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Titanium (Ti) and its alloys are widely used for medical and dental implant

devices—artificial joints, bone fixators, spinal fixators, dental implant, etc.—because they

show excellent corrosion resistance and good hard-tissue compatibility (bone formation

and bone bonding ability). Osseointegration is the first requirement of the interface

structure between titanium and bone tissue. This concept of osseointegration was

immediately spread to dental-materials researchers worldwide to show the advantages

of titanium as an implant material compared with other metals. Since the concept

of osseointegration was developed, the cause of osseointegration has been actively

investigated. The surface chemical state, adsorption characteristics of protein, and bone

tissue formation process have also been evaluated. To accelerate osseointegration,

roughened and porous surfaces are effective. HA and TiO2 coatings prepared by plasma

spray and an electrochemical technique, as well as alkalinization of the surface, are

also effective to improve hard-tissue compatibility. Various immobilization techniques

for biofunctional molecules have been developed for bone formation and prevention

of platelet and bacteria adhesion. These techniques make it possible to apply Ti to

a scaffold of tissue engineering. The elucidation of the mechanism of the excellent

biocompatibility of Ti can provide a shorter way to develop optimal surfaces. This review

should enhance the understanding of the properties and biocompatibility of Ti and

highlight the significance of surface treatment.

Keywords: titanium, titanium alloy, biocompatibility, biofunction, bone formation, bone bonding, surface

treatment, surface morphology

INTRODUCTION

Many medical devices made of metals have been substituted by those made of ceramics and
polymers during the past half century because of innovation in ceramics and polymers and their
excellent biocompatibility and biofunction, as shown in Figure 1. Despite this situation, more than
70% of surgical implant devices, especially more than 95% of orthopedic implants (calculated based
on statics from the Ministry of Health, Labor and Welfare, Japan), still consist of metals because of
the large fracture toughness and durability of metals. In particular, titanium (Ti) materials, such as
commercially pure titanium (CP Ti) and Ti alloys are widely used inmedicine and dentistry because
of their large corrosion resistance, large specific strength, and high performance in medicine and
dentistry (Brunette et al., 2001). Their good interfacial and chemical compatibility against tissues
are well-known based on substantial evidence from basic research and high clinical performances.
However, the mechanism of the excellent biocompatibility of Ti among metals is not completely
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FIGURE 1 | Substitution of metallic devices by ceramic devices and polymer

devices due to innovation of ceramics and polymers.

understood. After a metallic material is implanted into a human
body, a reaction immediately occurs between the living tissue
and the material surface. In other words, the first reaction at the
interface directly influences the material’s biocompatibility. The
Young’s modulus of α + β-type Ti alloy (100–111 GPa) is half
those of type 316L stainless steel (200 GPa) and Cobalt (Co)–
chromium (Cr)–molybdenum (Mo) alloy (∼220 GPa), which
is a large advantage to prevent stress shielding in bone plates
and stems of artificial hip joints in orthopedics. In addition,
the magnetic susceptibilities of Ti (31.9 × 10−9 m3 kg−1) and
Ti−6Al−4V ELI alloy (39.8 × 10−9 m3 kg−1) are much smaller
than that of Co–Cr–Mo alloy (94.5 × 10−9 m3 kg−1), as well as
stainless steels, decreasing the influences of magnetic resonance
imaging (MRI), such as motion, attraction force, torque, heat
generation, and artifacts. This property is significant, because
MRI is commonly used for medical examination.

A disadvantage of metals for use as biomaterials is that they
are artificial materials, and metals do not have biofunction.
To promote biocompatibility and add biofunction to metals,
surface modification or surface treatment is necessary, because
biocompatibility is not promoted and biofunction is not
added through conventional manufacturing processes, such as
melting, casting, forging, and heat treatment. Surface treatment
is a process that changes surface morphology, structure,
and composition, leaving the bulk mechanical properties. In
orthopedics, bone bonding is required in the stem and acetabular
cup of artificial hip joints. In the case of dentistry, hard-
tissue compatibility for bone formation and bone bonding, soft-
tissue compatibility for adhesion of gingival epithelium, and an
antibacterial property for the inhibition of bacterial invasion
are required in dental implants. For these purposes, a variety
of surface treatment techniques have been investigated at the
research level, and some of them have been commercialized.

In this overview, a brief history of CP Ti and Ti alloys,
the application of Ti to medical devices (including dental
devices), their use and tasks in medicine, proposed mechanisms
of excellent biocompatibility of Ti, and surface treatment to

improve biocompatibility and to add biofunction are reviewed.
This review is intended to enhance the understanding of the
properties and biocompatibility of Ti and the significance of
surface treatment, including surface-morphological alteration.

HISTORY OF APPLICATION TO MEDICINE

The history of the application of CP Ti and Ti alloys to medicine
and dentistry is summarized in Table 1. The first report on
CP Ti for medicine was appeared in 1940, and excellent bone
compatibility was found based on an animal test (Bothe et al.,
1940). Thereafter, the compatibility to bone and soft tissue of
rabbits (Leventhal, 1951), its non-cytotoxicity due to excellent
corrosion resistance in biological environments (Beder et al.,
1957), and excellent biocompatibility in dogs were reported. The
large-scale industrial manufacturing process for Ti achieved in
the last half 1940s made it possible to conduct many studies
for medical applications, revealing excellent biocompatibility
in long-term animal testing (Williams, 1982a). Thereafter, the
usefulness of CP Ti was widely recognized by the last half
1960s through clinical evaluation (Pillar and Weatherly, 1982;
Williams, 1982a,b).

However, to avoid the fracture of CP Ti in the human
body, an aerospace Ti−6Al−4V alloy was diverted to artificial
joints and bone fixators (Pillar and Weatherly, 1982; Williams,
1982a,b). Thereafter, vanadium (V)- and/or aluminum (Al)-free
α + β-type Ti alloys and β-type Ti alloys with low Young’s
modulus have been developed. V that creates the cytotoxicity
of Ti−6Al−4V alloy was replaced by niobium (Nb), which is a
safe element, to develop a new α + β-type Ti−6Al−7Nb alloy
(Semlitsch and Staub, 1985; Li et al., 2010). Other α + β-type
alloys, Ti−6Al−2.5iron (Fe) alloy and Ti−6Al−2Nb−1 tantalum
(Ta)−0.8Mo alloy, were developed in 1970s (Rao and Houska,
1979; Anon, 1994).

On the other hand, β-type Ti alloys for medical use have
been developed. Ti−13zirconium (Zr)−13Ta alloy (nearly β)
has been developed in the United States. Various β-type
alloys, Ti−12Mo−6Zr−2Fe alloys (Wang et al., 1993), T−15Mo
(Zardiackas et al., 1996), and Ti−15Mo−2.8Nb−0.2silicon
(Si)−0.28oxygen (O) (Fanning, 1996), have been developed
in the United States. Ti−15Mo−5Zr and Ti−15Mo−5Zr−3Al
alloys (Rao and Houska, 1979; Matsuda et al., 1997) and
Ti−15Zr−4Nb−4Ta alloy (Okazaki, 2001) have been developed
in Japan. The history of the development of β-type Ti alloys is
well-summarized elsewhere (Niinomi, 2019). Young’s modulus
could decrease to 40–60 GPa in a β-type alloy.

Since 2000, a new wave of the development of Ti alloys
has been generated. The design of Ti alloys through twinning-
induced plasticity (TWIP) and transformation-induced plasticity
(TRIP) has been attempted, making it possible to develop novel
β-metastable Ti alloys (Marteleur et al., 2012; Ahmed et al., 2016:
Brozek et al., 2016; Zhan et al., 2016; Zhang et al., 2017; Lai et al.,
2018). The TRIP and TWIP concepts were first invented in the
field of steels and applied to Ti alloys through Ti–nickel (Ni)
shape memory alloy. It is possible that this design will be applied
to biomedical alloys in the near future.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 July 2019 | Volume 7 | Article 170

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hanawa Titanium-Tissue Interface Reaction

TABLE 1 | History of titanium application to medicine and development of titanium alloys.

Year Material Circumstance References

1940 Ti Confirmation of equivalent biocompatibility as stainless

steel and cobalt-chromium alloy with animal test

Bothe et al., 1940

1940 Ti Success of smelting by Kroll process Kroll, 1940

1948 Ti Launching industrial production

1951 Ti Confirmation of both soft and hard tissues compatibility

with animal test

Leventhal, 1951

1957 Ti Confirmation of non-toxicity with long-term implantation Beder et al., 1957

1959 Ti–Ni Development of shape memory alloy in USA Buehler et al., 1963; Wang et al., 1965

1960 Ti Excellent results in artificial joints Williams, 1982a

1960’s Ti Marketing as surgical implants in UK and USA

1970’s Ti−6Al−4V Diverting aircraft material to orthopedic implants

1978 Ti–Cu–Ni Trial of dental casting Waterstrat et al., 1978

1980 Ti−5Al−2.5Fe Development in Europe

1982 Ti Development of investment material and casting

machine for dental casting

Miura and Ida, 1988

1985 Ti−6Al−7Nb Development in Switzerland Semlitsch and Staub, 1985

1993 Ti−13Nb−13Zr Development in USA

1993 Ti−12Mo−6Zr−2Fe Development in USA Wang et al., 1993

1996 Ti−15Mo Development in USA Zardiackas et al., 1996

1988 Ti−29Nb−13Ta−4.6Zr Development in Japan Kuroda et al., 1988

Around 2000 Ti−15Mo−5Zr−3Al Development in Japan Rao and Houska, 1979; Matsuda et al.,

1997

Around 2000 Ti−6Al−2Nb−1Ta−0.8Mo Development in Japan Okazaki, 2001

2004 Ti−15Zr−4Nb−4Ta Development in Japan Ozaki et al., 2004

After 2000 β-metastable alloys based on TRIP and TWIP Development in mainly China Marteleur et al., 2012; Ahmed et al., 2016:

Brozek et al., 2016; Zhan et al., 2016;

Zhang et al., 2017; Lai et al., 2018

In dentistry, CP Ti has been successfully used for dental
implants since 1965 (Waterstrat et al., 1978), and the excellent
hard-tissue compatibility is well-known. A magnesia-system
investment material and argon-arc casting machine were
developed in 1982, followed by the development of various dental
casting systems for dental restoratives (Miura and Ida, 1988).

The development of new Ti alloys for medical devices
continuously challenges by researchers, and new designs have
been attempted based on d-electron alloy design theory (Kuroda
et al., 1988) and the TRIP and TWIP concept.

MEDICAL APPLICATION AND TASKS OF
TITANIUM

Because of the excellent properties of CP Ti and Ti alloy
as biomaterials, they are used for devices requiring strength,
elongation, and long-term bone bonding in orthopedics,
cardiovascular medicine, dentistry, etc. The specifications of Ti
alloys used for medicine are listed inTable 2. Medical devices and
CP Ti and Ti alloys are listed in Table 3, and problems of CP Ti
and Ti alloys in medicine are summarized in Table 4.

Ti alloys are used in orthopedics for artificial joints, bone
fixators, spinal fixators, etc., receiving large mechanical stress.
Bone absorption caused by stress shielding sometimes appears

in bone fixators and artificial hip joints. Because load is mainly
applied to the metal plate and stem, less load is applied to cortical
bone by the difference in Young’s modulus between metal and
cortical bone (Gefen, 2002). If the Young’s modulus of the metal
plate is similar to that of cortical bone, load is equally applied to
both metal and bone to prevent bone absorption. In this sense, β-
type Ti alloys showing a lower Young’s modulus aremore suitable
than α + β-type alloys. Therefore, β-type Ti alloys consisting of
Group 4 and 5 elements in the periodic table have continued to
be designed and developed.

However, bone screws and bone nails made of Ti alloys
form calluses and assimilate to bone tissue, forming calluses,
during implantation, so bone is sometimes refractured when the
devices are retrieved (Sanderson et al., 1992). Therefore, when
the devices must be retrieved after healing, devices made of 316L-
type stainless steel are selected. This assimilation occurs because

of the excellent hard-tissue compatibility of Ti alloys. A proper
surface treatment may inhibit bone formation and bonding of Ti

alloys contacting bone tissue.
In spinal surgery and maxillofacial surgery, the rod and plate

of Ti alloys are sometimes bent by medical doctors in the

operation room. These operations sometimes generate crack or
fracture of Ti alloys, because the elongation to fracture of α + β-

type Ti alloy (10% of Ti−6Al−4V ELI; Brunette et al., 2001) is

much smaller than that of 316L-type stainless steel (40%; ASTM
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TABLE 2 | Specification of titanium alloys for medical use.

Composition

(mass%)

Type ASTM ISO JIS

Ti−5Al−2.5Fe α + β – ISO 5832-10

Ti−6Al−4V α + β F1108 (Cast)

F1472 (Wrought)

ISO 5832-3 T7401-2

Ti−6Al−4V ELI α + β F136 (Wrought) ISO 5832-3 –

Ti−6Al−2Nb−1Ta α + β – – T7401-3

T−15Zr−4Nb−4Ta α + β – – T7401-4

Ti−6Al−7Nb α + β F1295 ISO 5832-11 T7401-5

Ti−3Al−2.5V α + β F2146

Ti−6Al−2Nb−1Ta−

0.8Mo

α + β F136 ISO 5832-14

Ti−13Nb−13Zr Near β F1713 –

Ti−15Mo β F2066 –

Ti−12Mo−6Zr−2Fe β F1813 –

Ti−15Mo−5Zr−3Al β F136 ISO 5832-14 T7401-6

Ti−55.8Ni Intermetallic

compound

ASTM F 2063 T7404

A240). Therefore, the strengthening of α + β-type Ti alloy while
maintaining elongation is required.

Ti–Ni alloy is used as guidewires and self-expanding stents.
However, 37.2% (45 of 121 cases) of Ti–Ni stents are fractured
in 10.7 months of service (Scheinert et al., 2005). Corrosion may
be related to the fracture, while the main cause is fatigue. In the
case of stent grafts of Ti–Ni, severe pitting and crevice corrosion
appears by the acceleration of corrosion due to the crevice
between Ti–Ni alloy and a polymer as an artificial blood vessel
(Heintz et al., 2001). Therefore, Ni-free Ti-based superelastic
alloys have been researched (Shinohara et al., 2015).

In dentistry, the fixture part of dental implants consists of
CP Ti and Ti alloys to bond alveolar bone. A Ti–Ni superelastic
alloy and a Ti–Mo alloy are used as orthodontic arch wire.
In particular, Ti–Ni alloy is widely used, because proper and
continuous orthodontic force remains for a long time. Ti–Ni alloy
is suitable for reamers and files for endodontics for bending tooth
roots, while the alloy sometimes fractures from an overload with
dental engines.

Corrosion of metallic implant devices implanted into the
human body has been studied (Nakayama et al., 1989; Brunette
et al., 2001; Alves et al., 2009; Asri et al., 2017; Manam et al.,
2017; Eliaz, 2019), because the corrosion is related to toxicity
and fracture, whereas examples of corrosion-fracture of metal
implants are few. The reason is because the retrieval case of
implants is limited, and surgeons are rarely interested in corroded
retrieved implants. In particular, severe corrosion cases of CP Ti
and Ti alloys are rare. However, Ti used as dental restoratives is
corroded by fluorine compounds contained in mouthwashes and
dental pastes (Nakagawa et al., 1999). Microbial corrosion of Ti
in the oral cavity has also been studied (Fukushima et al., 2014).
The corrosion phenomena of metallic biomaterials including Ti
alloys are reviewed (Manam et al., 2017; Eliaz, 2019), while the
case of Ti alloys is rare.

As described above, CP Ti and Ti alloys are widely used
in medicine and dentistry because of their lightness, high

TABLE 3 | Medical devices consisting of titanium and titanium alloys.

Clinical

department

Medical device CP Ti and Ti alloy

Orthopedics Spinal fixator CP Ti; Ti−6Al−4V; Ti−6Al−7Nb

Bone fixator (bone plate,

screw, wire, bone nail, mini

palate, etc.)

CP Ti; Ti−6Al−4V; Ti−6Al−7Nb

Artificial joint; artificial head Ti−6Al−4V; Ti−6Al−7Nb;

Ti−15Mo−5Zr−3Al;

Ti−6Al−2Nb−1Ta−0.8Mo

Spinal spacer Ti−6Al−4V; Ti−6Al−7Nb

Cardiovascular

department

Implantable artificial heart

(housing)

CP Ti

Heart pacemaker (case)

(electrode)

(terminal)

CP Ti; Ti−6Al−4V

CP Ti

CP Ti

Artificial valve (flame) Ti−6Al−4V

Vascular stent Ti–Ni

Guide wire Ti–Ni

Cerebral aneurysm clip CP Ti; Ti−6Al−4V

Dentistry Inlay; crown; bridge; clasp;

denture base

CP Ti; Ti−6Al−7Nb

Dental implant CP Ti; Ti−6Al−4V; Ti−6Al−7Nb

Orthodontic wire Ti–Ni; Ti–Mo

General surgery Surgical instrument (scalpel;

tweezer; scissor; drill)

CP Ti

Catheter Ti–Ni

TABLE 4 | Problem to be solved in titanium and titanium alloys for medical use.

Problem Material Medical device

Stress shielding α+β type Ti alloy Bone plate; stem of artificial

hip joint

Adhesion to bone Whole Ti alloy Bone screw; bone nail

Cracking and fracture by

excessive deformation

CP Ti, α+β type Ti alloy Spinal rod; maxillofacial plate

Crevice corrosion; pitting Ti–Ni alloy Stent graft

Fracture Ti–Ni alloy Endodontic file

Corrosion with fluoride CP Ti; whole Ti alloy Dental restorative

Cytotoxicity CP Ti; whole Ti alloy All devices

Peri-implantitis CP Ti; whole Ti alloy Abutment of dental implant;

orthodontic implant anchor;

percutaneous device; screw

of external bone fixator

corrosion resistance, and excellent biocompatibility compared
with other metals.

BIOCOMPATIBILITY OF TITANIUM

Biocompatibility is defined as “the ability of a material to perform
with an appropriate host response in a specific application”
(William, 1987). The biocompatibility of a material is governed
by initial and continuous reactions between the material and host
body: adsorption of molecules, protein adsorption, cell adhesion,
bacterial adhesion, activation of macrophage, formation of
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FIGURE 2 | Interfacial reactions of materials and the host body.

tissues, inflammation, etc. In addition, the reaction occurs with
a temporal and spatial hierarchy, as illustrated in Figure 2.

CP Ti shows a unique property, “osseointegration,” among
metals. Osseointegration is defined as follows. It is the
“formation of a direct interface between an implant and bone,
without intervening soft tissue. No scar tissue, cartilage or
ligament fibers are present between the bone and implant
surface. The direct contact of bone and implant surface
can be verified microscopically” (Brånemark et al., 1977).
Osseointegration shows the excellent hard-tissue property of
Ti. This concept, osseointegration, in dental implants generated
and explosively accelerated studies on the reaction between
hard tissue (bone and tooth) and Ti, followed by studies on
surface treatment.

Extensive research on the hard-tissue compatibility of Ti has

been reported; it is impossible to introduce everything here, so we

advise referring to a book in which it is reviewed (Brunette et al.,
2001). Excellent hard-tissue compatibility of Ti was confirmed

by studies on calcium phosphate formation ability in simulated

body fluids; evaluation of osteoblast activity and calcification;
histological and molecular-biological evaluation of Ti implanted
in animals, such as bone formation, bone contacting rate, and
bone bonding strength; and clinical results. The above results
revealed that, when Ti is implanted in bone, the surrounding
tissue contacts Ti in an early stage, and the bone bonding strength
is large. Important factors governing hard-tissue compatibility
are the adhesion and proliferation of osteogenic cells because
of the surface morphology (roughness), wettability, etc. Bone
formation occurs through the inflammatory response period,
osteoblast induction period, and bone formation period. The
surfaces of Ti implant and Ti–bone interface reaction have been
characterized to explain the importance of surface morphology,
wettability, and energy for osseointegration (Rupp et al., 2018;
Shah et al., 2018, 2019). The surface of Ti implants stored for
a long time after manufacturing becomes contaminated,
and the bone conduction ability is depressed during
storage (Art et al., 2009).

Bonding between metals and soft tissue is also important
in abutments of dental implants, orthodontic implant anchors,
transdermal devices, and screws of external fixators. In these
devices, metals penetrate from the inside to the outside of
tissues. Therefore, insufficient bonding of soft tissue makes
the invasion of bacteria that generates inflammation possible,
followed by loosening, movement, and falling out of the implant.
In the case of dental implants, these events are known as
peri-implantitis. Other medical devices completely implanted
in tissues may be covered by fibrous tissue unless enough
soft-tissue compatibility is shown. It is well-known that Ti shows
good soft-tissue compatibility only in the case of complete
implantation, while chemical bonding of soft tissue to Ti is not
observed. In particular, despite the significance of the adhesion
of junctional epithelium to Ti in dental implants, this subject
is still unresolved. Bonding of junctional epithelium to Ti is
attempted by a mechanical anchoring with rough or grooved Ti
surfaces at present, because chemical adhesion of soft tissue to
metals is difficult (Williams, 2011).

A platelet adhesion test with human blood revealed that
platelets easily adhered and a fibrin network formed on Ti
(Tanaka et al., 2009; Ratner et al., 2013). Ti may form a thrombus
easily and show low blood compatibility. Probably for this reason,
bare Ti and Ti alloys except Ti-Ni alloy are not used for devices
contacting blood.

MECHANISM OF BIOCOMPATIBILITY OF
TITANIUM

Response of the Host Body
The interface between Ti and bone tissue has been observed
from early on at a micrometer and nanometer scale (Albrektsson
and Hansson, 1986; Davies et al., 1990; Listgarten et al., 1992;
Sennerby et al., 1993; Murai et al., 1996; Branemark et al.,
1998; Sundell et al., 2017). Metal Ti substrate is covered by
titanium oxide (a few nanometers in thickness), an amorphous
layer containing proteoglycans (20–50 nm in thickness), a slender
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cell layer, a weakly calcified region, and bone tissue, in that
order. Endeavors to observe a structure near the Ti surface
have continued to elucidate the mechanism of osseointegration
(Palmquist et al., 2010; Goriainov et al., 2014).

Recently, red-blood-cell and platelet interactions (Park and
Davies, 2000), wettability and hydrophilicity (Gittens et al., 2014;
Albrektsson and Wennerberg, 2019), increase in osteogenesis-,
angiogenesis-, and neurogenesis-associated gene expression
(Salvi et al., 2015), healing- and immune-modulating effect
(Trindade et al., 2016), immune osteocyte-related molecular
signaling mechanisms (Shah et al., 2018), and inflammation-
immunological balance (Trindade et al., 2018; Albrektsson et al.,
2019) have been considered as factors of osseointegration.

However, the focus of the research moved to surface
treatments to accelerate bone formation and bone bonding. The
reaction mechanism is usually investigated to explain the effect of
the treatments. The above phenomena are caused by the surface
properties of Ti and situational evidence; the surface properties
causing the above phenomena must be understood. Properties of
the Ti surface that may cause osseointegration are explained in
the following subsections.

Corrosion Resistance
Ti shows excellent corrosion resistance compared with other
metals (Nakayama et al., 1989; Brunette et al., 2001; Asri et al.,
2017; Manam et al., 2017; Eliaz, 2019), inducing low toxicity
(Figure 3). One of the reasons for the excellent biocompatibility
of Ti is caused by the excellent corrosion resistance, while
the corrosion resistance is not sufficient condition for the
biocompatibility. Even the best corrosion-resistant metal, Au,
is inferior in tissue compatibility. In addition, electric plating
of Pt to Ti increases the corrosion resistance but depletes
bone formation (Itakura et al., 1989), because a property of
Ti is shielded, and the bone formation ability is prevented.
These results reveal that hard-tissue compatibility is not induced
only by the corrosion resistance. In other words, the corrosion
resistance is a necessary condition but not a sufficient condition
for biocompatibility; there are other factors that contribute to
biocompatibility. This concept is illustrated in Figure 4.

Surface Hydroxyl Groups
The interface reaction between Ti and living tissue is governed
by the property of surface oxide film (passive film) covering the
Ti substrate. This surface oxide film forms hydroxyl groups on
itself because of a reaction with moisture in the air (Boehm,
1966). These hydroxyl groups dissociate in aqueous solutions,
such as body fluid, to form electric charges (Boehm, 1966, 1971;
Parfitt, 1976). The electric charge depends on the pH of the
surrounding solution, and it becomes zero at a certain pH. This
pH is defined as the point of zero charge (p.z.c.) (Figure 5).
The p.z.c. is a unique value depending on each oxide and an
indicator to show an acid or basic property. In the case of TiO2,
the p.z.c. of rutile is 5.3, and that of anatase is 6.2 (Parfitt, 1976);
therefore, TiO2 does not show an outstanding acid or basic
property but shows almost a neutral property. The concentration
of surface hydroxyl groups on TiO2 is relatively large−4.9–12.5
nm−2 (Boehm, 1971; Westall and Hohl, 1980). After immersion

FIGURE 3 | Excellent corrosion resistance and low toxicity of titanium based

on its high activity.

FIGURE 4 | Biocompatibility and biofunction based on corrosion resistance

and mechanical property.

in aqueous solution, this concentration or wettability increases.
This large concentration promotes the adsorption of proteins,
such as integrin and cytokine.

Protein Adsorption
The conformation of proteins is changed by the adsorption to
the metal surface, because proteins are charged objects. The
electrostatic force of proteins to a metal surface is governed
by the relative permittivity of the surface oxide film: the larger
the relative permittivity, the smaller the electrostatic force. The
relative permittivity of TiO2 is much larger than those of
other oxides, 82.1, and similar to that of water (80.0) (Lide,
2006). Therefore, the conformational change of protein adsorbed
on TiO2 is possibly small (Figure 6). The adsorption layer of
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FIGURE 5 | Dissociation of surface hydroxyl group on metal.

FIGURE 6 | Schematic model of change in the conformation of protein

adsorbed on Au and Ti.

fibrinogen is thicker, but the adsorption amount is smaller on
Ti than on Au in aqueous solution (Sundgren et al., 1986a). The
electrostatic force on Ti is small, but on Au is large, because Ti
is covered by TiO2 and Au metal exposes without surface oxide.
The change in the conformation of proteins on Ti is smaller than
that on Au. Proteins adsorbed on Ti are less susceptible.

Formation of Calcium Phosphate
The composition and chemical state of surface oxide film
vary according to the surrounding environment; while the
film is macroscopically stable. A passive film maintains a
continuous process of partial dissolution and reprecipitation in
the electrolyte from the microscopic viewpoint. In this sense,
the surface composition is always changing according to the
environment (Kelly, 1982). Ti and Ti alloys easily form calcium
phosphates on themselves in a biological environment, and form
sulfite and sulfide, especially under cell culture (Hanawa and
Ota, 1991, 1992; Healy and Ducheyne, 1992; Serro et al., 1997;
Hiromoto et al., 2004). Ti is stabilized after the formation of
calcium phosphate in Hanks’ solution (Tsutsumi et al., 2009). In
addition, calcium and phosphorus are detected at the interface
between Ti and bone tissue (Sundgren et al., 1986b; Esposito
et al., 1999; Sundell et al., 2017). One of the reasons for the
excellent hard-tissue compatibility in Ti is its ability to form
calcium phosphate.

SURFACE TREATMENT OF TITANIUM

Category
To promote the biocompatibility of Ti and to add biofunction
to Ti while retaining the advantage of its mechanical property,
surface treatment is necessary. Surface treatment techniques for
Ti continue to be reviewed (Brunette et al., 2001; Hanawa,
2009, 2017; Williams, 2011; Ratner et al., 2013; Civantos et al.,
2017). Surface treatment techniques for medical applications are
categorized in Figure 7, and most of them are commercially
viable in the engineering field. However, some of them were
originally developed for medical devices. In addition, the major
purpose of surface treatments is to accelerate bone formation
and bonding. Another category of surface finishing and surface
treatment of implants is summarized in Figure 8. Recently,
immunomodulatory applications to regenerate tissues have
attracted the attention of biomaterials researchers (Lee et al.,
2019). As shown in Figure 8, surface treatments and their effects
are summarized in the following subsections.

Control of Surface Morphology and Porous
Surface
Surface roughness influences the healing and remodeling process
of tissues. Osteoblastic cells adhere well to rough metal
surfaces in vitro (Rautray et al., 2011). Surface roughness
also plays an important role for the differentiation of cells.
For example, osteoblast accelerates collagen production and
calcification on rough surfaces rather than on smooth surfaces
(Keller et al., 1994). The shear bonding force increases with
increasing roughness. Influence of surface topography on
osseointegration has been studied (Albrektsson andWennerberg,
2004; Wennerberg and Albrektsson, 2010; Nagasawa et al.,
2016; Rupp et al., 2018). The surface roughness of a material
is an important factor for bonding of tissues. Mechanical
anchoring results from the ingrowth of bone tissue into
pores. Even in the case where surface treatment improves the
chemical composition, the effects of not only the chemical
composition but also the roughness produced simultaneously by
the treatment appear in most cases to accelerate bone formation
and bone bonding.

The first surface treatment for biomaterials was the control
of surface morphology—that is, the formation of macroscopic
grooves or grids. Living tissues become ingrown in holes or
pores, and mechanical anchoring is achieved. Plasma spray of
Ti and hydroxyapatite (HA) on the stem of artificial joints made
of Ti alloys and blast and acid etching in dental implants have
been commercialized. Micro-arc oxidation (MAO) or plasma
electrolytic oxidation (PEO) to form a connective porous TiO2

layer have also been commercialized in dental implants. Bone
tissue grows into pores to achieve bonding. A scanning electron
micrograph of porous TiO2 oxide formed on Ti by MAO is
shown in Figure 9.

In the advanced morphology surface fabrication in Figure 8,
an evolutional technique of surface morphological control is the
formation of TiO2 nanotubes promoting cell adhesion and bone
formation because of the effect of the nanometer size (Allam
et al., 2008; Brammer et al., 2012; Narayanan et al., 2014;
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FIGURE 7 | Category of surface finishing and surface treatment of Ti to accelerate bone formation, bone bonding, soft tissue adhesion, wear resistance, antibacterial

property and blood compatibility.

FIGURE 8 | Surface finishing and surface treatment of Ti to accelerate bone

formation and bone bonding.

Awad et al., 2017). On the other hand, a cyclic nanometer-
level structure accelerates bone formation (Shinonaga et al.,
2014; Matsugaki et al., 2015). In addition, this structure also
accelerates the adhesion and differentiation of a stem cell
(Olivares-Navarrete et al., 2010; Chen et al., 2017, 2018). Bone
quality is governed not only by bone density but also bone
structure orientation (Ishimoto et al., 2013). Grooves oriented
to a main stress vector have been designed that control the
orientation of the bone structure (Noyama et al., 2013). This
technique has been commercialized in a dental implant. Recently,
studies to control bacterial adhesion by a cyclic structure at a
micrometer level have been increasing in number (Anselme et al.,
2010). Nanotopographies have been applied to form antibacterial
surfaces (Orapiriyakul et al., 2018; Mas-Moruno et al., 2019).

FIGURE 9 | Porous TiO2 oxide layer formed on Ti by micro-arc oxidation.

Three-dimensional additive manufacturing is an effective tool
to form the above surface morphology (Wang et al., 2016).
Additive-manufactured implants have been clinically applied,
and effective ingrowth of bone to porous implants has been
observed (Wang et al., 2017; Gao et al., 2018).

Hydroxyapatite and Oxide Coatings
To form a physicochemical active surface, HA is a main
inorganic component of tooth and bone, so a coating of HA
has been popular for accelerating bone formation and increasing
resistance (Harun et al., 2018). The first technique was plasma
spray (Ong and Lucas, 1994), which has been applied to various
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FIGURE 10 | Local alkalinization of Zr surface by cathodic polarization in a

supporting electrolyte solution.

products. Thereafter, other coating techniques to form HA
have been developed. Physical vapor deposition (PVD) in dry
processes and electrochemical formation in wet processes are
predominant, while a sol-gel technique (Li et al., 1996) and
alternate immersion technique (Taguchi et al., 1999) have been
developed. In addition, coatings of bioactive glass, tricalcium
phosphate (Kitsugi et al., 1996), carbonate apatite (Yamaguchi
et al., 2010), and octacalcium phosphate (Lin et al., 2003) with
a bone formation ability larger than that of HA have been
studied and developed. On the other hand, TiO2 and other oxides
have been coated on Ti (Umetsu et al., 2013). The surface is
simultaneously roughened with a spray coating.

Surface Modification Layer Formation
Another technique to form a physicochemical active surface has
been developed. The Ti surface is activated without coatings of
HA and calcium phosphate. This surface is expected to form HA
in bone tissue spontaneously. The oldest technique is calcium
ion implantation (Hanawa et al., 1993, 1997). On the other hand,
when Ti is immersed in an alkaline solution, such as NaOH and
KOH, and heated, the surface is alkalinized, and the alkaline
component is released to body fluid, followed by HA formation
to form bone (Kim et al., 1996). This technique has been
commercialized in an artificial hip joint. However, this technique
is not effective for Zr, which does not form calcium phosphate on
itself. Thus, Zr is cathodically polarized, and the surface of Zr is
locally alkalinized, as shown in Figure 10 (Tsutsumi et al., 2010).

Immobilization of Biofunctional Molecules
and Biomolecules
The ideas of improvement of bone formation and of bone
bonding by the immobilization of biomolecules involved in bone
formation to a metal surface are logical. Such biomolecules as
peptides, gelatins, and bone morphogenetic protein (BMP) are
immobilized on the Ti surface (Hanawa, 2013). Immobilization
of Type I collagen (Morra et al., 2011), fibronectin (Pegueroles
et al., 2011), Arg-Gly-Asp (RGD) array peptide (Yamamichi

et al., 2008), and BMP (Schliephake et al., 2012) is effective to
promote cell spreading and bone formation. Immobilization of
biomolecules has also been applied to create antibacterial surfaces
(Qin et al., 2018). In the case of electrodeposition of poly(ethylene
glycol) (PEG), the PEG-immobilized Ti inhibits protein
adsorption, platelet adhesion (Tanaka et al., 2010a), and bacteria
(Tanaka et al., 2010b).

The idea that the bone formation of a material’s surface
becomes active by the immobilization of biomolecules in
bone formation is reasonable, and many studies have been
conducted. However, to popularize the immobilization of
biofunctional molecules widely, it is necessary to ensure
the safety, maintenance of quality during storage, and dry-
conditioned durability of the immobilized layer. It is difficult
for manufacturers to commercialize this technique unless they
see value in commercialization. There are many problems with
commercializing the immobilized materials, although it is easy to
show good results in basic research.

Cleaning and Hydrophilic Treatment
Surface contamination prevents bone formation and bone
bonding in dental implants (Ueno et al., 2012). Instruments
for optical activation treatments, such as ultraviolet irradiation
and plasma irradiation, are available. Surface contamination is
removed, and surface hydroxyl groups appear on the Ti surface
in these optical activation treatments. The bone formation ability
of a material is related to its wettability (Yamamoto et al.,
2012). Surface characteristics of Ti implant have been reviewed
elsewhere (Rupp et al., 2018).

SUMMARY AND PERSPECTIVE

Ti is the most biocompatible material among metals.
Unfortunately, the underlying mechanism still has not been
elucidated completely. Research and development have been
focused on surface treatments to improve bone formation
and bone bonding, leaving behind the understanding of the
mechanism. However, the mechanism of the biocompatibility of
Ti is gradually being understood with the research on surface-
treated materials. Ti is the most bioactive material among metals,
but it is less active than bioactive ceramics. The elucidation
of the relevant mechanism can accelerate the development of
optimal surfaces. The surface treatment techniques introduced
in this review make it possible to apply metals to a scaffold in
regenerative medicine or tissue engineering.
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