTPS38 RchiOBHm_Chr1g0326051 1 581 67.11 5.34 Chloroplast a/Cytoplasm b TPS-a
RcTPS39 RchiOBHm_Chr7g0227831 7 571 66.02 5.26 Chloroplast a/Cytoplasm b TPS-a
RcTPS40 RchiOBHm_Chr5g0004731 5 509 58.29 5.26 Chloroplast a/Cytoplasm b TPS-g
RcTPS41 RchiOBHm_Chr5g0004801 5 580 66.55 6.05 Chloroplast a/Cytoplasm b TPS-g
RcTPS42 RchiOBHm_Chr6g0270581 6 564 65.34 5.5 Chloroplast a/Cytoplasm b TPS-a
RcTPS43 RchiOBHm_Chr3g0474541 3 557 64.31 5.06 Chloroplast a, b TPS-a
RcTPS44 RchiOBHm_Chr7g0212441 7 558 64.77 5.46 Chloroplast a/Cytoplasm b TPS-a
RcTPS45 RchiOBHm_Chr5g0037601 5 549 63.56 5.23 Chloroplast a/Cytoplasm b TPS-a
RcTPS46 RchiOBHm_Chr5g0004591 5 580 66.74 5.16 Chloroplast a, b TPS-b
RcTPS47 RchiOBHm_Chr5g0023441 5 522 59.69 8.91 Chloroplast a, b TPS-e/f
RcTPS48 RchiOBHm_Chr3g0474441 3 560 64.75 5.08 Chloroplast a/Cytoplasm b TPS-a
RcTPS49 RchiOBHm_Chr6g0290871 6 857 98.52 5.76 Chloroplast a, b TPS-c

Accession Number, it is annotated in R. chinensis genome (https://lipmbrowsers.toulouse.inra.fr//pub/
RchiOBHm-V2/, accessed on 24 February 2022) [31]; Chr, Chromosome; AA, amino acids; MW, molecu-
lar weight; pI, theoretical isoelectric point; Subcellular localization is predicted by Plant-mPLoc (http://
www.csbio.sjtu.edu.cn/bioinf/plantmulti/, accessed on 24 February 2022) and pLoc-mPlant (http://www.
jcibioinfo.cn/pLoc-mPlant/, accessed on 24 February 2022) tools. a, b indicates the result of Plant-mPLoc and
pLoc-mPlant, respectively.

3.2. Chromosomal Distribution, Duplication Event of RcTPS Genes

Genome chromosomal location analysis indicated that the 49 RcTPS genes were
distributed on the seven rose chromosomes (Figure 2). Chromosome 5 contained the
highest number (20) of RcTPS genes. So far only one TPS gene was located on chromosome
4, and two TPS genes were located on chromosome 2, the second longest rose chromosome,
suggesting that there is no apparent correlation between chromosome size and RcTPS
gene distribution.

https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
https://lipmbrowsers.toulouse.inra.fr//pub/RchiOBHm-V2/
http://www.csbio.sjtu.edu.cn/bioinf/plantmulti/
http://www.csbio.sjtu.edu.cn/bioinf/plantmulti/
http://www.jcibioinfo.cn/pLoc-mPlant/
http://www.jcibioinfo.cn/pLoc-mPlant/
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Figure 2. Localization of the 49 TPS genes in R. chinensis 7 chromosomes. The scale bar on the left
indicates the size of the chromosome. Gene name colors indicate different subgroups, and red lines
indicate tandem repeats.

To further study the evolution of rose RcTPS genes, we analyzed tandem duplication
events and segmental duplication events on all seven chromosomes using the MCScanX
tool. Four tandem duplication events with seven RcTPS genes were identified in the R.
chinensis genome, whereas no pairs were confirmed as segmental duplications, indicating
that tandem duplication events mainly contribute to the expansion of the TPS family
in roses.

3.3. Phylogenetic Analysis of RcTPS Genes in R. chinensis

To investigate the classification and evolutionary relationships between RcTPS pro-
teins, an unrooted phylogenetic tree was constructed based on alignments of the TPS
proteins of R. chinensis, A. thaliana, S. lycopersicum and M. domestica using the neighbor-
joining (NJ) method in MEGA 7.0 (Figure 3). The 49 RcTPS genes were classified into five
subfamilies (TPS-a, TPS-b, TPS-c, TPS-g, TPS-e/f) based on phylogenetic analysis. Among
the 49 RcTPS proteins, 48 members (RcTPS01 to RcTPS48) with high similarity could be
classified as type I TPSs, whereas the remaining RcTPS49, which clustered in the same
branch as AtTPS31, was classified as a type II TPS. Six TPS members (RcTPS09, RcTPS13,
RcTPS19, RcTPS20, RcTPS33, RcTPS46) formed the TPS-b subfamily, 4 members (RcTPS35,
RcTPS37, RcTPS40, RcTPS41) formed the TPS-g subfamily, 4 members (RcTPS02, RcTPS29,
RcTPS31, RcTPS47) formed the TPS-e/f subfamily, and the remaining 34 members formed
the TPS-a subfamily. The classification results were consistent with the previous report in
Arabidopsis [18].



Genes 2022, 13, 547 8 of 20

Genes 2022, 13, x FOR PEER REVIEW 8 of 21 
 

 

3.3. Phylogenetic Analysis of RcTPS Genes in R. chinensis 
To investigate the classification and evolutionary relationships between RcTPS pro-

teins, an unrooted phylogenetic tree was constructed based on alignments of the TPS pro-
teins of R. chinensis, A. thaliana, S. lycopersicum and M. domestica using the neighbor-joining 
(NJ) method in MEGA 7.0 (Figure 3). The 49 RcTPS genes were classified into five sub-
families (TPS-a, TPS-b, TPS-c, TPS-g, TPS-e/f) based on phylogenetic analysis. Among the 
49 RcTPS proteins, 48 members (RcTPS01 to RcTPS48) with high similarity could be clas-
sified as type I TPSs, whereas the remaining RcTPS49, which clustered in the same branch 
as AtTPS31, was classified as a type II TPS. Six TPS members (RcTPS09, RcTPS13, 
RcTPS19, RcTPS20, RcTPS33, RcTPS46) formed the TPS-b subfamily, 4 members 
(RcTPS35, RcTPS37, RcTPS40, RcTPS41) formed the TPS-g subfamily, 4 members 
(RcTPS02, RcTPS29, RcTPS31, RcTPS47) formed the TPS-e/f subfamily, and the remaining 
34 members formed the TPS-a subfamily. The classification results were consistent with 
the previous report in Arabidopsis [18]. 

 
Figure 3. Phylogenetic analysis of TPSs in R. chinensis, A. thaliana and other species. Subfamilies are 
highlighted with different colors. Species: R. chinensis (Rc); A. thaliana (At); S. lycopersicum (Sl); M. 
domestica (Md). 

Figure 3. Phylogenetic analysis of TPSs in R. chinensis, A. thaliana and other species. Subfamilies are
highlighted with different colors. Species: R. chinensis (Rc); A. thaliana (At); S. lycopersicum (Sl); M.
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3.4. Gene Structure and Conserved Motif Analysis

To better understand the gene structure and evolutionary relationships, the intron–
exon structure of each RcTPS gene was analyzed (Figure 4). The number of exons ranged
from 5 to 14, and most of the RcTPS genes that clustered in the same subfamily showed a
similar gene structure. RcTPS31 and RcTPS49 had the highest number of exons (14 exons),
whereas RcTPS40 contained the fewest exons (5 exons). Except for RcTPS07, RcTPS27,
RcTPS35, RcTPS40 and RcTPS41, all 44 remaining RcTPS genes of the subfamilies TPS-a,
TPS-b and TPS-g contained 7 coding exons. Moreover, the RcTPS genes in the TPS-e/f
subfamily contained more exons (10–14), which is similar to previously reported data in V.
vinifera, D. officinale and E. grandis [19,23,27].
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To further clarify the functional characteristics and specificities among the RcTPS
proteins, 10 conserved protein motifs were identified using the MEME motif search tool.
Each identified motif contained between 21 and 50 amino acids (Figure S1). Most RcTPS
proteins in the same subfamily shared similar motif structures (Figure 5). Motif-1, motif-4,
motif-6 and motif-8 were found in all RcTPS proteins. Motif-1 harbors an aspartate-rich
region, DDXXD, representing the most typical conserved motif contained in the C-terminal
of TPS proteins. Motif-7 was another important motif of the C-terminal domain in TPS
proteins, which could be found in almost all RcTPS proteins of the subfamilies TPS-a,
TPS-b, TPS-g and TPS-e/f. Previously, this motif, characterized by the consensus sequence
(L,V)(V,L,A)(N,D)D(L,I,V)X(S,T)XXXE, was named NSE/DTE [62]. Both the DDXXD and
NSE/DTE motifs are known to play an important role in cleaving prenyl diphosphate
substrates by binding Mg2+ or Mn2+ at the C-terminus [1,14,15]. In rose TPSs, the DDXXD
motif shows a higher level of conservation than the NSE/DTE motif. In addition, the
arginine-tryptophan motif RRX8W (motif-9) was found in the N-terminus of all RcTPS-a
and RcTPS-b proteins. This motif is known to play an essential role in the catalysis of
monoterpene cyclization [3,15].
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3.5. Analysis of Cis-Acting Elements in the Promoter Region of RcTPS Genes

Most of the functional cis-acting elements is concentrated within proximal promoters,
usually in the region from − 1,000-bp to + 200-bp relative to the transcription start site
(TSS) [63]. In this study, we analyzed the 2000-bp nucleotide sequence located upstream
of the ATG initiation codon for all RcTPS genes using the PlantCARE database [64]. We
identified three categories of cis-acting regulatory elements that share similarities with
previously reported motifs associated with plant growth and development, phytohormone
response and stress responses (Figure 6). Cis-acting regulatory elements involved in
plant growth and development mainly include flowering regulation elements (CCAAT-
box, AT-rich element, and MRE), endosperm-specific expression elements (GCN4-motif
and AAGAA-motif), a shoot and root meristem expression element (CAT-box), a seed-
specific regulation element (RY-element), and a shoot-specific expression element (As-1
element). Phytohormone-responsive elements included a salicylic acid-responsive element
(TCA-element), gibberellin-responsive elements (P-boxes, GARE motifs, and TATC boxes),
an auxin-responsive element (TGA-element), an ethylene-responsive element (ERE), an
abscisic acid-responsive element (ABRE) and jasmonic acid-responsive elements (TGACG
motifs and MYCs). The stress response category included defense and stress responsiveness
(TC-rich repeats), wounding responses (WRE3 and WUN-motif), anaerobic induction
(ARE), drought response (MBS), dehydration response (DRE), low temperature response
(LTR) and stress response (STRE) (Figure 6). These data indicate that RcTPS genes are likely
regulated by multiple phytohormones and abiotic stresses.
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3.6. Expression Patterns of RcTPS Genes in Different Tissues of R. chinensis

The transcriptome data of nine rose tissues, including roots, stems, leaves, stamens,
pistils and flowers, at different developmental stages were downloaded from the NCBI
to analyze the tissue-specific expression patterns of RcTPS genes. RcTPS17, RcTPS29 and
RcTPS45 were not expressed in any of the nine analyzed tissues. Sixteen percent (8 of 49),
6% (3 of 49) and 18% (9 of 49) of the RcTPS genes showed the highest transcript abundance
in roots, stems and leaves, respectively. Notably, 53% (26 of 49) of the RcTPS genes
showed the highest transcript abundance in floral organs. Among them, RcTPS23 showed
the highest transcript abundance in the stamen; RcTPS02, RcTPS08, RcTPS11, RcTPS13,
RcTPS22, RcTPS27, RcTPS31, RcTPS33, RcTPS40 and RcTPS41 in the pistil; RcTPS12 in
the green petals of the flower bud; RcTPS20 and RcTPS37 in the color-changing petals of
the flower bud; RcTPS14 and RcTPS19 in the pink petals of the flower bud; and RcTPS01,
RcTPS06, RcTPS09, RcTPS16, RcTPS26, RcTPS34, RcTPS35, RcTPS36, RcTPS44 and RcTPS46
in the pink petals of the open flower (Figure 7). These data show that the rose RcTPS
genes are expressed in different organs and in petals at different developmental stages,
suggesting their potential roles in the biosynthesis of terpenoids in different organs and
during petal development.
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Figure 7. Heatmap of the expression profiles of RcTPS genes in different R. chinensis organs generated
using TBtools software. The expression abundance of each transcript is represented by the color
bar: red, higher expression; blue, lower expression. FB_GP: green petals in the flower buds; FB_CP:
color-changing petals in the flower buds; FB_PP: pink petals in the flower buds; OF_PP: pink petals
of the open flowers.

3.7. Expression Patterns of RcTPS Genes under Abiotic Stress

RcTPS genes harbored multiple cis-acting elements associated with the stress response.
To further address whether the RcTPS genes could be regulated by abiotic stresses, we
investigated their expression in the open flowers of R. chinensis under mannitol-caused
osmotic stress (to mimic drought stress ) [65–67] and heat treatment at 35 ◦C. qRT–PCR
analyses showed that 18% of the RcTPS genes (9 of 49) exhibited a decreasing expression
trend under mannitol-induced osmotic stress, while 82% of the RcTPS genes (40 of 49) were
upregulated upon mannitol treatment (Figure 8a).
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Figure 8. Expression profiles of RcTPS genes in petals of fully open flowers of R. chinensis under
osmotic and heat stresses. (a) Expression profiles of RcTPS genes in response to 200 mM mannitol
treatment for 48 h. (b) Expression profiles of RcTPS genes in response to heat treatment (35 ◦C) for
24 h. Heatmap was drawn using TBtools software.

After heat treatment at 35 ◦C for 6 h, 78% of the RcTPS (38 of 49) genes were upreg-
ulated, but the expression levels of these genes decreased with increasing heat treatment
time (Figure 8b). In contrast, 22% of the RcTPS genes (11 of 49) exhibited a decreasing trend
under heat treatment. These results show that the expression of RcTPS genes is regulated
by heat and osmotic stresses, which indicates that in roses, the biosynthesis of terpenoids
may be affected by abiotic stresses.
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4. Discussion

Roses are highly appreciated ornamental plants, mainly for their flowers and deli-
cate fragrances [33]. For many years, roses have been used in landscape greening, food,
medicine, cosmetic production and especially as cut flowers [68–70]. However, roses
often suffer from adverse unfavorable environmental conditions such as heat, salinity
and drought. Plants produce specialized metabolites to adapt to their environments [71].
Volatile terpenoids play significant roles in resisting abiotic stress conditions [1,4,72]. In
previous studies, phytoalexin terpenoids have been reported to accumulate in response to
drought, salinity, ultraviolet and elevated CO2 stresses [73–75]. Additionally, floral terpenes
were reported to protect reproductive organs from oxidative stress [76,77]. Terpene syn-
thases play a leading role in catalyzing the formation of monoterpenes, sesquiterpenes, or
diterpenes from the substrates GPP, FPP, or GGPP [3]. Previous studies on floral scent have
mainly focused on the characterization and functional verification of the TPS genes [78–80].
We show here that the expression of TPS genes is modified in response to osmotic and
heat stresses.

As a mid-sized gene family, the number of genes in the TPS family in different plant
species range from approximately 20 to 150 [3]. In this study, 49 TPS genes were identified
in the R. chinensis genome based on BLASTP searches and two conserved TPS domains, and
they were divided into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f) based on
gene phylogenetic analyses. No members of the TPS-d and TPS-h subfamilies were found
in this rose genome. These results are consistent with previous studies which showed that
the TPS-d subfamily was specific to gymnosperms and that the TPS-h subfamily was only
found in S. moellendorffii [3,15,18]. TPS-a is the largest subfamily among RcTPS proteins
(34 of 49), followed by TPS-b (6 of 49), which is consistent with previously reported data
in A. thaliana (22 of the 32 TPS genes were TPS-a genes), S. lycopersicum (15 of the 34 TPS
genes were TPS-a genes), S. italica (21 of the 32 TPS genes were TPS-a genes) and C. sinensis
(28 of the 55 TPS genes were TPS-a genes) [18,21,24,25]. Previously, the TPS-a subfamily
was reported to be an angiosperm-specific clade, further divided into dicot-specific and
monocot-specific subgroups, and that the TPS-a proteins are sesquiterpene synthases or
diterpene synthases, while the TPS-b subfamily numbers are responsible for monoterpene
or isoprene synthesis [3]. In A. thaliana, four TPS-a proteins are cytosolic sesquiterpene
synthases, one is a mitochondrial sesquiterpene synthase, and the remaining TPS-a proteins
are plastidial or mitochondrial diterpene synthases. Six A. thaliana TPS-b proteins are
monoterpene synthases that produce myrcene or ocimene [18]. In S. lycopersicum, all
15 TPS-a proteins have been reported to be sesquiterpene synthases [20]. In our study,
34 TPS proteins that all belong to the TPS-a subfamily in R. chinensis were predicted to be
sesquiterpene synthases, 10 RcTPS proteins were predicted to be monoterpene synthases,
and 5 RcTPS proteins were predicted to be diterpene synthases by the Terzyme database [81].
The 10 putative monoterpene synthases contained 6 TPS-b and 4 TPS-g proteins, and the
5 putative diterpene synthases harbored 1 TPS-c and 4 TPS-e/f proteins. These findings
indicate that TPS proteins within the same subfamily may share similar functions. However,
further functional analyses are required to confirm this hypothesis.

It was previously reported that plant TPS genes generally exhibit conserved intron–
exon structures [18,19,82]. In R. chinensis, we found that 39 out of the 44 RcTPS genes of
the subfamilies TPS-a, TPS-b and TPS-g contained 7 exons. Five of the remaining RcTPS
genes contained fewer exons, probably because of intron loss. In contrast, RcTPS genes
in the subfamilies TPS-c and TPS-e/f contained more exons (between 10 and 14), likely
because of the presence of an additional exon encoding the ancestral 200 amino acids of
unknown function at the N-terminus [7,18,83]. Previously, the features of RcTPS proteins
were found to be related to two domains, one each at the N-terminus (PF01397) and C-
terminus (PF03936) [1,84]. All RcTPS-a and RcTPS-b proteins contained the RRX8W motif
at the N-terminus, a motif shared by monoterpene synthetases in angiosperms that is
known to play an important role in monoterpene cyclization [3,17]. None of the RcTPS-g
members contained the RRX8W motif, since the prominent feature of this subfamily of
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proteins is the rifeness of acyclic monoterpenes [3]. In addition, it was previously reported
that TPS-g proteins can catalyze the biosynthesis of sesquiterpenes and diterpenes [85,86].
The in vivo terpene synthase products mainly depend on their subcellular location and
substrate availability [87]. The DDXXD motif was found in all RcTPS proteins. This motif
plays an important role in cleaving prenyl diphosphate substrates by binding the metal
cofactor (Mg2+ or Mn2+) at the C-terminus. In addition to the conserved RRX8W and
DDXXD motifs, NSE/DTE was another important conserved motif at the C-terminus,
whose function is the same as that of DDXXD [1,14,15]. NSE/DTE could be found in almost
all RcTPS proteins of the subfamilies TPS-a, TPS-b, TPS-g and TPS-e/f.

Expression analysis of RcTPS genes in different rose tissues indicated that RcTPS genes
were mainly expressed in floral organs. RcTPS17, RcTPS29 and RcTPS45 were not expressed
in any of the nine analyzed tissues at the analyzed stages, suggesting strict regulation of
certain terpenoid biosynthesis genes in roses. Among the 26 RcTPS genes with the highest
transcript abundance in floral organs (Figure 7), 14 (RcTPS01, 06, 08, 11, 12, 14, 16, 22, 23,
26, 27, 34, 36, 44) were predicted to encode putative sesquiterpene synthases, 10 (RcTPS09,
13, 19, 20, 33, 35, 37, 40, 41, 46) encode putative monoterpene synthases, and 2 (RcTPS02
and RcTPS31) encode putative diterpene synthases. It has been reported in R. chinensis
that the contents of terpenoids are very low in flower buds. When the flowers open, the
contents of terpenoids gradually increase and reach a maximum in open flowers, which is
consistent with the trend of the transcript abundance of RcTPS genes during flowering [88].
These data suggest that RcTPS genes play essential roles in the biosynthesis of terpenes
in the flower opening process of R. chinensis. However, previous studies reported that in
roses, NUDX1 is involved in acyclic monoterpene biosynthesis [34,89]. Although, NUDX
and TPS pathways relay on a common precursor, namely GPP, the relationship between
these two monoterpene biosynthesis pathways remains unclear.

Increasing studies have shown that TPS genes are involved in plant development and
responses to biotic and abiotic stresses [1,4,72,90]. It has been reported in many plant species
that TPS genes could be regulated by multiple abiotic stresses and that they may have
important roles in resistance to abiotic stresses [24–27]. Bioinformatics analysis identified
multiple cis-acting elements that respond to abiotic stresses in the promoter region of
RcTPS genes, and the average number of cis-acting elements related to abiotic stresses in
the promoter region of RcTPS genes was eight, implying that they might have potential
functions in response to abiotic stress. To verify this hypothesis, the expression patterns
of RcTPS genes under two abiotic stresses were analyzed. Because the water deficit and
the associated osmotic stress as well as high-temperature severely limit the growth and
flowering of R. chinensis, we evaluated the expression levels of RcTPS genes under osmotic
stress induced by mannitol and heat stress by exposure of plants to 35 ◦C. Our data showed
that RcTPS genes exhibited different expression levels when the plants were subjected to
heat or osmotic stress conditions. Under mannitol-induced osmotic stress and heat stress,
the expression levels of most RcTPS genes were upregulated, indicating that these genes
might be involved in osmotic and heat responses. Among the seven RcTPS genes with the
highest transcript abundance in fully developed petals in open flowers, RcTPS06, RcTPS16,
RcTPS34, RcTPS36 and RcTPS44 were downregulated and RcTPS46 and RcTPS01 were
upregulated following osmotic and heat stress (Figure 9). Compared to osmotic stress,
the peak expression of the RcTPS genes under heat treatment occurred relatively early,
suggesting that the responses of RcTPS genes vary depending on the nature of the stress
applied. These data pave the way for more studies to more precisely address the link
between the control of terpenoid biosynthesis and the response to abiotic stresses in roses.
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