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Abstract

Titanium is a language and system for high-performance parallel scientific computing. Titanium
uses Java as its base, thereby leveraging the advantages of that language and allowing us to focus
attention on parallel computing issues. The main additions to Java are immutable classes, multi-
dimensional arrays, an explicitly parallel SPMD model of computation with a global address
space, and zone-based memory management. We discuss these features and our design approach,
and report progress on the development of Titanium, including our current driving application: a
three-dimensional adaptive mesh refinement parallel Poisson solver.

1 Overview

The Titanium language is designed to support high-performance scientific applications. Historically,
few languages that made such a claim have achieved a significant degree of serious use by scientific
programmers. Among the reasons are the high learning curve for such languages, the dependence on
“heroic” parallelizing compiler technology and the consequent absence of compilers and tools, and
the incompatibilities with languages used for libraries. Our goal is to provide a language that gives
its users access to modern program structuring through the use of object-oriented technology, that
enables its users to write explicitly parallel code to exploit their understanding of the computation, and
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that has a compiler that uses optimizing compiler technologywhere it is reliable and gives predictable
results. The starting design point for Titanium is Java. We have chosen Java for several reasons.

1. Java is a relatively small and clean object-oriented language (compared, for instance, to C++)
and therefore is easy to extend.

2. Java is popular and is itself based on popular languages (C/C++). Learning Titanium requires
little effort for those acquainted with Java-like languages.

3. Java is a safe language, and so is Titanium. Safety enables the user to write more robust
programs and the compiler to perform better optimization.

Titanium’s main goals are, in order of importance: performance, safety, and expressiveness.

Performance is a fundamental requirement for computationally demanding scientific applica-
tions. Many design choices reflect this goal. For instance, the execution model is explicitly
parallel, thus eliminating the need for a parallelizing compiler. Any distributed data structure
is fully defined by the programmer, who has complete control over its layout across process
boundaries. In addition, the programmer may use type modifiers in variable declarations to
convey locality information that the compiler may find hard to infer reliably from static analysis.

Safety has two meanings in Titanium. One is the ability to detect errors statically. For instance,
the Titanium compiler can ensure that all processes will execute the correct sequence of global
synchronizations. The other is the ability to detect and report run-time errors, such as out-of-
bound indices, accurately. Both forms of safety facilitate program development; but, not less
importantly, they enable more precise analysis and more effective optimizations.

Expressiveness. Because of the priorities of our target customers, we sacrificed expressiveness
to thefirst two goals as necessary. However, with built-in features such as truemulti-dimensional
arrays and iterators, points and index sets (including irregular ones) as first-class values, and
references that span processor boundaries (similar to global pointers in Split-C), Titanium is far
more expressive than most languages with comparable performance.

Titanium is based on a parallel SPMD (for Single Program, Multiple Data) model of computation. In
this model, the parallelism comes from running the same program asynchronously on processors,
each processor having its own data. Titanium processes can transparently read and write data that
resides on other processors. Titanium programs run on both distributed-memory and shared-memory
architectures. (Support for SMPs is not based on Java threads; see Section 4.) However, a Titanium
program written for an SMP is not guaranteed to run efficiently on a distributed-memory architecture.
We only claim that the language supports both architectures equally well.

In summary, Titanium is a language that uses Java as its base, not a strict extension of Java.
The Titanium compiler translates Titanium into C, for portability and economy (our prototype is
temporarily generating C++). We are not addressing the problem of high performance in the Java
Virtual Machine.
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In the remainder of the paper we outline the new language features and their relationship to Java,
the omissions of Java features, the novel optimizations that are facilitated by the use of Java as a base
language, and the driving applications that motivate the initial version of the Titanium language and
compiler.

2 Related Work

There are in essence two competing approaches to parallel programming: language and library. We
list the most relevant efforts.

Libraries. The relative simplicity and robustness of libraries for parallelism makes them a popular
choice for scientific computing. In particular, SPMD programs written in C, C++, or Fortran with
MPI for communication and synchronization form the vast majority of large-scale, parallel scientific
applications. MPI, however, has a lower raw performance than a global address space. On a Cray T3E,
MPI achieves a bandwidth of about 120MB/sec, while a global address space achieves a bandwidth of
about 330 MB/sec [10]. Furthermore, with a global address space the compiler can optimize remote
accesses with the same techniques used for the local memory hierarchy.

FIDIL. The multidimensional array support in Titanium is strongly influenced by FIDIL maps and
domains [6, 11]. Titanium, however, sacrifices expressiveness for performance. Titanium arrays may
only be rectangular, where FIDIL maps have arbitrary shapes. Also, Titanium has two static domain
types, general domain and rectangular domain. FIDIL has only a general domain type, thus making
it harder to optimize code that uses the more common rectangular kind.

Java-AD. The HPJava project includes Java-AD, an extension of Java for SPMD-style program-
ming [4]. The main new feature of Java-AD is multidimensional distributed arrays, similar to HPF
arrays. Java-AD also offers an interface to MPI for explicit communication. The current plan is to
translate Java-AD into standard Java + MPI calls, This approach prevents optimizations like those we
are implementing in Titanium.

Split-C. The parallel execution model and global address space support in Titanium are closely
related to Split-C [5] and AC [3]. Titanium shares a common communication layer with Split-C
on distributed memory machines, which we have extended as part of the Titanium project to run on
shared memory machines. Split-C differs from Titanium in that the default pointer type is local rather
than global; a local pointer default simplifies interfacing to existing sequential code, but a global
default makes it easier to port shared memory applications to distributed memory machines. Split-C
uses sequential consistency as its default consistency model, but provides explicit operators to allow
non-blocking operations to be used. In AC the compiler introduces non-blocking memory operations
automatically, using only dependence information, not parallel program analysis. Titanium is closer
to AC in this regard.
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3 Language Extensions

The main new features of Titanium are immutable classes, explicit support for parallelism, multi-
dimensional arrays, and a mechanism for the programmer to control memory management.

3.1 Immutable classes

Java objects are accessed through references. This simplifies the language, but adds a constant
overhead (extra level of indirection, object creation and destruction) that reduces the performance of
programs that make intensive use of small objects. The typical example is a user-defined complex-
number class. To remedy this problem, we introduced immutable classes. Immutable classes are not
extensions of any existing class (including Object), nor can they be extended. All non-static fields of
immutable classes are final.1 These restrictions allow the compiler to pass such objects by value and
to allocate them on the stack or within other objects. In effect, they behave like existing Java primitive
types or C structs. Immutable classes are used for some of the special Titanium types such as Point
(see Section 3.4).

3.2 Parallelism

Global synchronization. An important kind of synchronization used in SPMD programs is global
synchronization in which all processes participate. For instance, a barrier causes a process to wait
until all other processes reach a barrier. Figure 1 shows a typical SPMD skeleton. A group of
processes simultaneously execute the code shown in the figure, synchronizing at the barriers.

The program in Figure 1 is correct as long as all processes have the same value for : in that
case the barriers ensure that no process executes work1 while another executes work2. If different
processes have different values for , then they execute a different sequence of barrier statements,
which is an error. Titanium performs a global-synchronization analysis that ensures, at compile time,
that such bugs cannot occur. This global-synchronization analysis is based on recognizing single-
valued variables: replicated variables (each process owns one instance) that have the same value in all
processes. In the example in Figure 1, and must be single-valued. In Titanium, the programmer
declares the single-valued variables, and the compiler verifies that the program is structurally correct:

A program is structurally correct if all its subexpressions satisfy the following: Let
be the set of single-valued variables at . If processes begin execution of with identical
values for each variable in , and all processes terminate, then all processes execute the
same sequence of global synchronization operations and end with identical values for
each variable in .

More details are given by Aiken and Gay [1].
1Initialization of such classes relies on the Java 1.1 rule that final fields can be initialized in constructors.
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class Example {
public static void main (String [])
{

// i and n are "replicated variables": they take on
// the same values in all processes.

single int n = numberOfIterations();
for (single int i = 0; i < n; i += 1)
{

work1();
Proc.barrier();

}
work2();
Proc.barrier();
work3();

}
}

Figure 1: A simple example of synchronization.

Local and global references. The storage associated with a Titanium process is called a region.
Each object is contained within a single region. Local variables and objects created by new are
contained in the region of the process that allocates them. References to objects in other regions may
be obtained through communication primitives.

By default, all references in Titanium are assumed to be global, i.e. they may point to objects
in any region. The programmer can declare that a variable always points to objects of type
in the same region as the current process by declaring that variable with local . Similarly, the
local qualifier can be used to declare that an object’s field points to an object in the same region.
On distributed-memory machines, local pointers are significantly more efficient than global pointers:
they take less space, and access to objects is faster. On SMPs global and local pointers are equivalent.

Communication. Processes communicate with each other via reads and writes of object fields,
by cloning whole objects, or copying parts of arrays. One-to-all communication is supported by
the broadcast method, all-to-all communication by the exchange method. These two methods also
imply a global synchronization of all processes, as all processes must call broadcast or exchange
before the operation can complete. There is also a barrier method as defined above. The compiler
verifies that uses of these global synchronization operations maintain the structural correctness of the
program. Process-to-process synchronization is handled as in Java with synchronized methods and
the synchronized statement.
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Consistency model. The programmer may use the synchronization constructs to prevent concurrent
reads and writes on shared objects, but there is nothing in the language that rules out race conditions.
In some languages that use global address spaces, programmers may use simple shared variables to
build synchronization structures such as spinlocks, which appear to the system as shared variables
with race conditions. The most intuitive semantics of such shared accesses is sequential consistency,
which states that memory operations appear to take effect in some total order that is consistent with
each processor’s program order [8].

Onmachineswith hundreds to thousands of cycles ofmemory latency for a local or remotememory
access, sequential consistency is expensive, and most machine designers have opted for one of the
weaker consistency models, such as processor consistency or release consistency. Krishnamurthy and
Yelick have shown that languages can provide the stronger model of sequential consistency through
static analysis, even when the languages execute on hardware with weaker semantics [7]. We are
exploring the use of this analysis, which requires good aliasing and synchronization information, in
the context of Titanium, but our current consistency model does not rely on such analysis. Instead, we
adopt the Java consistency model, which is weakly consistent at the program level, and roughly says
that programmers may see unexpected program behavior unless they protect all conflicting variable
accesses with barriers, locks, or other language-specified synchronization primitives.

3.3 Memory management

Titanium incorporates zone-based memory management as an extension to Java. Each allocation can
be placed in a specific zone. Whole zones are freed at once with an explicit delete-zone operation.
The run-time systemmaintains reference counts to ensure that zones are not deleted while outstanding
references remain. This approach has two advantages: it allows explicit programming for locality,
by placing objects that are accessed together in the same zone; and it should perform better than
garbage collection on distributed-memory machines. Keeping a reference count on zones rather than
individual objects mitigates the problems of cyclical data structures: cyclical data structures can still
be reclaimed as long as they are contained in a single zone.

A preliminary study of this style of memory management on sequential C programs found that
zones were faster than malloc/free and conservative garbage collection in most cases [2]. This study
used a C compiler modified to perform reference counting on all pointers into zones. In a related study,
Stoutamire obtained a 13% speedup in an AMR code by using zones to improve data locality [12].

3.4 Arrays, points, and domains

Titanium arrays, which are distinct from Java arrays, are multi-dimensional. They are constructed
using domains, which specify their index sets, and are indexed by points, instead of explicit lists of
integers as in Fortran. Points are tuples of integers and domains are sets of points. The following
code fragment shows how a multi-dimensional array can be constructed.

Point<2> l = [1, 1];
Point<2> u = [10, 20];
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RectDomain<2> r = [l : u];
double [2d] A = new double[r];

The (two-dimensional) points l and u are declared and initialized. Then the rectangular domain r is
initialized to be the set of all points in the rectangle with corners l and u. Finally the variable A is
initialized to a two-dimensional array that maps each point of r into a double.

A multi-dimensional iterator called foreach allows one to operate on the elements of A. The
following foreach statement executes its body with p bound to successive points of the domain of A.

foreach (p in A.domain()) {
A[p] = 42;

}

This style of iterator simplifies the removal of array bound checks from the loop body. The iteration
order is not specified, which allows the compiler to reorder iterations without the sophisticated
and often fragile analysis used by Fortran or C compilers to perform tiling or other optimizations.
Titanium’s foreach is intended to enable these uniprocessor optimizations, not generate parallelism.

Titanium has no array elementwise operators, which would allow writing statements such as
A = B + C. While more expressive than Titanium’s foreach, complex array-level expressions are
considerably more difficult to optimize.

The RectDomain< > type represents conventional rectangular index ranges in dimensions.
There is also a more general Domain< > type, which represents arbitrary index sets. The domain
of arrays may only be rectangular, but foreach also accepts general domains. This is an important
feature for modern partial differential equation solvers, and one that would be hard to implement
efficiently with available abstraction mechanisms.

3.5 Other extensions

The preceding extensions were principally motivated by considerations of performance, especially
parallel performance. We have placed a lower priority on extensions to enhance expressiveness, but
have introduced two. First, Titanium allows programmers to provide additional overloadings of the
standard operators and of the array indexing syntax by defining member functions with special names.
The motivation here is that we expect such notations to be of interest to our particular audience—
scientific programmers. Second, we plan to introduce some form of parameterized types. Here, we
are following the on-going debate over the possibility of adding such a facility to Java. If there is a
timely resolution, we intend to conform as closely as possible to the selected specification.

4 Incompatibilities

Ideally, Titanium should be (and largely is) a superset of Java for simplicity and for compatibilitywith
existing code. However, there are are two areas of incompatibility: threads and numerics.
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Threads. The current version of the Titanium language, and its current implementation, do
not support threads. However, we are considering adding threads to the current SPMD model,
not for the purpose of parallel execution on multiple processors, but to overlap long-latency
operations, such as disk or user I/O. This would also make it possible to use Java modules
written with threads (such as the AWT) in Titanium programs. The addition of threads would
complicate global synchronization such as barriers, but we believe that the associated analysis
can be extended for a limited thread model.

Numerics. Titanium does not adhere to the Java standard for numerics (neither do, we believe,
several existing Java implementations). We would like to include support for finer control over
IEEE-Floating Point features, such as exceptions and rounding modes, but we have not yet
given adequate attention to these issues.

5 Optimizations

Our prototype compiler performs standard analyses and optimizations, such as finding “defs” and
“uses” of variables, computing all possible control flow paths, finding and moving loop invariant
expressions, finding induction variables, and performing strength reduction of array index expressions.
It also omits the construction of the control variable of aforeach if, after optimizations, that variable
is not necessary. Although we are generating C code and rely on the C compiler to perform certain
optimizations, our analysis is done with special knowledge of the Titanium language and libraries.
Furthermore, our analyses are able to take advantage of the safe and clean semantics of Java and
Titanium. Thus we perform optimizations that we cannot reasonably expect C compilers to perform
on the code we produce. Indeed, our experiments have shown that we must perform many additional
relatively straightforward optimizations in our compiler if we want them to happen at all.

5.1 Loops

A naive implementation of the loop in Figure 2a yields poor results. Depending on the static type of R,
the iteration is over either a RectDomain or a Domain (whose internal representation is currently a
union of RectDomains). For simplicity, then, consider iteration over a single RectDomain. The
address calculation for A[p] requires a single pointer increment per iteration of the innermost loop.
However, even in this trivial example, most C compilers will not perform strength reduction on the
address calculations required by Titanium arrays, which can have arbitrary stride. When we do our
own strength reduction we generate the code shown in Figure 2b. This is an example of what we do
to allow Titanium programs to achieve performance competitive with C or Fortran.

6 Applications

Properly evaluating a programming language requires using it to implement representative applications
in its intended domain. We are developing the Titanium compiler and run-time system in parallel with
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foreach (p in R) {
A[p] = 42;

}

(a)

...
for (i_0 = is_0; ; SR_0 += dSR_0) {
GP_jdouble SR_1 = SR_0;
for (i_1 = is_1; ; SR_1 += dSR_1) {
GP_jdouble SR_2 = SR_1;
for (i_2 = is_2; ; SR_2 += dSR_2) {
ASSIGN(SR_2, 42.0);
if ((i_2 += id_2) >= ie_2) break;

}
if ((i_1 += id_1) >= ie_1) break;
}

if ((i_0 += id_0) >= ie_0) break;
}

(b)

Figure 2: (a) Titanium code, (b) Excerpt of generated C code for 3D case
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non-trivial applications, some ported and some written from scratch. This section describes two of
these applications, AMR3D and EM3D.

6.1 AMR3D

AMR3D is a full 3-dimensional adaptive mesh refinement Poisson solver. The complete program
consists of about two thousand lines of Titanium code. Almost half of the code belongs to a routine
called the grid generator.

AMR is an extension of themultigrid algorithmfor linear solvers. Multigrid is a relaxationmethod
that uses grids at different resolutions covering the entire problem domain. AMR allows grids at high
levels of resolution to cover only a subset of the problem domain. The area of interest at each level is
covered by a set of rectangular patches. Similarly to most parallel AMR solvers, we distribute patches
across processors, and relax on them in lockstep. If the patches are large enough, communication and
synchronization overheads are small.

At various points of the computation, the grid generator recomputes the patch hierarchy based on
the need for accuracy. It also load-balances the computation, by assigning a similar amount of work
to each processor.

Aside from the grid generator, a large fraction of the code is dedicated to computing boundary
values at the interfaces between coarse and fine boundaries. This computation, although not onerous,
is complex, and our linguistic support is an effective aid.

AMR3D is the first large Titanium program, and it is interesting to note that the global synchro-
nization analysis (Section 3.2) helped uncover a few bugs during its development.

6.2 EM3D

EM3D is the computational kernel froman application thatmodels the propagation of electro-magnetic
waves through objects in three dimensions [9]. A preprocessing step casts the problem into a simple
computation on an irregular bipartite graph containing nodes that represent electric and magnetic field
values. The computation consists of a series of “leapfrog” integration steps: on alternate half time
steps, changes in the electric field are calculated as a linear function of the neighboring magnetic field
values and vice versa.

7 Preliminary Results

At this time we can run the programs listed above and several others, but the implementation of our
planned set of optimizations is still incomplete.

7.1 Sequential Performance

The first set of benchmarks show the sequential performance of Titaniumcode. For these experiments,
we use a 2Dand 3Dmultigrid Poisson solver, theEM3Dcomputation described above, and the standard
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SPARC Pentium
Titanium gcc cc f77 Titanium gcc cc f77

DAXPY 1.6 1.4 1.9 1.6 2.3 1.8 1.8 1.9
EM3D 1.7 0.89 1.0 1.6 0.95 0.86
2D Multigrid 5.0 5.3 5.5 7.3
3D Multigrid 22 12 20 23

Figure 3: Performance of sequential Titanium compared to other languages. All numbers are seconds,
rounded to 2 significant figures. All compilers were given the -O4 flag. Output of the Titanium com-
piler was compiled with GNU’s g++. Bounds checking was turned off for all of these measurements.

DAXPY operation on vectors. The multigrid examples are compared to code written by others in
combined C++ and Fortran, while the EM3Dand DAXPY examples are compared to C and/or Fortran.
We were unable to obtain a full 3D AMR code written in another language that performed the same
computation, so this benchmark is not used for sequential comparisons. For the multigrid problems,
the 2D grid has 1024 1024 points, and the 3D grid has 64 64 64. The EM3D graph is synthetic
with 500 nodes, fixed degree 20, and random connectivity. The DAXPY used a 100K element vector.
Data were taken on a 166Mhz UltraSPARC processor and a 200Mhz Pentium Pro running Solaris.
The cc and f77 compilers are from Sun. The output of the Titanium compiler is fed to the GNU C++
compiler.

The most unexpected result is that 3D multigrid in Titanium does poorly on the SPARC, but does
well—faster than Fortran—on the Pentium. We believe this is partly due to variations in the quality
of the code generated by the GNU C++ and Sun Fortran compilers. In addition, examination of the
Titanium-compiler generated C++ code and the resulting assembly code in each case indicates that
on the SPARC the GNU C++ compiler did a poor job of compiling the most important inner loop,
whereas on the Pentium it did well. Often the large basic blocks, large functions, and large number of
temporaries in machine-generated C++ code put unusual stresses on the back-end compiler. We are
taking this into account as we further tune the Titanium compiler.

Unlike multigrid, EM3D has loops whose average number of iterations is relatively small. The
observed performance degradation is due mostly to loop startup overhead. This is another area where
we expect to improve.

7.2 Parallel Performance

Titanium runs on top of a standard Posix thread library on SMPs and on Active Message layer [13]
on distributed memory multiprocessors and networks of workstations. Figure 4 shows the speedup of
EM3D and AMR3D on an 8-way SUN Enterprise SMP for a fixed problem size. The performance
shows that the overhead for our parallel runtime library are minimal. AMR3D is still under develop-
ment, and we are running it on a shallow grid hierarchy (2 levels). Its speedup is limitedmainly by the
serial multigrid computation on the coarse grid and by memory bus contention. EM3D attains almost
linear speedups as the runtime overheads are offset by improved cache behavior on smaller data sets.
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8 Conclusions

Our experience thus far is that Java is a good choice as a base language: it is easy to extend, and
its safety features greatly simplify the compiler writer’s task. We also believe that extending Java is
easier than obtaining high performance within Java’s strict language specs (assuming that the latter
is at all feasible). Many of the features of Titanium would be hard or impossible to achieve as Java
libraries, and the compiler would not be able to perform static analysis and optimizations on them.

We have several goals for the project. We wish to make the system robust and available for use
in the scientific computing community. We also wish to use it as a basis for research on optimization
of explicitly parallel programs, optimizations for memory hierarchy, and domain-specific language
extensions.
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