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Transcription factor-binding sites and the cis-regulatory modules they compose are central
determinants of gene expression. We previously showed that binding site motifs and modules in
proximal promoters can be used to predict a significant portion of mammalian tissue-specific
transcription. Here, we report on a systematic analysis of promoters controlling tissue-specific
expression in heart, kidney, liver, pancreas, skeletal muscle, testis and CD4 Tcells, for both human
and mouse. We integrated multiple sources of expression data to compile sets of transcripts with
strong evidence for tissue-specific regulation. The analysis of the promoters corresponding to these
sets produced a catalog of predicted tissue-specific motifs and modules, and cis-regulatory elements.
Predicted regulatory interactions are supported by statistical evidence, and provide a foundation for
targeted experiments that will improve our understanding of tissue-specific regulatory networks. In
a broader context, methods used to construct the catalog provide a model for the analysis of genomic
regions that regulate differentially expressed genes.
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Introduction

Reverse engineering mammalian transcriptional regulatory
circuits can be achieved using systematic methodology that
includes both computational and experimental techniques,
working in tandem to generate, refine and verify hypotheses.
Understanding tissue-specific transcription is a necessary step
for extending regulatory circuit reverse-engineering efforts
from single-cell eukaryotes to metazoans. We recently
demonstrated that the information in proximal promoters
can predict a significant portion of tissue-specific elevated
or inhibited expression (Smith et al, 2006). Here, focusing on
tissue-specific regulatory pattern identification and prediction
accuracy instead of proof of existence, we use refined analysis
and data curation methods to discover and catalog high-
confidence regulatory interactions and sites. This catalog will
assist experimental efforts to reverse engineer tissue-specific
transcriptional regulatory networks from the bottom up.

Numerous techniques for analysis of regulatory sequences
have been proposed, and the problem of module identification
is now receiving due attention (Zhou and Wong, 2004; Gupta
and Liu, 2005; Zhu et al, 2005). Previously characterized
binding site motifs have been used to infer transcription factor
function in certain tissues (Nelander et al, 2005). Xie et al

(2005) identified conserved motifs across ortholog promoters
of four mammalian genomes. Robertson et al (2006) describe
cisRed, a database that integrates genome annotation data,
homology data and genome alignments to identify motifs with
conserved sites across mammals. We analyzed proximal
promoters with evidence for tissue-specific regulation in order
to identify tissue-specific motifs, modules and their sites in
proximal promoters. We developed a new technique for
characterizing tissue-specific modules that ensures that each
module component significantly improves tissue-specific
module enrichment.

We integrated multiple sources of expression data to identify
reliable sets of transcripts that are under tissue-specific
regulation in human and mouse. Using transcription start site
(TSS) annotation in Cold Spring Harbor Mammalian Promoter
Database (CSHLmpd) (Xuan et al, 2005), we compiled sets
of proximal promoters corresponding to transcripts with
evidence for specific regulation in the selected tissues. Our
analysis was based on motifs discovered de novo (called novel
motifs) using DME (Smith et al, 2005a) and DME-B (Smith
et al, 2006), as well as previously characterized vertebrate
binding-site motifs (called known motifs) from TRANSFAC
(Matys et al, 2003) and JASPAR (Sandelin et al, 2004). We
evaluated motifs according to enrichment in tissue-specific
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promoters relative to other promoters from the same species.
We showed that motifs associated with factors with known
tissue-specific roles rank high for enrichment, that motif
ranks are significantly correlated between human and mouse
and that this same set of motifs and their corresponding
cis-elements are unlikely to be identified using traditional,
order-preserving alignments of ortholog promoter sequences.
We constructed modules of interacting motifs (both novel and
known motifs), ensuring that each component contributed
significantly to the enrichment of the whole module.
We annotated tissue-specific promoters with predicted
tissue-specific regulatory elements and demonstrated that
these sites are in excellent agreement with experimentally
annotated liver-specific sites in the human albumin promoter
and skeletal-muscle-specific sites in the human a-actin
promoter. Both promoters are particularly well annotated with
experimentally verified tissue-specific regulatory elements
and permit an informative comparison. In other tissues, we
gave predicted sites for tissue-specific motifs in representative
promoters. The complete data and analysis are available
in TCat: The Catalog of Tissue-Specific Regulatory Motifs
(http://rulai.cshl.edu/tcat).

Results

We describe first steps toward cataloging high-confidence
tissue-specific motifs, modules and their sites. We first
collected and integrated expression and function data from
various sources, and identified transcripts that are likely to be
under tissue specific regulation. We demonstrated that
transcripts with evidence for tissue-specific regulation from
multiple expression sources in one species (human or mouse)
are significantly more likely to have evidence for tissue-
specificity in the other species. We analyzed and annotated
proximal-promoter sets in seven representative tissues from
both human and mouse, demonstrating that motifs and
predicted binding sites are in agreement with experimentally
verified data and that analyses in human and mouse are
significantly correlated. We also showed that the top-scoring
sites in orthologous tissue-specific promoters from human and
mouse rarely have significant conservation of site order,
suggesting that comparative genomics alone may not be

sufficient to decode the regulatory signals in these proximal
promoters.

Transcripts under tissue-specific regulation

Few transcripts have expression restricted to a single tissue,
but many transcripts appear to be regulated in a tissue-specific
manner (Su et al, 2004), and the corresponding promoters
are likely to contain tissue-specific regulatory elements. To
circumvent problems associated with individual sources of
information, we used a voting system that combined informa-
tion about expression, function and tissue specificity from
different sources. Table I gives the number of transcripts with
single and multiple sources of evidence (votes) for tissue-
specific regulation in each tissue. Orthologs of transcripts with
multiple votes for tissue-specific regulation were more likely to
have evidence for specific regulation in that tissue, suggesting
that the false-positive rate for calling a transcript tissue specific
is lower when based on multiple votes. The number of
ortholog transcript pairs with multiple votes for tissue-specific
regulation in both species ranged from 1 in CD4 Tcells to 69 in
liver. Table II lists genes and orthologous transcripts with votes
for skeletal-muscle-specific regulation in both human and
mouse. Gene and transcript lists for other tissues are given
in Supplementary Section 1.5.

Enrichment of known tissue-specific motifs

Knowledge of factors and corresponding binding sites
that regulate tissue-specific transcription can be used to
evaluate motif ranking. We measured motif enrichment in
tissue-specific promoter sets using balanced error rates,
evaluating motifs for their ability to distinguish tissue-specific
sets (foreground sets) from background sets that are composed
of non-tissue-specific promoter samples from CSHLmpd.
Balanced error rates measure proportions of misclassified
promoters after normalization of foreground and back-
ground sizes. We ranked motifs according to enrichment and
determined whether the ranks assigned to binding-site motifs
for factors with known tissue-specific roles are significantly
elevated in the corresponding tissues. The results presented in
Table III demonstrate that binding-site motifs for these factors
ranked significantly high (Po0.01) according to a Wilcoxon

Table I Ability of single versus multiple votes to predict tissue-specificity of a transcript’s ortholog

Human Mouse Common evidence

Tissue Multiple Single Multiple Single Multiple Single P-value

CD4 T-cells 2 247 6 212 3/7 42.9% 36/435 8.3% 1.79E�02
Heart 28 260 105 560 35/122 28.7% 102/766 13.3% 3.78E�05
Kidney 43 188 172 540 42/200 21.0% 66/706 9.3% 1.74E�05
Liver 152 411 271 651 148/354 41.8% 184/982 18.7% 6.46E�17
Pancreas 31 186 47 313 26/61 42.6% 75/450 16.7% 9.93E�06
Skeletal muscle 49 394 141 681 52/174 29.9% 137/1000 13.7% 4.47E�07
Testis 38 287 446 668 67/471 14.2% 86/923 9.3% 4.09E�03

Columns labeled ‘Multiple’ and ‘Single’ give the number of transcripts with multiple and single votes for specificity, respectively. Columns under ‘Common evidence’
show the proportion of transcripts with single and multiple votes for tissue-specificity that have an ortholog with at least one vote for specificity in the same tissue.
Excluding CD4 T-cells (which represents a small sample), human and mouse transcripts with multiple votes for tissue-specificity are significantly more likely to have an
ortholog with at least one vote for specificity in the same tissue (Po0.01; Fisher’s exact test).
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signed-ranks test in almost all tissues tested. Excluding DBP
in human liver and HNF-3 in mouse liver, these factors had
evidence for expression in their respective tissues, and their
binding-site motifs were highly enriched in our foreground
sets. Results are summarized in Table IV, and the motifs with
greatest enrichment in each tissue are given in TCat. Table IV
also includes information for HNF-6 in liver. HNF-6 is a known
liver regulator, but there is no evidence for its expression in
liver based on our data, and its binding-site motif was not
enriched in our liver foreground sets. In addition, C/G- or A/T-
rich motifs are likely to be enriched in foreground sets that
are C/G or A/T rich relative to promoter base composition.
To eliminate this potential bias, we adjusted the GC content
in background sets to match foreground sets. Some known
tissue-specific motifs were identified as enriched only after GC
content correction.

Nuclear receptor binding-site motifs and E-box motifs are
among the top enriched motifs in 11 and 10 of the 14 human and
mouse tissues, respectively. A Wilcoxon signed-ranks test
showed that nuclear receptor and E-box motifs (represented by
54 and 39 TRANSFAC motifs, respectively) are enriched in the
union of our foreground sets with P-values below 6.07E�14 and
2.02E�13 (nuclear-receptor motifs) and 2.22E�10 and 4.57E�
03 (E-box) in human and mouse, respectively. These results
suggest a diversity of tissue-specific roles for nuclear receptors
and E-box binders, likely mediated by tissue-specific cofactors.

Tissue-specific cis-regulatory elements

Highly enriched motifs, and the associated score thresholds
identified by our methods, provide a starting point for targeted

experimental annotation of tissue-specific promoters. Figure 1
shows known and predicted sites mapped on the �500 to
þ 100 region of the human albumin promoter and the �250 to
þ 50 region of the human skeletal muscle a-actin promoter.
Human albumin has known functional binding sites for HNF-
1, C/EBP, AFP and NF-Y (Paonessa et al, 1988; Sawadaishi
et al, 1988; Frain et al, 1990; Li et al, 1990), all of which were
identified among the top predicted motifs or included in
top modules for liver. Locations of known sites for C/EBP
(at �437) and NF-Y (at �125) do not perfectly align with
the corresponding predicted sites (at �462 and �143,
respectively), but current knowledge about binding sites for
those factors raises the possibility that the predicted locations
are more accurate. The only predicted binding site for these
factors in the human albumin promoter that is not depicted in
the figure is a C/EBP site at �956. Human skeletal muscle
a-actin has known sites for SRF, TEF and a known TATA box
(Boxer et al, 1989; MacLellan et al, 1994), all among top
predicted motifs for human skeletal muscle (TATA box motifs
have high similarity with MEF-2 motifs). Figure 2 gives
predictions in a representative human promoter in each of
the remaining tissues.

Comparison to previous results

Previous analysis of tissue-specific patterns in regulatory
regions includes analysis based on cross-species conservation
(Xie et al, 2005) and coexpression (Smith et al, 2006).

Xie et al (2005) identified conserved elements in ortho-
logous promoters of four mammalian genomes. They found
59 experimentally validated motifs that are significantly

Table II Transcripts with multiple votes for tissue-specificity in both human and mouse skeletal muscle

Symbol Name Human RefSeq Mouse RefSeq Votes

MYH2 Myosin, heavy polypeptide 2 NM_017534 NM_144961 7
TTID Myotilin NM_006790 NM_021484 6
TNNT3 Troponin T type 3 NM_006757 NM_011620 6
TNNC2 Troponin C type 2 NM_003279 NM_009394 6
MYBPC2 Myosin binding protein C NM_004533 NM_146189 6
HUMMLC2B Fast skeletal myosin light chain 2 NM_013292 NM_016754 6
ACTN2 Actinin a2 NM_001103 NM_033268 5
VAMP5 Vesicle-associated membrane protein 5 NM_006634 NM_016872 4
TRIP10 Thyroid hormone receptor interactor 10 NM_004240 NM_134125 4
TPM3 Tropomyosin 3 NM_153649 NM_022314 4
SGCG Sarcoglycan g NM_000231 NM_011892 4
MYOD1 Myogenic differentiation 1 NM_002478 NM_010866 4
MYF6 Myogenic factor 6 (herculin) NM_002469 NM_008657 4
CKM Creatine kinase, muscle NM_001824 NM_007710 4
CACNG1 Calcium channel, voltage-dependent g1 NM_000727 NM_007582 4

The ‘Votes’ column gives the total number of votes for skeletal muscle-specificity in both human and mouse. Our analysis used promoter sets of size 100 for both tissues,
including promoters that correspond to transcripts with a single vote for tissue-specific regulation. Tables for the remaining 6 tissues are given in supplementary
material.

Table III Significance of elevated ranks for motifs associated with important factors in liver, skeletal muscle and testis

Tissue Factors Motifs Human P-value Mouse P-value

Liver HNF-1, HNF-3, HNF-4, C/EBP, DBP 68 2.72E�18 4.19E�12
Skeletal muscle MEF-2, SRF, Myogenin, Sp1 45 1.33E�14 2.29E�5
Testis SRY, CREM, RFX 30 0.087 1.89E�4

Motifs give the total number of motifs associated with the listed factors.
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conserved and enriched in at least one human tissue. These
include E-box, ETS, MEF2, MEIS1 and NF-1 in skeletal muscle;
Chx10 in kidney; NRF-1, ELK-1, GABP and E12 in CD4 Tcells;
AP-4 and MEF-2 in heart; and NRF-1 in testis. Our results agree
with Xie et al (2005) on the enrichment of E-Box and MEF-2
in skeletal muscle, ETS in CD4 T-cells and E-box in pancreas.

In previous work (Smith et al, 2006), we tested the hypo-
thesis that proximal promoters contain information that can
be used to predict tissue-specific expression. We were not
concerned with identifying the most significant tissue-specific
motifs, modules and sites. Considering the difference between
the goals of the two projects, it is not surprising that the
predictive models described by Smith et al (2006) have little
similarity to our top motifs and modules. The most significant
similarities between our top tissue-specific patterns and the
predictive models of Smith et al (2006) include the enrichment
of ETS in CD4 T-cell-specific promoters and the enrichment of
Smith et al (2006) motifs Novel3 and Novel6 in mouse testis
and Novel1 in human testis. The three novel testis motifs are

very similar to motifs that rank in the top 100 in our analysis,
but the enrichment of these motifs was not sufficiently high
for inclusion in TCat.

Correlation between human and mouse regulatory
regions

We compared motif enrichment ranks in each human
foreground set to ranks in the corresponding mouse fore-
ground set using Spearman’s rank correlation test, and found
that enrichment ranks across species are highly correlated
(Po0.001) for all but CD4 Tcells (Supplementary Table 15). In
CD4 T cells, motif enrichment ranks are similar only for few
highly enriched motifs. Despite the motif-enrichment ranks
correlation, the order of the top predicted binding sites is not
usually conserved between orthologous promoters. Fewer
than 10% of orthologous pairs showed significant (Po0.01)
conservation of site order. Weak site-order conservation

SRF TATA TEF

C/EBP

+100

+100

Skeletal muscle: α-actin

Liver: albumin

MEF-2

HNF-1 NF-Y AFP-1

Figure 1 Verified and predicted binding sites in human albumin and skeletal muscle a-actin promoters. Predicted sites are represented by horizontal bars and verified
sites by vertical bars. Verified sites for albumin (Paonessa et al, 1988; Sawadaishi et al, 1988; Frain et al, 1990; Li et al, 1990) and for a-actin (Boxer et al, 1989;
MacLellan et al, 1994) were mapped to the promoter from CSHLmpd to obtain their correct locations relative to the TSS.
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Figure 2 Predicted binding sites for selected factors in promoters from the human tissue-specific sets. The selected factors are among the top ranked in the
corresponding tissues.
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suggests that the top tissue-specific sites would be difficult
to identify using traditional cross-species alignment alone,
and methods that rely on co-linear promoter alignment may
have high false-negative detection rates. This evidence is
in agreement with Frith et al (2006), who found that homo-
logous transcription start sites can be separated by more than
100 nucleotides. A list of the nine genes (out of 102 candidates)
with significant conservation of site order is given in
Supplementary Section 2.3.

Materials and methods
The steps used in creating the catalog include (1) identifying
tissue-specific transcripts, (2) identifying factors that are expressed
in each tissue, (3) obtaining promoter sequences for tissue-
specific transcript, and (4) identifying individual motifs and modules
(i.e. sets of interacting motifs) that characterize tissue-specific
promoter sets.

Identifying tissue-specific transcripts

To identify motifs and modules that regulate tissue-specific transcrip-
tion, we analyzed promoters of transcripts that appear to be regulated
in a tissue-specific manner. If an information source indicated that
a transcript has restricted expression, unusually high expression, or a
specific function in the tissue, that source voted for tissue specificity of
the transcript. For each tissue, we sorted the transcripts according to
the number of votes received, retaining the top 100 with distinct TSS as
tissue specific. Ties in the ranking were broken according to intensity
values from the GNF SymAtlas expression data (discussed below),
which we have found to be the most complete and the most reliable
source of tissue-based expression information. We used the same
number of transcripts for each tissue to facilitate comparison across
tissues, and 100 sequences provided sufficient information for our
analysis while allowing identification of well-known tissue-specific
motifs.

Microarray data
The GNF SymAtlas microarray data were generated using Affymetrix
HG-U133A array and the custom GNF1H and GNF1M Affymetrix
arrays, and include expression profiles for 79 human and 61 mouse
tissues (Su et al, 2004). Among these are the seven tissues we selected
to include in the catalog. Tissues were selected with consideration to
data availability in GNFand other sources and interest from Zhang lab
members and collaborators. A transcript received a vote for tissue
specificity from this information source if it was called present and its
intensity exceeded its mean across all tissues by 3 standard deviations.

The Hughes Toronto microarray data (Zhang et al, 2004), which was
generated using custom-built oligonucleotide arrays, provide mouse
expression profiles for 55 tissues, including all of our tissues but CD4 T
cells. A transcript received a vote for tissue specificity if it was called
present in the tissue, and had intensity at least 10 standard deviations
above its mean across all 55 tissues. This large number of standard
deviations was required to limit the number of transcripts receiving
positive votes.

The GeneNote expression profiles (Shmueli et al, 2003), which were
generated using the Affymetrix GeneChip HG-U95, provide human
expression data for 12 tissues, including all of our tissues but CD4 T
cells and testis. The GeneNote data were used in the same way as the
GNF SymAtlas data, with a transcript being called tissue specific if it is
present in that tissue and has intensity at least 3 standard deviations
above its mean across all 12 tissues.

EST data
dbEST is a database of expressed sequence tags (Boguski et al, 1993),
and contains source information, such as the tissue of origin, for each
EST. This information is used to annotate UniGene clusters with the

source data, and a UniGene is said to have restricted expression in a
tissue if more than half of the ESTs contributing to that UniGene have
the same source tissue. A transcript received one vote for specificity in
a particular tissue if the corresponding UniGene cluster is annotated as
having expression restricted to that tissue.

GO terms
We associated a set of GO Terms with each tissue. This was performed
by compiling a set of keywords for each tissue (e.g. ‘renal’ was
associated with kidney; ‘sperm’ was associated with testis), and
searching GO Term names and definitions for those keywords. This
produced, for each tissue, a set of GO Terms that were subsequently
reviewed to ensure that the context of the keywords was appropriate. A
transcript of a gene annotated with a GO Term that is associated with
a tissue received a vote for specificity in that tissue.

Selecting promoter sequences

Although regulatory elements can exist almost anywhere in the
genome, they are concentrated near the TSS (Cooper et al, 2006). We
used the CSHLmpd to map transcripts to promoters, using experimen-
tally confirmed promoters from EPD (Perier et al, 1998), DBTSS
(Suzuki et al, 2002) and GenBank, as well as computationally
predicted promoters. For each promoter, we used the proximal
sequence region of �1000 to þ 100 relative to the TSS.

Each part of our analysis is based on comparing the tissue-
specific promoter sets to a background of random promoters from the
same species. For each tissue, a background set was constructed by
selecting 1000 transcripts uniformly at random from the set of RefSeqs
for the corresponding species with TSS annotation in CSHLmpd.
For each tissue, transcripts with at least one vote for specificity in
that tissue were removed from consideration before selecting the
background.

Because our analysis focused on proximal promoters, �1000
to þ 100 relative to the TSS, if the TSS annotation is off by
several hundred base pairs, important promoter regions might be
excluded. AKR1D1, identified as liver specific by our voting system,
has two known TSSs within 500 bp of the first exon for the
corresponding RefSeq (NM_005989) (Charbonneau and Luu-The,
1999). We used the TSS located upstream of the first exon, but could
have chosen to use the other promoter, which was annotated by a
generally more reliable source (DBTSS versus GenBank). Currently, in
such situations, there is little information that identifies the promoter
responsible for observed tissue-specific regulation, but comparative
genomics and rapidly improving arrays promise better 50 end
identification, thus improving proximal promoter annotation and
association between transcripts and promoters (Kim et al, 2005;
Carninci et al, 2006). Negative promoter sets can be used to cancel out
patterns that are not related to tissue-specific transcription regulation.
We use random negative promoter sets with and without GC-content
correction; this correction cancels the inuence of genomic GC-content
isochore variability.

Identifying and evaluating motifs

Given a motif M (represented as a position–frequency matrix) and a
sequence S, the max-score of M in S, max-score (M, S) is the score of the
top scoring subsequence of S when aligned against the scoring matrix
for M. Details on constructing and using scoring matrices can be found
in Stormo (2000). For a fixed threshold l, the max-score classification
method classifies S as belonging to the foreground if max-score
(M,S)Xl, and the background otherwise. Given a set of foreground
sequences FG (i.e. the tissue-specific promoters) and a set of
background sequences BG, the sensitivity of M and l under max-
score classification is

seðM;l; FGÞ ¼ jfS 2 FG : max -scoreðM; SÞXlgj=jFGj;

and the specificity is

spðM;l;BGÞ ¼ jfS 2 BG : max -scoreðM; SÞolgj=jBGj:
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The balanced error rate for M and l under max-score classification is
then

BðM;l; FG;BGÞ ¼ 1 � ðseðM;l; FGÞ þ spðM; l;BGÞ=2:

The quantity of interest in our analysis corresponds to the optimal
value of l for M in distinguishing FG from BG:

BðM; FG;BGÞ ¼ min
l

fBðM;l; FG;BGÞg:

Many known motifs are similar to each other, usually owing to
similar binding specificities for distinct factors or distinct origins for
mofits associated with a single factor. We used MATCOMPARE
(Schones et al, 2005) to eliminate redundancies in the sets of known
and novel motifs.

Identifying and evaluating modules

Modules are used to classify sequences based on the max-score values
of the motifs they contain. Let M¼{M1,y, Mk} be a module and
L¼{l1,y,lk} be an associated set of thresholds. The max-score
classification for modules assigns sequence S to the foreground if and
only if max-score (Mi, S)Xli holds for all i (1pipk). Given sets of
sequences FG and BG, the sensitivity of M and L under max-score
classification is

seðM;L; FGÞ ¼ jfS 2 FG : Lk
i¼1 max -scoreðMi; SÞXligj=jFGj;

and the specificity is

spðM; L;BGÞ ¼ jfS 2 BG : _k
i¼1 max -scoreðMi; SÞoligj=jBGj:

The balanced-error rate for M and L under the max-score
classification is

BðM;L; FG;BGÞ ¼ 1 � ðseðM;L; FGÞ þ spðM; L;BGÞÞ=2:

As with mofits, we are interested in the optimal value of L and
define

BðM; FG;BGÞ ¼min
L

fBðM;L; FG;BGÞg:

Because modules are intended to describe synergistic function
of a set of motifs, we are interested in modules whose performance
is better than expected given the performance of the individual motifs
composing the module. For a module M composed of k motifs, let
M0CM minimize B(M0, FG, BG) over all size k�1 modules built from
motifs in M, and let M0¼M\M0. To assess whether M, with balanced-
error rate u, significantly improves over M0 and M0, we use the
probability

PrðBðM; FG;BGÞpujBðM0; FG;BGÞ; ðM0; FG;BGÞÞ:

We estimated this probability empirically, by sampling from the
distribution of balanced-error rates resulting from intersections of sets
with balanced-error rates B(M0, FG, BG) and B(M0, FG, BG).

We used MODULATOR, which is available in CREAD (Smith
et al, 2005b), to construct modules. Given a set of motifs, a set of
foreground sequences and a set of background sequences, MODU-
LATOR identifies those modules composed of the given motifs that
have the best balanced-error rates. A branch-and-bound algorithm is
used to simultaneously optimize the score thresholds for the motifs
in a module. Modules are constructed by adding motifs to existing
modules until a user-specified module size is reached or until motif
addition does not significantly improve enrichment. Each time a motif
is added to a module, the resulting larger module is retained only if the
balanced-error rate of the larger module is improved significantly
above expectation. The initial modules of size two are obtained by
combining pairs of motifs.

For modules that are entirely composed of known motifs, the top
100 motifs (before eliminating redundancies) were used. Modules
were allowed to contain up to four motifs for reasons of computational
feasibility, but many top modules are smaller. Novel modules, which

must contain at least one novel motif, were constructed using the top
100 novel motifs and the top 100 known motifs. Redundancies were
removed from the lists of top modules using a procedure described
in Supplementary Section 2.

Measuring the significance of motifs and modules

To measure significance of enrichment for top known motifs we used
known motifs to classify randomly assembled promoter sets. We
constructed 1000 foreground/background pairs for each species by
selecting 100 sequences for each foreground and 1000 for each
background uniformly at random from CSHLmpd. For each fore-
ground/background pair we calculated the balanced-error rate of
each known motif. The best balanced-error rates overall obtained
on random samples for human and mouse were 0.364 and 0.368,
respectively. We used the distribution of these error rates to identify the
q-value (Storey and Tibshirani, 2003) significance of the error rate of
each motif. Tissues whose highest ranking motifs fail the qo0.05 test
include CD4 Tcells and heart in human, and CD4 Tcells in mouse. TCat
includes q-value annotation for each ranked known motif. The full set
of motifs for which qo0.05 is estimated to include five false leads per
100 predictions. We did not obtain statistical significance measures for
novel motifs, because this will require running DME and DME-B more
times than is computationally feasible.

Modules were identified by combining motifs whose cooccurrence
was enriched in the foreground sets. We measured enrichment of
modules using the balanced-error rate (analogous to that of motifs),
and we required that each motif in a module contributes significantly
to the enrichment of the module as a whole. To test significance, we
randomly selected 100 of the 1000 foreground/background pairs used
to evaluate individual known motifs, and performed the module
identification procedure on each of the 100 selected pairs. The best
balanced-error rates for modules that are entirely composed of known
motifs (called known modules) in random human and mouse sets
were 0.3145 and 0.304, respectively. We used these balanced-error
rates as an estimate of the critical value for Po0.01. We opted for using
P-value cutoffs instead of computing q-values because accurate
q-value estimation for modules is computationally prohibitive. Top
known modules in human kidney (0.2955), liver (0.3105), pancreas
(0.3125) and testis (0.3) scored better than the cutoff, as did top known
modules in mouse kidney (0.3005), liver (0.3025) and testis (0.2945).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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