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Abstract

There are two major challenges for a high-performance
remote-sensing database. First, it must provide low-latency
retrieval of very large volumes of spatio-temporal data. This
requires effective declustering and placement of a multi-
dimensional dataset onto a large disk farm. Second, the
order of magnitude reduction in data-size due to post-
processing makes it imperative, from a performance per-
spective, that the postprocessing be done on the machine
that holds the data. This requires careful coordination of
computation and data retrieval. This paper describes the
design, implementation and evaluation of Titan, a paral-
lel shared-nothing database designed for handling remote-
sensing data. The computational platform for Titan is a
16-processor IBM SP-2 with four fast disks attached to each
processor. Titan is currently operational and contains about
24 GB of AVHRR data from the NOAA-7 satellite. The exper-
imental results show that Titan provides good performance
for global queries and interactive response times for local
queries.

1. Introduction

Remotely-sensed data acquired from satellite-based sen-
sors is widely used in geographical, meteorological and en-
vironmental studies. A typical analysis processes satellite
data for ten days to a year and generates one or more images
of the area under study. Data volume has been one of the
major limiting factors for studies involving remotely-sensed
data. Coarse-grained satellite data (4.4 km per pixel) for a
global query that spans the shortest period of interest (ten
days) is about 4 GB; a finer-grained version of the same
data (1.1 km per pixel) is about 65 GB. The output images
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are usually significantly smaller than the input data. For
example, a multi-band full-globe image corresponding to
the 4.4 km dataset mentioned above is 228 MB. This data
reduction is achieved by composition of information corre-
sponding to different days. Before it can be used for com-
position, individual data has to be processed for correcting
the effects of various distortions including instrument drift
and atmospheric effects.

These characteristics present two major challenges for the
design and implementation of a high-performance remote-
sensing database. First, the database must provide low-
latency retrieval of very large volumes of spatio-temporal
data from secondary storage. This requires effective declus-
tering and placement of a multi-dimensional dataset onto a
suitably configured disk farm. Second, the order of mag-
nitude reduction in data size makes it imperative, from a
performance perspective, that correction and composition
operations be performed on the same machine that the data
is stored on. This requires careful coordination of computa-
tion and data retrieval to avoid slowing down either process.

Several database systems have been designed for han-
dling geographic datasets [4, 19, 26, 27]. These systems are
capable of handling map-based raster images, map points
(e.g. cities) and line segments (e.g. rivers, roads) and pro-
vide powerful spatial query operations. They are, however,
unsuitable for storing raw remote-sensing data that has not
been projected to a map-based coordinate system. Main-
taining remote-sensing data in its raw form is necessary for
two reasons [23]. First, a significant amount of earth sci-
ence research is devoted to developing correlations between
raw sensor readings at the satellite and various properties of
the earth’s surface; once the composition operation is per-
formed it is no longer possible to retrieve the original data.
Second, the process of generating a map-based image uses a
particular projection of a globe onto a two-dimensional grid.
Earth scientists use several different projections, each for a
different purpose; no single projection is adequate for all
uses. In addition, none of these systems have been designed
for large disk farms. Given the volume of data retrieved for



each query, uniprocessor platforms are unable to provide
adequate response times.

This paper describes the design, implementation and
evaluation of Titan, a parallel shared-nothing database de-
signed for handling remote-sensing data. The computational
platform for Titan is a 16-processor IBM SP-2 with four IBM
Starfire 7200 disks attached to each processor. Titan is cur-
rently operational and contains about 24 GB of data from
the Advanced Very High Resolution Radiometer (AVHRR)
sensor on the NOAA-7 satellite.

The paper focuses on three aspects of the design and im-
plementation of Titan: data placement, query partitioning
and coordination of data retrieval, computation and com-
munication. Section 2 provides an overview of the sys-
tem. Section 3 describes the declustering and data place-
ment techniques used in Titan. The data layout decisions
in Titan were motivated by the format of AVHRR data and
the common query patterns identified by NASA researchers
and our collaborators in the University of Maryland Geogra-
phy Department. Section 3.2 describes the indexing scheme
used by Titan. Section 4 describes the mechanisms used
to coordinate data retrieval, computation and interprocessor
communication. Section 5 describes the experiments per-
formed to evaluate Titan. Section 6 discusses the results and
pinpoints the performance-limiting factors.

We believe our experiences suggest useful guidelines that
go beyond remote-sensing databases in their scope. In par-
ticular, we expect our techniques for coordinating and bal-
ancing computation, communication and I/O are useful for
other unconventional databases that need to perform sub-
stantial post-processing. Similarly, we believe our results
provide additional evidence for the utility of the minimax
algorithm for declustering multidimensional datasets over
large disk farms.

2. System Overview

Titan consists of two parts: (1) a front-end that interacts
with querying clients, performs initial query processing and
partitions data retrieval and computation; and (2) a back-
end that retrieves the data and performs post-processing and
composition operations.

The front-end consists of a single host which can be lo-
cated anywhere on the network. The back-end consists of a
set of processing nodes on a dedicated network that store the
data and do the computation. The current implementation
of Titan uses one node of the 16-processor IBM SP-2 as the
front-end and the remaining 15 nodes as the back-end. No
data is stored on the disks of the node used as the front-end.

Titan partitions its data set into coarse-grained data blocks
and uses a simplified R-tree to index these chunks (see sec-
tions 3.1 and 3.2 for details). This index is stored at the
front-end which uses it to build a plan for the retrieval and

processing of the required data blocks. The size of this in-
dex for 24 GB of AVHRR data is 11.6 MB, which is small
enough to be held in primary memory.

Titan queries specify four constraints: (1) temporal
bounds (a range in universal coordinated time), (2) spa-
tial bounds (a quadrilateral on the surface of the globe), (3)
sensor type and number, and (4) resolution of the output
image. The result of a query is a multi-band image. Each
pixel in the result image is generated by composition over
all the sensor readings for the corresponding area on the
earth’s surface.

When the front-end receives a query, it searches the index
for all data blocks that intersect with the query. It uses the
location information for each block (which is stored in the
index) to determine the set of data blocks to be retrieved
by each back-end node. In addition, the front-end partitions
the output image among all the back-end nodes. Currently,
the output image is evenly partitioned by blocks of rows
and columns, assigning each back-end node approximately
the same number of output pixels. Under this partitioning
scheme, data blocks residing on the disks of a node may
be processed by other nodes; each back-end node processes
the data blocks corresponding to its partition of the output
image (see section 4 for details). The front-end distributes
the data block requests and output image partitions to all
back-end nodes.

Each back-end node computes a schedule for retrieving
the blocks from its disks. This schedule tries to balance
the needs of all nodes that will process these data blocks.
As soon as a data block arrives in primary memory, it is
dispatched to all nodes that will process it. Once a data
block is available for processing (either retrieved from local
disk or forwarded by another node), a simple quadrature
scheme is used to search for sensor readings that intersect
with the local partition of the output image. After all data
blocks have been processed, the output image can either
be returned to the front-end for forwarding to the querying
client, or it can be stored in a file for later retrieval.

3. Data Placement

Titan addresses the problem of low-latency retrieval of
very large volumes of data in three ways. First, it takes
advantage of the AVHRR data format and of common query
patterns identified by earth science researchers [7, 10, 24],
to partition the entire dataset into coarse-grained chunks that
achieve good disk bandwidth. Second, it tries to maximize
disk parallelism by declustering the set of chunks onto a
large disk farm. Finally, it attempts to minimize seek time
on individual disks by clustering the chunks assigned to
each disk. The following subsections describe each of these
techniques used to provide low-latency data retrieval.
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3.1. Data Partitioning

AVHRR data is organized as one file per satellite orbit
(with 14 orbits per day). Each file consists of a sequence of
scan lines, each with 409 pixels. Each pixel consists of five
readings, each in a different band of the electro-magnetic
spectrum.

The AVHRR files provided by NASA [2] are organized
in a band-interleaved form (i.e., all the values for a single
pixel are stored consecutively). However, most satellite data
processing programs process one of two groups – bands one
and two or bands three, four and five [7, 24]. This grouping
occurs due to the properties of the bands: the first two bands
provide information to estimate the amount of chlorophyll
in a region [9] whereas the last three bands can be used to
estimate cloud cover and surface temperature [14]. To take
advantage of these query patterns, Titan stores AVHRR data
in two parts, one containing data for bands one and two and
the other containing data for bands three, four and five.

We used three guidelines to determine the size of the
basic data block – i.e.the unit of data retrieved from disk.
First, the size should be large enough to allow efficient re-
trieval; second, the size should be small enough that most
of the data retrieved is useful; and third, the block should
be square (square groups of pixels provide better indexing
than more elongated groups). From [1] we knew that for
our configuration, the best I/O performance is achieved for
blocks larger than 128 KB. Therefore, we chose to parti-
tion the AVHRR data in tiles of 204x204 pixels. The data
blocks containing bands one and two are about 187 KB; the
data blocks containing bands three, four and five are about
270 KB. To minimize disk seek time, all data blocks with
bands 1 and 2 are stored contiguously on disk, as are all data
blocks with bands 3, 4 and 5.

3.2. Indexing Scheme

The Titan index contains spatio-temporal bounds and re-
trieval keys for the coarse-grained data blocks described in
Section 3. For expediency and due to the relatively small
number of blocks in the database, we have implemented
the index as a simplified R-tree. The index is a binary
tree whose interior nodes are bounding quadrilaterals for
their children. We use quadrilaterals instead of rectangles
to achieve a better fit for spatial bounds. We chose a binary
tree for its simplicity; since entire index is held in memory,
disk efficiency is not important. Leaf nodes in the index
correspond to data blocks and contain spatial and temporal
extent, meta-data such as sensor type and satellite number,
and the position on disk for each data block. The position
of a data block is described by a [disk,offset] pair.

The leaf nodes are arranged in a z-ordering [21] before
the index is built. Sorting the leaves spatially allows access

to the index as a range tree. Furthermore, it allows interior
node keys in the index to better approximate the spatial
extent of their children, and reduces the overlap between
different interior node keys at the same level in the tree. As
a result, searching the index becomes more efficient.

Using a coarse-grained index has several advantages.
First, the index supports efficient retrieval of data from disks.
Second, the index supports quick winnowing of large por-
tions of the data base when presented with localized queries.
Third, the index allows query previews that enable users to
quickly refine their queries, without forcing large volumes
of data to be retrieved from disks [5]. Finally, the index
is extensible – it is easy to include data from other sensors
without re-engineering the indexing scheme or re-indexing
existing data.

3.3. Declustering

Declustering methods for multidimensional datasets can
be classified into two classes: grid-based [3, 6] and graph-
theoretic [15, 16]. Grid-based methods have been developed
to decluster Cartesian product files, while graph-theoretic
methods are aimed at declustering more general spatial ac-
cess structures such as grid files [20] and R-trees [11]. A
survey of declustering methods can be found in [18].

Since the Titan index is tree-based, we have adopted a
graph-theoretic algorithm – Moon et al. ’s minimax spanning
tree algorithm [16]. This algorithm was originally proposed
for declustering grid files on a large disk farm and has been
shown to outperform Fang et al. ’s Short Spanning Path
algorithm [8] for that task. The minimax algorithm models
the problem as a complete graph – each vertex represents
a data block and each edge represents the likelihood that
the corresponding data blocks will be accessed together.
The key idea of the algorithm is to extend Prim’s minimal
spanning tree algorithm [22] to construct as many spanning
trees as there are disks in the disk farm, and then assign
all the blocks associated with a single spanning tree to a
single disk. To generate the edge costs, we have chosen the
proximity index proposed by Kamel and Faloutsos [13]. The
alternative we considered, euclidean distance, is suitable for
point objects that occupy zero area in the attribute space but
does not capture the distinction among pairs of partially
overlapped spatial objects of non-zero area or volume1.

Prim’s algorithm expands a minimal spanning tree by in-
crementally selecting the minimum cost edge between the
vertices already in the tree and the vertices not yet in the tree.
This selection policy does not ensure that the increment in
the aggregate cost (i.e., the sum of all edge weights inclu-
sive to the group of vertices associated with the spanning
tree) due to a newly selected vertex is minimized. Instead,

1By partially overlapped objects we mean d-dimensional objects whose
projected images on at least any one of d dimensions intersect.
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Figure 1. Illustration of expanding spanning
trees

the minimax algorithm uses a minimum of maximum costs
policy. For every vertex that has not yet been selected, the
algorithm computes a maximum of all edge weights between
the vertex and the vertices already selected. The selection
procedure picks the vertex that has the smallest such value.

For example, in Figure 1, the minimum of minimum costs
policy will pick up the vertex w and add it to the spanning
tree Gi, because the weight of the edge (w; v) is the mini-
mum. However, this decision leads to putting the vertices
w and u, which are connected by an edge with a very heavy
weight, in the same vertex group represented by the span-
ning tree Gi. On the other hand, the minimum of maximum
costs policy will pick up the vertex x and add it to the span-
ning tree Gi, because the weight of the edge (x; v) is the
minimum of maximum costs.

In summary, the minimax algorithm (1) seeds M span-
ning trees (where M is the number of disks) by choosingM
vertices instead of choosing a single vertex; (2) expands M
spanning trees in round-robin fashion; and (3) uses a min-
imum of maximum costs policy for edge selection, instead
of a minimum of minimum costs policy. It requires O(N 2)
operations and achieves perfectly balanced partitions (i.e.,
each disk is assigned at most dN=Me data blocks where
M is the number of disks). A detailed description of this
algorithm can be found in [16].

3.4. Clustering

In addition to maximizing disk parallelism by decluster-
ing, it is important to reduce the number of disk seeks by suit-
ably linearizing the data blocks assigned to a single disk. We
have chosen the Short Spanning Path (SSP) algorithm[8] for
this purpose. We considered a Hilbert-curve-based scheme
as an alternative. Both methods can be used to map multidi-
mensional objects onto a one-dimensional space. It is widely
believed that the Hilbert curve achieves the best clustering
among space-filling curves [12, 17]. In [16], however, we
have empirically shown that the SSP algorithm achieves bet-

ter declustering (and therefore a better linearization) than a
Hilbert-curve-based algorithm.

Finding the shortest spanning path is NP-complete.
Therefore, the SSP algorithm employs a heuristic to gener-
ate a path that is short, but not necessarily the shortest. The
algorithm works by first picking a vertex randomly from a
given set of N vertices. Now suppose we have generated a
partial path covering k vertices v1; : : : ; vk, where k < N .
Then pick another vertex u randomly from the vertex set,
and find a position in the path at which the vertex u should
be placed by trying the k+ 1 positions in the path, such that
the length of the resulting path is minimized. Once again
the proximity index is used to measure the distance between
vertices.

4. Query Processing

As described in Section 2, Titan consists of a front-end
host and a set of back-end nodes. For each query, the front-
end uses the index to identify all data blocks that intersect
with the spatial and temporal extents of the query. It also
partitions the processing for the query among all back-end
nodes. Currently, the output image is evenly partitioned by
blocks of rows and columns, assigning each back-end node
approximately the same number of output pixels. Under this
partitioning scheme, data blocks residing on the disks of a
node may be processed by other nodes; each back-end node
processes the data blocks corresponding to its partition of
the output image.

For each data block to be retrieved, the front-end identi-
fies its location (disk number and disk offset) and the identity
of all the back-end nodes that need the data contained in the
block. In other words, it identifies the producer as well
as all the consumers of the data block. For each back-end
node, the front-end computes the number of data blocks it
will receive from each of the other back-end nodes. Once
all this information is computed, the front-end distributes it
to all the back-end nodes.

Each back-end node computes a schedule for retrieving
the data blocks on its disks. The primary goal of the schedule
is to retrieve data blocks in a balanced manner so as to keep
all nodes busy (processing the query). It also tries to avoid
disk seeks as far as possible. The scheduling algorithm first
assigns a representative consumer for each data block. If the
block has multiple consumers, the representative-consumer
is chosen as follows. If the producer of the node is also a
consumer, then it is chosen as the representative-consumer;
otherwise one of the consumers is chosen randomly. The
scheduling algorithm then partitions the list of data blocks
into a set of lists, one list for each [disk, representative-
consumer] pair.

Once a schedule is generated, each back-end node asyn-
chronously executes a loop whose body consists of five
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while (not all activities are done)
/* block-read phase */
issue as many asynchronous disk reads for blocks as
possible;

/* block-send-check phase */
check all pending block sends, freeing send buffers for
completed ones;

/* block-receive phase */
check pending block receives, and for each completed
one:

add the receive buffer to the list of buffers that
must be processed locally;
if (more non-local blocks must be obtained) issue
another asynchronous receive;

/* block-read-check phase */
check pending disk reads;
for each completed one, generate asynchronous sends
to the remote consumers;

/* block-consume phase */
if (a block is already available for processing)

process the block - perform mapping and com-
positing operations for all readings in the block;

endif
endwhile

Figure 2. Main loop for overlapping computa-
tion, I/O and communication.

phases – a block-read phase, a block-send-check phase, a
block-receive phase, a block-read-check phase, and a block-
consume phase – as shown in Figure 2. Each back-end node
also initializes its partition of the output image.

To hide the large latency for I/O accesses and interpro-
cessor communication, the back-end nodes issue multiple
asynchronous requests to both the file system and the net-
work interface, so that I/O, communication, and computa-
tion may all be overlapped. By keeping track of various
pending operations, and issuing more asynchronous oper-
ations when necessary, the back-end nodes can move data
blocks from their disks to the memory of the consuming
back-end nodes in a pipelined fashion. In addition, while
I/O and communication are both proceeding, each back-end
node can process data blocks as they arrive from either its
own local disks or the network.

During the block-read phase, the node issues as many
asynchronous reads to the disks as possible. The number
of outstanding requests is limited by the number of buffers
available and the number of local disks (little or no benefit
is gained from too many outstanding reads per disk).

In the block-send-check phase, the node checks for com-

pletion of asynchronous sends used to dispatch data blocks
to their consumers. When a data block has been delivered
to all its consumers, the buffer holding it is released.

In the block-receive phase, the node posts as many asyn-
chronous receives as possible for data blocks that it needs
but which are produced by other nodes. The number of out-
standing requests is bounded by buffer availability and the
number of nodes from which it is expecting to receive data.

In the block-read-check phase, the node checks for the
completion of outstanding block-read requests. For each re-
quest that has completed, asynchronous sends are generated
for all remote consumers, if any.

In the block-consume phase, the node processes a data
block that has arrived either over the network or from a lo-
cal disk. For each block it extracts the data corresponding
to its partition of the output image and performs the com-
position operation. At most one data block is processed
within the block-consume phase per iteration. This policy
ensures that the outstanding asynchronous operations are
polled frequently.

5. Experimental Results

We have evaluated Titan in three ways. First, we have
computed static measures that evaluate the quality of the
data placement; second, we have conducted simulations to
evaluate the performance of data retrieval for a set of queries
that cover the globe; and third, we have measured actual
performance on the SP-2 for a set of queries that cover
land-masses of various sizes.

5.1. Static evaluation of data placement

We used two static measures to evaluate the quality
of data placement: (1) the number of k-nearest-neighbor
blocks placed on the same disk, for declustering; and (2) the
aggregate probability that any pair of adjacent data blocks
are fetched together, for clustering. These measures de-
pend only on the data placement and are independent of the
distribution, sizes and shapes of queries.

We counted the number of k-nearest-neighbor data
blocks assigned to the same disk unit, varying k from 1
to 59 since the total of 55,602 data blocks were distributed
over 60 disks. The results are summarized in Table 1. The
closer a pair of blocks are to each other, the higher the chance
that they are accessed together. Therefore, the reduction of
48 to 70 percent in this measure indicates a potential for
substantial performance improvement through declustering.

To estimate the aggregate probability that any pair
of adjacent data blocks on the same disk unit are
fetched together, we computed the probability path
length for all disks. This measure is defined asP

N�1
i=1 proximity index(Blocki; Blocki+1), where N is
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k-nearest neighbors 1 5 15 30 59

Random assignment 923 4643 13969 27933 55190
Minimax declustering 280 1848 6434 13586 28832

Improvement (%) 70 60 54 51 48

Table 1. The number of k-nearest neighbor blocks assigned to the same disk

the number of blocks assigned to a disk and Blocki and
Blocki+1 are a pair of adjacent blocks on the disk. A high
probability path length indicates that data blocks are clus-
tered well on the disk and hence will require a small number
of disk seeks for retrieval. When the short spanning path
algorithm was used to cluster data blocks on each disk, the
average probability path length was 23.7; the corresponding
number for random block assignment was 13.3.

5.2. Simulation-based evaluation of data retrieval

Based on the common query patterns identified by earth
science researchers [7, 9, 10, 24], we generated synthetic
queries that uniformly cover the land masses of the world.
We divided the land masses into 12 disjoint regions, in total
covering almost all of six continents (excluding Antarctica).
We computed two metrics: model transfer time and model
seek time.

DEFINITION 1 The model transfer time of a query q is de-
fined as maxM

i=1fNi(q)g, where M is the number of disks
used and Ni(q) is the number of data blocks fetched from
disk i to answer the query q.

DEFINITION 2 Given a query q, the model seek time is de-
fined to be the number of clusters in the answer set of q. A
cluster of blocks is a group of data blocks that are contiguous
on disk. 2

The model transfer time has been considered a plausible
measure of the actual block transfer time [6, 16] under the as-
sumptions that: (1) all disks can be accessed independently,
and (2) the volume of data is too large for caching. The
model seek time was originally proposed in [12] as a measure
of the clustering properties of space-filling curves [12, 17].

As was pointed out in [12], small gaps between fetched
blocks are likely to be immaterial. Therefore, we use the
total distance to be traveled by the disk arm, as well as the
model seek time, to evaluate the clustering scheme.

We used 3-dimensional queries (two spatial dimensions
and the temporal dimension). The sizes of queries are gov-

2Contiguous data blocks may be considered to have contiguous logical
block numbers, assuming that logical block numbers represent the relative
locations of physical data blocks.

erned by a selectivity factor (0 < r < 1). The selec-
tivity factor r denotes the percentage of the total spatio-
temporal volume that the query covers. For example, a
query for a region of size LLat � LLong � LTime had the
size LLat 3

p
r�LLong

3
p
r�LTime

3
p
r. To simulate the data

retrieval for these queries, we used the Titan index described
in Section 3.2 and computed the model block transfer time
and model seek time for each of the queries – without ac-
tually retrieving the data blocks. We used three values of
selectivity: 0.01, 0.1 and 0.2 (1, 10 and 20 percent).

For each land region and each selectivity, we generated
500 range queries and computed the average model transfer
time and the average model seek time. Table 2 and Table 3
show the results for all the land regions. In Table 2, the first
two columns for each selectivity show the average model
transfer time for random block assignment and the minimax
algorithm respectively; and the third column shows the im-
provement achieved by minimax. In Table 3, the first two
columns for each selectivity show the average model seek
time for random assignment and SSP. To isolate the effects
of clustering, the same scheme (minimax) was used to assign
blocks to each disk.

We also measured the average distance over which the
disk arm needs to move for each query. The disk arm
travel distance is modeled by (highest offset - lowest offset)
among the blocks in the answer set of a given query. For
all the experiments, we observed an 11 to 97 percent im-
provement in the disk arm travel distance for SSP clustering
relative to random block assignment.

5.3. Performance on the SP-2

We measured the performance of Titan for loading the
database as well as for processing queries. We measured
the loading performance by measuring the wall-clock time
for the entire loading operation as well as for major sub-
operations. To evaluate the query-processing performance,
we ran a set of sample queries. Each of these queries gen-
erates a 10-day composite image, using the sensor measure-
ments from bands 1 and 2. For simplicity, these sample
queries are specified as rectangular boxes that cover land
masses of varying sizes – the United Kingdom and Ireland,
Australia, Africa, North America, South America, and the
complete globe. The resolution of the output images for
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Selectivity 1 percent 10 percent 20 percent

Declustering random minimax impr.(%) random minimax impr.(%) random minimax impr.(%)
Land region A 10.9 7.9 28 27.6 20.6 25 38.3 28.5 26
Land region B 10.4 7.6 27 23.4 18.7 20 31.6 25.8 19
Land region C 11.2 8.1 27 26.8 22.0 18 36.5 31.0 15
Land region D 8.6 6.1 29 19.1 14.7 23 25.4 20.1 21
Land region E 55.3 46.3 16 119.9 105.0 12 150.4 136.0 10
Land region F 65.5 56.3 14 145.1 129.1 11 182.8 168.3 8
Land region G 9.1 6.7 26 32.3 25.6 20 54.2 44.6 18
Land region H 19.8 16.1 19 46.7 39.4 16 62.0 53.4 14
Land region I 16.1 12.4 23 36.9 31.6 14 49.6 43.1 13
Land region J 7.6 5.5 27 24.1 19.2 20 37.0 31.1 16
Land region K 5.2 3.4 33 15.4 10.7 31 23.4 16.6 29
Land region L 3.2 2.1 32 6.0 4.5 26 8.0 6.1 24

Table 2. Model transfer time

Selectivity 1 percent 10 percent 20 percent

Clustering random SSP impr.(%) random SSP impr.(%) random SSP impr.(%)
Land Region A 7.8 7.5 4 19.9 18.2 9 27.4 24.0 12
Land Region B 7.6 7.3 3 18.4 16.8 9 25.1 21.7 13
Land Region C 8.1 7.7 4 21.3 18.7 12 29.5 24.5 17
Land Region D 6.0 5.8 4 14.3 13.1 9 19.8 17.2 13
Land Region E 43.7 35.5 19 93.5 51.7 45 117.1 49.8 57
Land Region F 52.4 44.2 16 110.7 64.2 42 136.4 61.9 55
Land Region G 6.6 6.4 3 24.5 22.0 10 41.5 35.5 15
Land Region H 15.9 13.8 13 38.0 24.6 35 50.5 26.9 47
Land Region I 12.2 10.7 12 30.5 20.1 34 41.1 23.3 43
Land Region J 5.5 5.3 4 18.8 17.3 8 30.1 26.3 12
Land Region K 3.4 3.3 3 10.6 9.4 12 16.4 13.7 17
Land Region L 2.1 2.0 5 4.5 3.9 13 6.1 5.1 17

Table 3. Model seek time

all the sample queries was 100=128 degrees of longitude by
100=128 degrees of latitude.

5.3.1 Loading performance

Loading the database requires: (1) segmenting raw AVHRR
files into data blocks; (2) building an index for the data
blocks; (3) determining the data placement; and (4) copying
the blocks to the appropriate locations. The first three phases
were performed on a single node of the SP-2 and the last
phase was done in parallel. For the 24 GB AVHRR data
set, the entire loading operation took about four hours on
the SP-2. The majority of the time was spent computing
the data placement, which took about three hours to process
the over 55,000 data blocks. The final step that moved data
from the AVHRR files to the locations specified by the data
placement algorithms took about twenty minutes.

5.3.2 Query-processing performance

We used the sample queries described above to evaluate the
end-to-end performance of Titan and to understand the inter-

actions between its subsystems. To study the interactions,
we selectively disabled one or more of I/O, interprocessor
communication, and computation. We studied four config-
urations. The first configuration (referred to as I/O-only)
enabled only the block-read and block-read-check phases
(without communication) and was intended to measure the
disk I/O performance. The second configuration (referred
to as I/O+computation) enabled the block-read, block-
read-check and block-consume phases and was intended
to estimate the extent to which use of asynchronous I/O
was able to hide I/O latency. The third configuration (re-
ferred to as I/O+comm) enabled the block-read, block-
read-check, block-send-check and block-receive phases and
was intended to estimate the overlap the extent of overlap
between I/O and communication. The fourth configuration
(referred to as full) enabled all phases and was intended
to measure end-to-end performance. The first two config-
urations were run with a single back-end node and did not
generate the complete output image.

Figure 3 shows the results for the global query using
the first two configurations. For the second configuration,
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Figure 3. Resolving the global query using a
single back-end node.

the time spent in performing computation is measured sep-
arately. To resolve the global query, the node retrieved
619 data blocks (116.2 MB) at an effective disk bandwidth
of 9.2 MB/sec. Comparing this value to the maximum
application-level disk bandwidth of 10.6 MB/sec achiev-
able on an SP-2 node, as measured by a micro-benchmark,
we note that the I/O overhead was small and that the data
placement on a single node worked fairly well. The differ-
ence between the height of the left bar and that of the I/O
part of the right bar indicates the amount of overlap between
I/O and computation. In this experiment, the overlap was
about 65% (8 sec).

We next focus on end-to-end performance and on the
interaction between all three components. Figure 4 shows
the execution times for resolving the sample queries for the
third and fourth configurations. In each graph, the second
and the third bar correspond to the performance for the third
and the fourth configuration, respectively. For comparison,
the leftmost bar in every graph shows the estimated disk-read
time assuming a disk bandwidth of 10 MB/s. Table 4 shows
the total amount of data read from disk and communicated
between processors to resolve the sample queries.

By comparing the heights of the I/O parts of the two
leftmost bars for each query, we note that when the query
is large enough, a significant part of the disk-read time is
overlapped with communication. When the query is small,
however, each node only reads a few data blocks from its
disks, so cannot achieve maximum disk bandwidth. That is
why the estimated I/O times (at 10 MB/sec) for the Australia
and United Kingdom queries are less than the measured
times for overlapped I/O.

The rightmost bars in Figure 4 also show that computa-
tion did not overlap well with the combination of I/O and
communication. We already know that I/O did overlap fairly
well with computation. Therefore, we conclude that use of

asynchronous communication did not hide communication
latency. This is not surprising since the cost of communi-
cation in the MPL communication library available on the
SP-2 is dominated by memory-copy costs especially on the
so-called thin nodes on our machine. The memory copy
also uses the processor, leaving no time for the processor
to perform other computation during communication [25].
Snir et al. [25] did, however, report that slightly better
overlap between computation and communication can be
achieved with wide SP-2 nodes, which have higher memory
bandwidth.

6. Discussion

The experimental results presented in Section 5 show
that Titan delivers good performance for both small and
large queries. Titan achieves interactive response times
(less than 10 sec.) for local queries and relatively quick
turnaround (1.5 min.) for global queries. Nevertheless,
there are two factors that limit further improvements in per-
formance. First, the high I/O parallelism has been achieved
at the cost of locality. In the experiments, this shows up
as a large amount of time spent in communication. Second,
there is considerable computational load imbalance. Table 5
shows the minimum and maximum numbers of data blocks
read and processed by different nodes for each of the sample
queries.

The loss of locality is primarily due to the hidden as-
sumption in the declustering algorithm, as well as in the
algorithm that partitions the query processing, that the cost
of moving the data from a disk to a processing node is the
same for all disks and all nodes. In reality, data blocks
retrieved by a back-end node must be forwarded to all con-
sumers of the data block, resulting in a large amount of
communication. As can be seen in Table 4, data blocks
retrieved for the global query had an average of 1.4 remote
consumers; the corresponding numbers for the Africa and
the United Kingdom queries are 1.8 and 6.2 respectively.
The computational imbalance is primarily due to the use of
a uniform partitioning scheme to process AVHRR data that
is distributed non-uniformly over the attribute-space. The
non-uniform distribution is partly due to the structure of the
satellite’s orbit and partly due to the shape of the earth.

We are currently working on the trade-off between I/O
parallelism and locality. We are considering two techniques:
(1) using a two-phase strategy for composition of data blocks
and (2) significantly increasing the size of the data blocks.
The two-phase strategy would perform the processing and
composition of all data blocks on a back-end node and for-
ward only the composited result for combination with data
from other nodes. This will reduce communication require-
ments. Since most of the processing for a data block will be
done at the node on which it resides and since our decluster-
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Figure 4. Resolving the sample queries with 15 back-end nodes.

sample query total data read - total data communicated - ratio
# data blocks # messages

global 9263 (1700 MB) 13138 (2500 MB) 1.4
Africa 1087 (203.3 MB) 2005 (374.9 MB) 1.8

North America 2147 (401.5 MB) 4313 (806.5 MB) 2.0
South America 896 (167.6 MB) 1740 (325.4 MB) 1.9

Australia 375 (69.9 MB) 997 (186.4 MB) 2.7
United Kingdom 97 (18.1 MB) 602 (112.6 MB) 6.2

Table 4. The total number of data blocks read and communicated to resolve the sample queries.

ing scheme achieves a good I/O balance, we expect this to
significantly improve the computational balance. Increasing
the size of the data blocks will increase locality and improve
the performance of the local composition operations. It will,
however, reduce parallelism, particularly for small queries.

7. Conclusions and Future Work

We have presented the design and evaluation of Titan, a
high performance image database for efficiently accessing
remotely sensed data. Titan partitions the data into coarse-
grained chunks, and distributes the chunks across a disk
farm. The system consists of a front-end, for query partition-
ing, and a back-end, for data retrieval and post-processing.
The experimental results show that Titan provides good per-
formance for queries of widely varying sizes.

We are currently investigating techniques for efficiently
handling multiple concurrent queries. The issues that must
be addressed include resource management and data reuse.
Resource management issues arise from trying to optimize
use of the limited amount of buffering space available on the
processing nodes. Data reuse refers to scheduling process-
ing of queries that overlap in space and/or time to achieve
good system throughput.
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