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ABSTRACT

In this work, we deliver a proof of concept for a fast method that introduces pH effects into classical coarse-grained (CG) molecular dynamics
simulations. Our approach is based upon the latest version of the popular Martini CG model to which explicit proton mimicking particles
are added. We verify our approach against experimental data involving several different molecules and different environmental conditions.
In particular, we compute titration curves, pH dependent free energies of transfer, and lipid bilayer membrane affinities as a function of pH.
Using oleic acid as an example compound, we further illustrate that our method can be used to study passive translocation in lipid bilayers via
protonation. Finally, our model reproduces qualitatively the expansion of the macromolecule dendrimer poly(propylene imine) as well as the
associated pKa shift of its different generations. This example demonstrates that our model is able to pick up collective interactions between
titratable sites in large molecules comprising many titratable functional groups.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014258., s

I. INTRODUCTION

Molecular Dynamics (MD) is a well-established method for
simulating systems at molecular level. Depending on the time
and length scales relevant for the specific system, either atomistic
or coarse-grained (CG) models are used. One of the most com-
monly used CG models for (bio)-molecular simulations is the Mar-
tini model.1 The Martini model has been successfully applied to
many different areas in both molecular biology2–4 and material sci-
ence.5–7 However, many technologically and biologically relevant
processes are affected by the pH or pH gradients within a system
of interest. Examples include translocation of drugs across mem-
branes,8,9 protein–protein interactions,10,11 and response control of
hydrogels.12 A number of methods exist for introducing a constant
pH in classical (i.e., non-reactive) atomistic simulations, such as
the empirical-valence-bond approach,13,14 the so called λ-dynamics
approach,15,16 and stochastic Monte-Carlo based approaches.17,18

Recently, much effort is devoted to optimize the λ-dynamics

based methods in terms of the speed19 and by introducing more
physical details into the simulations16,19–23 (e.g., long-range electro-
statics or charge neutrality). However, until now, these methods are
hardly applied to Martini-based systems24 most likely because their
slow-down that—at least until recently—is significant and voids the
advantage of having a coarse-grained model in the first place. In
addition, these methods require a somewhat lengthy procedure to
parameterize and then to create the simulation engine dependent
run setup. In fact, two of the most popular packages Martini is
used with, namely, NAMD and GROMACS, were lacking an imple-
mentation for a long time. A native implementation in NAMD
only recently has been released,25 which currently does not sup-
port GPU acceleration. GROMACS is currently developing a con-
stant pH support for their most recent versions, but it has not been
published yet.

To efficiently capture the effects of pH in a simple manner that
is consistent with the Martini spirit, here, we present a proof of
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concept for an entirely different approach to constant pH simu-
lations. In our method, protons are represented as explicit parti-
cles in the equations of motion and allowed hopping between CG
water sites and titratable groups, both acids and bases. The relative
affinity of the proton for a specific group is tuned to experimental
titration curves and depends on the system’s pH, which is set as
the external variable. The number of titratable groups in the sys-
tem is unlimited and naturally captures pKa shifts due to the local
environment.

Our semi-quantitative approach is specifically optimized to
work with the most recent Martini model, in principle, portable
to all standard simulation engines, and allows for easy interpreta-
tion of pH related phenomena due to the use of an explicit proton
particle. Thus, we aim to extend the scope of the current constant
pH methodologies and benefit from the large speed up of CG over
common atomistic simulations.

The rest of the paper is organized as follows: First, we present
the new constant pHmethod and the parameterization process. Sub-
sequently, we present selected examples demonstrating the validity
of our approach, followed by a brief discussion on the limitations
and future perspective of the model.

II. THE MODEL

A. The concept

The titratable Martini model is an extension of the latest ver-
sion (3.0) of the Martini model. In the Martini force field,1 two to
five non-hydrogen atoms are grouped, with their connected hydro-
gen atoms, into one interaction center, called a bead. The interac-
tions between beads represent the nature of the underlying chemical
groups; the strength of the interaction is selected from a discrete set
of Lennard-Jones (LJ) interactions by reproducing thermodynamic
data, mostly the free energies of transfer between water and differ-
ent organic solvents as well as solvent miscibility. Particles carrying
charges further interact through a Coulomb potential. In addition to
the regular Martini beads, smaller bead sizes (S- and T-beads) are
used for groups that are represented at a higher resolution such as
aromatic rings.

Here, we introduce a new class of Martini beads, the so-called
titratable beads, that have the ability to change their protonation
state as a consequence of a change of the environment or the pH.
The key difference between titratable and regular beads is that titrat-
able ones can reversibly bind a positive particle called a proton bead
(Fig. 1). From an interpretive point of view, one can consider the
proton bead to be a proton. Note, however, that we do not aim to
model a real proton, but rather to capture the effect of proton trans-
fer. The “proton bead” should thus be interpreted as an effective car-
rier of chemical information transferred during a (de)protonation
event. Not only the titratable beads can bind to a proton bead but
also every water bead can donate or accept such a bead, thereby
providing a reservoir of available proton beads in the direct envi-
ronment of the titratable groups. Our titratable water model rep-
resents on average four water molecules as one particle following
the tradition of previous Martini models. Earlier, Yesylevskyy,26

Wu,27 and Michalowsky28 and their respective co-workers param-
eterized a polarizable Martini water model, with a negative and

FIG. 1. Titratable Martini bead geometries. The upper row shows the internal
geometry for the neutral species of water (a), acids (b), and bases (c). The lower
row shows the charged versions in matching order. Red particles connected by
dots representing the non-bonded attraction are proton beads. Red particles con-
nected by a bond are dummy particles as are the gray and blue particles. These
dummy particles only interact with protons and titratable beads, while cyan parti-
cles are the central interaction sites. All charged dummy particles also interact with
charged beads.

positive dummy charge offset from the LJ center to mimic polar-
ization effects. We utilize this type of internal bead geometry for
our titratable water model as well. Note that from here onwards, we
define the term dummy to describe particles that do not represent
a specific chemical fragment. They rather help in the description
of the underlying fragment and, for example, provide polarization
or directional interaction with the proton bead. Such dummy par-
ticles only interact with charged particles, the proton bead, and
each other. Whereas the negative dummy particle is retained as in
the previous polarizable models, in the titratable model, the pos-
itive charge (i.e. proton bead) is reversibly attached to the water
bead by a LJ interaction to the central interaction site. Thus, each
Martini water particle can accept and donate a proton bead [see
Figs. 1(a) and 1(d)]. This enables proton beads to transfer between
water sites in a hopping like process reminiscent of the Grotthuss
mechanism29 in real water. Ironically, an excess proton on a CG
water bead (i.e., per four water molecules) is reminiscent of an Eigen
cluster (H9O4

+).30

Other titratable beads representing acids or bases follow the
same basic principle as the water model. They internally have a set
of dummy particles and can reversibly bind a proton bead [Figs. 1(b)
and 1(c)]. The central interaction site mediates all LJ interactions
with neutral and non-titratable beads. The geometries of the dummy
sites are generic for acids and bases, respectively. Therefore, they
are independent of the underlying fragment and used for all beads
of either category. We utilize three major types of dummy parti-
cles for acids, bases, and water, as shown in Fig. 1. Both acids and
water have a dummy particle that carries a negative charge displaced
from the center, whereas for the bases, the negative charge is located
at the center. Shifting the charge is essential in creating a higher
proton affinity for bases. In addition, both bases and acids have
neutral dummy particles (gray in Fig. 1) that we found beneficial
in preventing excess protonation, which can, in principle, happen
because our beads are rotationally isotropic. Thus, a proton can bind
from all directions. In contrast, proton binding in reality is largely
anisotropic. Apart from a slightly different internal geometry, we
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distinguish acids and bases based on the following rule: Acids lose
a proton bead going from the neutral [Fig. 1(b)] to the charged state
[Fig. 1(e)], whereas bases accept a proton bead in going from the
neutral [Fig. 1(c)] to the charged state [Fig. 1(f)]. Hence, a proto-
nated acid is charge neutral, while a protonated base is positively
charged, which mimics the Arrhenius definition for acids and bases.
Using this concept of a proton bead, one can simulate titrations with
Martini. For example, a base in titratable Martini water will accept
a positive particle when the pH is below the pKa. The free energy
(ΔGprot.) of this process depends on the pH and the pKa of a given
group,15

ΔGprot. ≙ RT × log(10) × (pKa − pH). (1)

According to Eq. (1), the probability of protonation, which is pro-
portional to the free energy, increases with the decrease in pH. The
origin of this increased probability is related to the increased con-
centration of hydronium ions. Thus, in an explicit particle approach
to pH, one could try to model the pH effect by simply increasing the
concentration of the excess protons. However, dealing with constant
concentrations in simulations is impractical, especially around phys-
iological pH where the excess proton concentration is of the order of
10−7 mol/l. Equilibration will be slow and requires removal or addi-
tion of particles in the course of the simulation when protonation
states change. In addition, proton concentrations in heterogeneous
systems—for instance, close to a membrane—are not always well
defined. To circumvent these kinds of problems and get the ben-
efits of an explicit particle approach, we apply a simple inversion
of reasoning: As in a real system, in our simulation, every titrat-
able Martini water bead can accept or donate a proton. To change
the probability of protonation of an acid/base as a consequence of
pH changes, we increase the availability of proton beads instead of
their concentration. The availability is increased by lowering the
proton bead interaction with the water beads. In this fashion, we
modulate the degree of protonation of an acid/base and the asso-
ciated free energy. At the same time, the total concentration of pos-
itive dummy particles remains constant, and the solution charge is
neutral. To implement this concept, we introduce a set of interac-
tions that are pH dependent and that are fixed at the start of the
simulation. Because our titratable model builds on top of the Mar-
tini model, we utilize the same non-bonded interaction functions
(i.e., Lennard-Jones and Coulomb potentials). This compatibility
allows us to retain all parameters for the neutral Martini beads;
we only parameterize pH dependent water models (Sec. II B) and
introduce a new class of titratable beads (Sec. II C). An exception
forms the class of charged Martini beads, which need an adjustment
when using titratable Martini as the dielectric screening constant of
the titratable water model is different from the value used before
(Sec. II D).

B. Parameterization of titratable martini water

As discussed in Sec. II A, the affinity of water for the pro-
ton bead changes as a function of pH. The pH scale corresponds
to a regular spacing of the LJ well depth between the proton bead
and central site from ε = 1.0 kJ/mol to ε = 34.34 kJ/mol. The
upper limit is determined by stability of the simulation. Above 35
kJ/mol, the simulation becomes numerically unstable using a 8 fs–
10 fs time step, which we consider as a lower limit for efficient

integration of the equations of motion for the Martini model. We
have further defined that the lowest interaction parameter corre-
sponds to pH 3.0 and the highest to pH 8.0. Whereas it would
be optimal to span a pH range between 0 and 14, for most bio-
molecular systems, a pH range of 3–8 is sufficiently wide to simulate
many pH dependent processes. The negative dummy particle on
water and any other charged bead has a small repulsive LJ poten-
tial with respect to the proton to prevent the charges from over-
lapping. All GROMACS input files and the parameters for these
models can be found online (https://www.cgmartini.nl) and in the
supplementary material.

The self-interaction of the water bead needs to be changed as a
function of pH as well. With the decrease in pH (i.e., proton affin-
ity), the effective water–water interaction decreases as well. In order
to keep the density of water reasonable, we increase the water–water
interactions through adjustment of the LJ interactions between the
central interaction sites. To make it fully compatible with neutral
beads of Martini, we adjusted the water self-interaction such that
the solvation free energy of neutral beads is the same as in Martini
(version 3.0) at every pH. In this manner, all free energies of transfer
of the neutral beads to the aqueous phase are accurate without fur-
ther adjustment. The price to pay for this match is that the density
of the water model changes slightly as a function of pH. The lowest
density (955.7 kg/cm3) is observed at pH 3.0, and the highest den-
sity (1017.08 kg/cm3) at pH 8.0. They correspond to 4.2% and 2%
deviation from the experiment, which for a coarse-grained model is
very acceptable. Further validation of the titratable water model is
provided in the supplementary material.

C. Titratable acids and bases

Martini beads are divided into four major categories ranging
from apolar via neutral to polar and charged beads.Within the titrat-
able model, the polar and neutral beads can, in principle, become
titratable, if they are meant to represent an acid or a base. Water
is always titratable. As in regular Martini, the titratable version of a
bead represents a molecular fragment; this fragment can be used in
different molecules in the spirit of the building block approach. For
establishing a proof of concept, we have generated parameters for a
number of acid and base fragments and more complex molecules
that include these fragments. Nevertheless, the protocol is essen-
tially transferable such that any acid or base could be simulated. As
discussed previously, each titratable bead has an internal geometry
of charged or neutral dummy particles that facilitate proton bind-
ing. However, the central interaction site has a LJ interaction with
the proton bead as well. This LJ interaction can be tuned to set the
degree of deprotonation (α) according to the pKa. Both the sigma
and epsilon value of this interaction were adjusted to reproduce the
experimental pKa value and the titration curves of the underlying
fragments as well as possible. The pKa values are obtained by fit-
ting the degree of deprotonation as function of pH to the following
equation:

α ≙ 1

10q×(pH−pKa) + 1
. (2)

In contrast to the other constant pH methods,15,16 we add a fac-
tor q that captures deviations from perfect dilute solution behavior.
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Usually q, also called the Hill coefficient, measures the cooperativ-
ity between multiple titratable sites. In a strict sense, q should be
1 for a single titratable site in dilute solution [the case in which
Eq. (2) reduces to the well-known Henderson–Hasselbalch equa-
tion], and its variation in the presence of other sites describes the
degree of cooperativity between them. However, due to inherent
limitations of our approach (discussed in Sec. III A), we cannot
reproduce perfect titration behavior. Therefore, in the spirit of a
semi quantitative method, we use the q factor as a measure to
compare deviations in titration behavior to the reference titration
curves. As detailed in Sec. III D, we are still able to qualitatively
and, to some extent, quantitatively capture cooperativity in com-
plex systems despite q deviating from 1 for acids/bases in dilute
solution.

The pKa of the target compound also appears in the naming of
the bead. For example, an acid bead representing acetic acid (pKa
= 4.7631) would be P2_4.8. In general, we consider that a titratable
bead can be used for the same fragment in anymolecule, if the pKa is
not too different. As the proton bead does not interact with neutral
non-titratable beads, a titratable bead behaves like its non-titratable
counterpart in any organic solvent. Because these interactions are
defined in the standard Martini force field, we did not have to repa-
rameterize these interactions with the other beads. Interactions with
the aqueous solvent, however, are significantly different between
the standard and titratable water models and required recalibration.
To recalibrate these LJ interactions, we adjusted the epsilon value
to reproduce the free energy of transfer between organic solvents
and water for the reference fragment. Because acids and bases can
change their ionization state when transferring into another solvent,
we use the distribution coefficient, log(D), instead of the partition
coefficient, log(P), to compute the free energy of transfer [Eq. (3)].
The distribution coefficient can easily be obtained from the parti-
tion coefficient of the neutral species by adding a pH dependent term
[Eq. (4)],32

ΔGtransf . ≙ −RT × log(10) × log(D), (3)

log(D) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

log(P) + log(1 + 10q(pKa−pH))acid

log(P) + log(1 + 10q(pH−pKa))base
. (4)

As we will explain when discussing the free energies of transfer, the
water titratable bead interaction is also pH dependent. This corrects
for a mismatch of our titration curves with the theoretically perfect
titration curves. Once the water interaction is optimized, the single
beads can be combined with any other fragment to represent a more
complex molecule, in principle, without adjustment. However, for
the primary amines with pKa values larger than 8, we noticed that
the free energy of transfer is only accurately reproduced for such
compounds after applying a shift in the water interaction. Thus, we
need to distinguish whether the amine is free or bound to something
else, but not which compound it is part of exactly.

To summarize, a titratable Martini acid/base bead is based on
two components: the proton interaction reflecting the pKa and the
remaining interactions reflecting the hydrophilicity of the fragment.
To assign an optimal bead type for a given acid or base, one selects
the neutral bead that fits the neutral species the best and subse-
quently selects the titratable bead of the same type with the best

matching pKa. The specific model parameters can be found in the
supplementary material and online (https://www.cgmartini.nl).

D. Readjusting charged beads

Only ions represented by single beads and dummy particles
of the titratable beads carry a charge in our model. The ions fol-
low the same classification as in Martini 3. However, because the
dielectric constant of the titratable model differs from the standard
value (see Sec. II E), the parameters of those beads need to be read-
justed, similar to what was done in the case of the polarizable water
model.26 For the proof of principle, we only include normal sized
ions of the types corresponding to the head-group of the phospho-
choline lipids and hydrated sodium/chloride. Their interactions are
optimized to match lipid bilayer properties of Martini 3 such as area
per lipid. Likewise, the ions need to be repulsive with respect to
the oppositely charged interaction sites in the water and acid/base
beads to avoid the charge catastrophe from overlapping charged
beads. A simple repulsive LJ interaction is applied that is not further
optimized.

E. Essential simulation parameters

Following the standard practice for simulations with the Mar-
tini model,33 the van der Waals non-bonded interactions are cut
off at 1.1 nm using the respective Verlet-shift-modifier for LJ inter-
actions. We use the Verlet neighbor list scheme with the default
update of the neighbor list of 10 steps and a Verlet-buffer tol-
erance of 0.005 kJ/mol/ps. Benefitting from the explicit dielectric
screening of the titratable water model, Particle Mesh Ewald (PME)
summation is applied to capture the long-range electrostatics. In
addition, the titratable model uses a system-wide dielectric con-
stant of 6 for implicit screening. Alternatively, we could have also
scaled the charges as done previously in the polarizable water mod-
els.26,28 However, we considered it more appropriate to retain the
proton with a plus 1 charge. Clearly, a dielectric constant 6 is
too high for alkanes and too low for water. However, since our
water is protonatable and in that sense polarizable, we recover
some electrostatic screening. Any necessary energy differences aris-
ing from a different dielectric constant that are not captured by
this polarization will implicitly become part of the LJ interaction
of acids, bases, and ions. It should be noted that these param-
eters are part of the model and should not be changed without
verification.

III. RESULTS AND DISCUSSION

A. Reproducing titration curves

The proton affinity of an acid/base bead is adjusted to repro-
duce the titration curves of a given pKa. Figure 2 shows a set of titra-
tion curves for selected acids and bases. It shows that we can quali-
tatively reproduce the titration curves of a diverse range of common
acids and bases, thereby capturing essential features of them. For
example, the degree of de-protonation of acetic acid is about 1 start-
ing from pH values close to 7 and drops below 20% at low pH,
meaning that it is mostly protonated. At around the pKa (4.7631),
we observe the largest change in the degree of protonation as would
be expected from the real system. Similar trends are observed for the
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FIG. 2. Acid/base titration with Martini. Upper panel: titration curves of six model compounds and their chemical structure (A-F) as well as the corresponding pKas from
simulation and experiment. Solid lines are fits to the simulation data using Eq. (2). Note that the error of individual data points is smaller than the symbol width and generally
in the order of 0.01. The titratable residue is indicated by squares in the case of an acid and triangles in the case of a base in the chemical structure. The experimental pKa

values are taken from the literature.31,34–36 The lower panel shows a consecutive proton transfer from water to another water and subsequently abstraction of a proton by
the ionized water from another water in a hopping-like fashion. A video of this process is shown in the supplementary material.

base 2-methyl pyridine (pKa = 5.9634) or aniline, which both change
from ionized to neutral over the pH range 3–8. To some extent, we
also capture the behavior of stronger bases such as ethyl-amine (pKa
= 10.6335). In high pKa cases, the molecule is mostly ionized over
the entire pH range, and only toward pH 8.0, a slight increase in the
degree of deprotonation is observed. We note that the protonation
curves deviate somewhat from a perfect sigmoidal shape (e.g., com-
pare Fig. S2). Especially for acetic-acid and diclofenac, the titration
curves are less steep and retain a higher degree of deprotonation at
lower pHs.

We attribute the deviations in the degree of deprotonation
to the approximate potential for proton binding and the isotropic
nature of a single CG bead as opposed to the underlying anisotropic
acid/base fragment it represents. In particular, small acids or bases
that are represented as a single titratable bead (e.g., acetic acid) are
rotationally isotropic at the CG level and therefore capable of bind-
ing a proton also to the side that would be naturally excluded in the
real compound. This is to some extent recovered by the additional
dummy site, but not fully. As a consequence, the proton interaction
has to be a compromise between avoiding excessive over proto-
nation at low pH and still being largely deprotonated at high pH,
with maximum curvature around the pKa. In all cases, including

the strong bases, the protonation state is rather dynamic; protons
exchange over time as they do in our water model (and in real-
ity). As shown in Fig. 2, a proton can hop from water to another
water protonating it, and subsequently, the ionized water can get
a proton from its neighboring water in a hopping kind of fash-
ion. The typical time scale of these events is in the ps up to 1
ns range. A video of waters exchanging protons is available in the
supplementarymaterial. Our proton diffusion rate Dprot is the fastest
at pH 3.0 (Dprot = 4.1 ± 0.4 × 10−5 cm2 × s−1) with an average
residence time of ∼22 ps. The slowest diffusion is observed at pH
8.0 (Dprot = 0.8 ± 0.4 × 10−5 cm2 × s−1) with a residence time of
400 ps. This dynamic and fast proton diffusion allows for a fast
equilibration of acid/base protonation states. Our water model also
captures the experimentally measured effect of faster proton diffu-
sion relative to water.37,38 A small discussion on the water diffusion
can be found in the supplementary material. As compared in Fig. 2
and Table S4, we can utilize these acid/base building blocks in the
Martini spirit to generate more complex molecules while retaining
a realistic pKa value. For the strong primary amines, deviations of
the pKa are in the order of 1.0 pKa units, but the qualitative order-
ing in the degree of protonation is preserved. In most other cases,
experimental pKa values can be reproduced to within 0.5 pKa unit.
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We consider such deviation units acceptable, as this corresponds
to a deviation of the order of RT in the free energy of protona-
tion. Thus, from a protonation perspective, the titratable beads are
transferable.

B. Reproducing pH dependent transfer free energies

In Sec. III A, we showed that our titratable beads reproduce
the titration curves of acids/bases with different pKas and display
dynamic protonation equilibria. However, we also need to assure
that the titratable beads show correct trends in partitioning between
different environments, one of the corner stones of the Martini
model. Because acids and bases can change their ionization state
when transferring into another solvent, we use the distribution coef-
ficient, log(D), instead of the partition coefficient, log(P), to val-
idate their behavior. Inspecting Eq. (3) more closely, we see that
the pH dependent part contains the protonation free energy [cf.
Eq. (1)]. For example, if for an acid, the pKa is smaller than the
pH, we can drop the 1 from the log and retain the protonation free
energy. We therefore can interpret this free energy as the process
of taking the acid/base at some pH, then protonating it, and sub-
sequently transferring it into the organic phase. Figure 3(a) shows
the corresponding PMFs for such a process for acetic acid at several
pH values. At pH values of 3.0, 4.0, and 4.5 (i.e., below the pKa),
the free energy of protonation is about zero and the free energy of
transfer is just that of the neutral species. However, at pH values
larger than the pKa, there is a free energy penalty to abstract a pro-
ton and go into the oil phase. This leads to an increase in the free
energy of transfer. In principle, there could also be a contribution
of the ionic species to the distribution coefficient and free energy
of transfer.

For example, in a biphasic water–octanol system, there is a
substantial amount of water present in the octanol phase, which
can stabilize the ionic species.41 However, for hexadecane, we can
safely assume partitioning of the ionized species to be negligible.
Thus, we parameterized all interactions based on hexadecane free
energies of transfer to avoid problems of ionic species partitioning.
After matching the free energy of transfer from water to hexade-
cane for our reference compounds, we computed the free energy of
transfer at three pH values (3.0, 5.5, and 7.5) for several more com-
plex molecules that have a single ionizable site. Figure 3(b) shows
the correlation between the experimental and simulated values. The

full data can be found in Table S5. In general, we see a very good
correlation with the experimental reference data across all pH val-
ues (R2 = 0.98). The mean absolute error across all pHs and all
species is 1.75 kJ/mol, whereby pH 7.5 has the highest absolute error
(2.0 kJ/mol) and pH 5.5 has the lowest absolute error (1.13 kJ/mol).
The overall match is very good, demonstrating that our titratable
beads are not only transferable with respect to pKa but also with
respect to the free energies of transfer. Thus, one can use, for exam-
ple, the fragment based on acetic acid in all molecules with acetic
acid fragments of similar pKa without the need to readjust any
parameters.

C. Capturing pH dependent drug-membrane binding

Membrane binding affinities are an important measure to
assess the environmental impact and toxicity of small molecule
chemicals as well as drugs.34 Although octanol–water partition coef-
ficients are reliably correlated with membrane affinity, they are
less reliable for ionizable compounds requiring more difficult mea-
surements with real membranes,42 columns,34 or prediction with
mechanistic modeling approaches.43

In this section, we demonstrate that, combining titratable beads
with standardMartini beads, we are able to reproduce pH dependent
bilayer affinities of a variety of compounds. We modeled a set of 8
compounds (see Table S7), 3 of which bear a carboxylic acid moi-
ety and 5 of which are amine containing bases. The strongest change
in bilayer affinities is seen for those compounds that change from
neutral to ionized over the pH range we consider. Figure 4(a) shows
the potential of mean force (PMF) of membrane binding as a func-
tion of distance from the center of the bilayer for 5-phenylvaleric
acid (PVA) (red curves) and aniline (blue curves). At pH 3.0 (solid
curves), PVA is neutral and has a larger membrane affinity than
aniline, which is charged at this pH. The corresponding experi-
mental membrane affinities of −18.1 kJ/mol42 and −5.1 kJ/mol,36

respectively, are in qualitative agreement with the ones obtained
for our titratable model (−17.9 ± 0.3 kJ/mol and 0.3 ± 0.2 kJ/mol,
respectively).

When increasing the pH to 7.5, PVA exists largely in ionic
form and aniline as neutral species. This leads to a decrease in the
membrane binding free energy of PVA and an increase in the mem-
brane binding free energy of aniline. This antisymmetric trend is in
qualitative agreement with the experimental observations, available

FIG. 3. pH dependent transfer free ener-
gies. (a) PMFs for the transfer of acetic
acid into hexadecane (HD) at different
pH values. (b) Correlation between free
energies of transfer from hexadecane to
water for acids (squares) and bases (tri-
angles) in our titratable Martini model
and experiment at three selected pH val-
ues: 3 (blue), 5.5 (pink), and 7.5 (gold).
See Table S5 for data points. Experimen-
tal values are computed from pKas and
neutral molecule partition coefficients,
which were taken from Refs. 39 and 40.
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FIG. 4. Drug-membrane interactions. (a) Potential of mean force (PMF) curves for 5-phenylvaleric acid (PVA, blue lines) and aniline (red lines) at two different pH values.
PMFs at pH 3.0 are solid lines and PMFs at pH 7.5 are dashed lines. As a function of increasing the pH, the membrane affinity for the acid PVA decreases, whereas the

affinity for the base aniline increases. These changes are generally expected for acids and bases.42 (b) Correlation graph for membrane affinities of several other compounds

at different pH values. Full data are given in Table S7 and experimental reference data taken from the literature.34,36,42,44,45 Note that the x-axis for the PMF profiles in panel
A is scaled to account for the different bilayer thicknesses at different pHs.

for some acids and bases.42 At pH 7.5, the experimental membrane
binding affinity of PVA is −9.47 kJ/mol42 again in good agreement
with our model, which gives a membrane affinity of −9.5 ± 0.3
kJ/mol. Whereas the agreement between the experimental mem-
brane affinity (−9.3 kJ/mol36) and the one obtained using our model
(−4.88 ± 0.04 kJ/mol) is less good for aniline, the difference in bind-
ing affinities between pH 3 and pH 7.5 (i.e. ΔΔG) is well reproduced
for both PVA and aniline. This observation holds for all compounds
for which data are available at two pH values (see Table S7). The
mean absolute error in the ΔΔG of binding is 1.0 kJ/mol, with
the largest deviation observed for myristic acid. That deviation is
close to RT with 2.7 kJ/mol, which is still a good match. Overall,
this example demonstrates that our model is able to qualitatively
describe pH dependentmembrane association processes. Figure 4(b)
shows a correlation plot of experimental and simulated membrane
affinities at different pH values. Our membrane affinities corre-
late well for both acids and bases across all pH values investigated,
with a correlation coefficient of 0.91. Quantitatively, the model
leaves room for improvement, with the mean absolute error in ΔG
of about 3.48 kJ/mol. However, it is worth setting the error into
perspective. Prediction of membrane affinities especially for ionic
compounds is difficult, even for mechanistic procedures optimized
for this purpose.43 Our dataset contains 9 ionic compounds and
4 neutral ones.

Although one should be cautious when directly comparing
these values, because our dataset is very small, it shows that even the
quantitative performance is very promising at this stage. To summa-
rize, our model can clearly capture trends and even some quantita-
tive effects of membrane affinity of titratable molecules as a function
of pH. On one hand, this validates that our titratable beads can be
used in combination with Martini membranes. On the other hand,
it shows that our method could be competitive to predict mem-
brane affinities not only for neutral and charged species but also as a
function of pH.

D. Capturing environment dependent pKa shifts

Capturing changes in the apparent pKa due to interactions with
the environment is one of the most important aspects of any con-
stant pH simulation methodology. In this section, we show that our
model qualitatively captures such effects for two example cases. First,
we discuss pKa shifts of oleic acids when present in a lipidmembrane
that constitutes a more hydrophobic environment. Subsequently,
we discuss how the interaction between amines in poly(propylene
imine) dendrimers results in pKa shifts and causes conformational
changes as a function of pH.

It is well established that fatty acids bound to lipid bilayers have
a shift of their pKa.46 Figure 5(a) shows the titration curves for oleic
acid bound to a POPC membrane in comparison to free oleic acid
in solution as obtained with our titratable Martini model. Clearly,
we observe a shift in the degree of protonation toward higher pKa
values. Fitting the curves to Eq. (2) yield a pKa value of about 5.29
for the membrane bound acid vs 4.62 in aqueous solution. Although
the precise values depend on the measurement techniques as well
as on the bilayer, there seems to be agreement that the expected
range of the shift should be between 1.5 and 2.0 pKa units.46–48

Our model qualitatively captures this change, with a pKa shift of
about 0.7 pKa unit. Protonation at the membrane interface is also
crucial for the translocation process of fatty acids. Fatty acids can
translocate the bilayer in neutral form at much higher rates than
in the ionized form.49,50 In our simulation, we observe rapid flip-
flop of oleic acid in POPC at pH 3.0. At pH3, we observed 22
flip-flop events in 3 μs of simulation. As expected, increasing the
pH leads to fewer flip-flop events in the same duration of sim-
ulation (Table S6). Flip-flop proceeds, in general, via the proto-
nated form even at higher pH values (e.g., pH 6.0), where most of
the acid is deprotonated. The flip-flop process at pH 6.0 is illus-
trated in Fig. 5(b) and shown in the video in the supplementary
material.
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FIG. 5. Hydrophobic environment causes a shift in pKa. (a) Titration curve of oleic acid in water (blue) and POPC bilayer (yellow) showing a clear shift in the pKa value from
4.62 to 5.29. (b) Snapshots of a typical translocation event of oleic acid through a POPC bilayer. Initially, the oleic acid is deprotonated (1). After absorbing a proton from
solution (2), the now neutral oleic acid dissolves into the membrane interior and flip-flops to the other side (3–5). Eventually, the oleic acid becomes deprotonated again (6).
Lipid tails are shown in gray, the linker in pink, choline bead in purple, phosphate bead dark green, oleic acid in orange, and the titratable bead in blue, whereas the proton is
shown in red. A video of the flip-flop process is available in the supplementary material.

In the long term, we aim at extending our methodology to
complex proteins and biopolymers. However, to test, if our model
shows any cooperativity between titratable sites, we simulated the
titration of the G5 dendrimer poly(propylene imine) (PPI). PPI con-
sists exclusively of primary and tertiary amines. Simulation of the
titration reveals that the dendrimer expands with the decrease in
pH. Figure 6 shows the radius of gyration for three pH values as
well as the degree of protonation of each titratable site. Unfortu-
nately, to our knowledge, no experimental study has investigated the

expansion as a function of pH, but we can compare the expansion
of about 0.31 nm–0.4 nm measured in atomistic simulations.51 The
increase in size of the molecule correlates well with the increased
amount of protonated residues. At pH 7.5, only the outer amines
are protonated. At this pH, the radius of gyration is the smallest.
Decreasing the pH from 7.5 over 5.5, the inner amines become more
protonated. At pH 3.0, all amines are protonated and the dendrimer
fully expands. The total protonation level is in good agreement with
the experimentally measured protonation state. Experimental data52

FIG. 6. Cooperative titration of dendrimer bases. Snapshots of the simulated poly(propylene imine) (PPI) dendrimer are shown as a function of pH. The color range, from red
(protonated most of the time) to blue (deprotonated most of the time), indicates the change in protonation of the bases. Due to the decreased charge density at higher pH,
the polymer collapses as quantified by the radius of gyration (Rg).
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indicate that at pH 3.0, the dendrimer is fully protonated, as in
the simulation [cf. Figure 6(a)]. At pH 5.5 and 7.5, the deviations
are somewhat larger with 83% and 63% protonation in the simula-
tion compared to 72% and 51% in experiment. Figure S4 compares
the total titration curves for more values of the pH range. Overall,
we predict the total charge within 12% from experiment, which is
very satisfactory. In addition, we resolve the approximate shape of
two plateaus seen in the total titration curve. We proceeded to fit
the titration data of the different generations (1–5) and obtained a
microscopic pKa value.

Figure S5 in the supplementary material shows the fits and
resulting pKa values. The highest pKa is found for the terminal
amines (pKa 9.65 ± 0.05), which is almost unchanged with respect
to the monomer pKa. One can therefore assume that the terminal
amines are separated far enough so that cooperative effects are weak.
However, moving into the dendrimer core, the pKa increases with
each generation. That means the tendency to protonate decreases,
with the innermost generation having a pKa of 5.00 ± 0.05. That
is a shift by about 4 pKa units from the free solution pKa. To
our knowledge, the pKa values have not been determined exper-
imentally; however, our results are qualitatively consistent with
those obtained for PAMAM dendrimers by titratable atomistic
simulations.53

E. Limitations and future outlook

Although we have demonstrated above that our titratable Mar-
tini model can be used in a variety of different contexts and repro-
duce at least qualitatively experimental observations, some general
and specific limitations still apply. In this section, we shall discuss
these limitations to caution the users when applying the model. We
will also point toward future improvements.

The titration curves for single acids/bases in solution are some-
what stretched with respect to the HH behavior. Specifically, we
observe a higher percentage of deprotonated species for pH val-
ues lower than the pKa and a smaller percentage of deprotonated
species for pH values higher than the pKa. A direct consequence of
this behavior is that our reference titration curves (i.e., representing
infinite dilution) have a non-zero Hill coefficient. Therefore, coop-
erativity can only be measured qualitatively in terms of the shift of
the Hill coefficient in comparison to the reference state. We antici-
pate that in the future versions of our titratable Martini model, the
empirical potential can be optimized to improve the titration curves.
In particular, introducing an angle dependency of proton binding
through either differently sized dummy beads or plainly through
a bonded potential acting on the dummy beads would be possible
solutions.

Specific dipole interactions with polar and hydrogen bond
forming beads, which represent non-titratable groups, are not yet
part of the model. In the current Martini model, when a group is
a hydrogen bond donor or acceptor, a label is added, which mod-
ifies the interactions with other acceptor or donor beads. These
labels account for hydrogen bonding that is not explicitly part of
the model. Likewise, other labels can be added to account for strong
dipole interactions. At the moment, titratable beads retain the label
from the neutral bead. This missing interaction may account for
the less strong pKa shift observed for the fatty acids in comparison
to experimental estimates. Another consequence is that we cannot

compute octanol water free energies of transfer at the moment. It is
known that octanol stabilizes small water micelles that allow ionic
species to partition into octanol.41 As we do not have the stabiliz-
ing electrostatic interactions of the octanol alcohol group, we cannot
simulate this behavior. At the moment, not even the titratable water
partitions accurately into octanol.

We have verified that our titratable beads in the charged and
neutral state do not excessively aggregate or repel each other. How-
ever, we have not considered their self- or cross-interaction in detail.
Whereas the dendrimer test case indicates that the self-interactions
are reasonable, one should be cautious when having high concentra-
tions of titratable beads together in one simulation. For the moment,
our pH range is limited to values between 3.0 – 8.0. Of course, this
restricts the model to this range, but it might also impose other
limits. Currently, there appears to be a problem with the free ener-
gies of transfer for some primary amines with pKa values outside
our pH range. When combining the single beads with neutral frag-
ments, the free energies of transfer are only accurately reproduced
after applying a shift in the interactions. One possible reason is that
the proton affinity is set not based on the entire titration curve but
only on a very small part of it. Although the membrane affinity
for our test compound is not so accurate, the dendrimer protona-
tion states are accurately reproduced. Thus, one can use primary
amines but should carefully assess the results. For the future, we will
aim at covering the full pH scale as well as optimizing the primary
amines further.

Whereas the previous limitations can be overcome or only
require some caution in interpreting the results, there is one inher-
ent limitation of the model. That is the size of the water model.
Because the water model has a limited size representing four
water molecules, it is possible that protons cannot be abstracted or
donated to molecules with a too small cavity for the CG water to
penetrate.

IV. CONCLUSION

We presented a new approach to constant pH simulations
that make use of the Martini model as basis. Our model is dis-
tinctly different from other methods in three aspects: (1) it utilizes
explicit proton beads and classical potentials to mimic protonation
effects. Hence, it profits directly from any performance enhance-
ment of current MD codes and should be transferable between
codes; (2) interaction parameters are based on reproducing titra-
tion curves and pH dependent distribution coefficients. Thus, it is
not simply interpolating between the two extremes of the under-
lying force field. This offers an easy possibility to fine-tune and
improve parameters without redesigning the force field; (3) it is
based on a building block approach within which a titratable bead
is transferable between many different molecules having the same
fragment and pKa. We discussed verifications of our model as well
as its current limitations. By reproducing pH dependent free ener-
gies of more complex molecules built from our titratable beads, it
was verified that the building block approach holds. Thus, arbitrar-
ily large and complex molecules are immediately available by using
the normal Martini approach combined with titratable beads. Fur-
thermore, membrane affinities were computed for some molecules
to show that our approach can also be used for highly heterogeneous
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systems including a lipid bilayer. Further support is given by qual-
itatively reproducing pKa shifts of oleic acid and passive translo-
cation via protonation. Finally, our model reproduces qualitatively
the expansion of the dendrimer poly(propylene imine) (PPI) as well
as the associated pKa shift of its different generations. This exam-
ple demonstrated that our model is also able to pick up collective
interactions between titratable groups. We expect that our titratable
Martini model opens the way to simulate pH dependent processes
in a very efficient way, enabling studies involving large and complex
systems or high-throughput assays and providing semi-quantitative
data.

V. METHODS

A. CG-models and interactions

All simulations utilized a pre-release of Martini3 for the neu-
tral bead interactions and titratable bead interactions as outlined in
the paper. All interaction parameters as well as topology (.itp) files
are available at https://cgmartini.nl and the supplementary material.
Molecule topology (.itp) files for all molecules were generated fol-
lowing the rules of Martini3. That is, each molecule was designed by
grouping on average 4 non-hydrogen atoms into one regular sized
bead for linear fragments and 5 heavy atoms for branched frag-
ments. Likewise, small beads are used for 4 non-hydrogen atoms,
which are branched, and 3 heavy atoms if they are in a linear
chain. The same scheme applied to tiny beads. The type of the
neutral beads was assigned based on the fragment free energies
of transfer.

B. Titration simulations

All titration simulations were carried out with the GROMACS
software (version 2018)54, using the stochastic dynamics integrator55

(with inverse friction constant 1.0 ps) and a time step of 8 fs–10 fs.
Production runs (with the exception of PPI) were carried out in the
NpT ensemble at 298.15 K. Pressure was maintained at 1 bar using
the Parinello–Rahman barostat56 (time constant 12.0 ps and com-
pressibility 4.5 × 10−5 bar−1). Each simulation was simulated for 50
ns. With the exception of the amines with pKa larger than 8, each
simulation consisted of a single titratable molecule in a box of about
1900 Martini water beads. For amines with pKa larger than 8, 16
molecules were solvated in the same number of water molecules
to enhance sampling. For the simulation of the poly(propylene
imine) dendrimer, we utilized Berendsen pressure coupling57 (time
constant 3.0 ps and compressibility 4.5 × 10−5 bar−1). Each sim-
ulation was run for 400 ns. At each pH, the dendrimer was sol-
vated in 1936 Martini water molecules. For all simulations, the
degree of protonation was determined using a home-made analy-
sis script (https://github.com/fgrunewald/titratable_martini_tools).
The script computes the distance of a proton to all titratable beads
in a radius of 1.1 nm. If the proton is closer to the titratable bead
of interest than to any other bead, the titratable bead of interest is
considered to be protonated. If more than one proton is closer, we
still count this as protonated. The error and convergence was ana-
lyzed utilizing a home-made statistical analysis code as described
elsewhere.6 Fitting of the titration curves was done using the symfit
python library.58

C. Free energy of transfer

All simulations for free energies of transfer were carried out
with the GROMACS software (version 2018),54 using the stochas-
tic dynamics integrator55 (with inverse friction constant 1.0 ps) and
a time step of 8 fs–10 fs. Free energies of transfer from hexade-
cane to water for the acid type beads were computed using umbrella
sampling.59 Each simulation consisted of a biphasic hexadecane
(HD) water system with 2001 hexadecane molecules and 8000 water
molecules. The acid bead was simulated with a distance constraint
with respect to the center-of-mass of the HD phase covering the dis-
tances fromHD to water using a 1 Å spacing between windows. This
resulted in 36 windows. Each window was run under NpzA condi-
tions at 1 bar pressure in the z-direction (normal to the HD/water
interface) maintained with a Berendsen barostat57 using a coupling
time of 12 ps and compressibility of 3 × 10−4 bar−1. Sampling times
per window varied from for 7 ns–50 ns depending on convergence
and the size of the molecule. The temperature was maintained at
298.15 K using a v-rescale thermostat with 1 ps. Reweighting of
the biased free-energy differences was done using the WHAM algo-
rithm60 implemented in GROMACS. The free energy of transfer was
computed from the PMF profile by taking the error weighted aver-
age in water and HD and subsequently subtracting the average. The
standard error was propagated accordingly.

Free energies of transfer of base type beads were calculated
as differences between free energies of solvation in water and hex-
adecane. Solvation free energies were computed by alchemical free
energy transformations as implemented in the GROMACS package.
With the exception of all amines with pKa larger than 10, systems
consisted of a single molecule in at least 1900 Martini water beads.
The system’s composition for the aforementioned amines was the
same as in the titration simulations, and 6 of them were coupled
at the same time. For the calculations, using titratable water, in
total 24 nonequally spaced windows were used, switching first the
Coulomb and subsequently LJ interactions. Soft-core LJ potentials
were applied following the recommended values.61 Each window
was run under NpT conditions for 10 ns at 1 bar pressure main-
tained with a the Parinello–Rahman barostat57 using a coupling
time of 4 ps and a compressibility of 4.5 × 10−5 bar−1. Temper-
ature was maintained at 298.15 K. The derivative of the potential
energy was recorded every 50 steps. The solvation free energy in hex-
adecane was computed using the regular Martini3 model with a 20
fs time step, using 14 windows for the LJ part, and calculating the
derivative every 10 steps. Pressure coupling and soft-core settings
were the same as used before. All the free energies of the transfor-
mation were estimated using the Multistate-Bennetts-Acceptance-
Ratio (MBAR) method,62 obtained using a python tool available
on Github (https://github.com/davidlmobley/alchemical-analysis).
For each calculation, the convergence and quality of the calcula-
tions were checked following the guidelines suggested by Klimovich,
Shirts, and Mobley.63 The error reported with the calculations is the
statistical error estimate. The intramolecular interactions were not
switched off for both sets of simulations.

We used these two different protocols because the neutral
acid consists of two charged and, in principle, independent par-
ticles. Switching off a neutral acid (i.e., a negative fragment and
one proton bead) by alchemical free energy transformation leads
to problems with consistency and convergence. This comes in
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addition to the problems related to computing accurate solva-
tion free energies of ions as detailed by Hunenberger and Reif.64

These problems do not occur for bases because the neutral base
fragment is a single molecule. Thus, we used the slightly faster
alchemical transformation protocol as outlined before for the
bases.

D. Fatty acid and small molecule membrane
simulations

Fatty acid simulations for the titration and translocation were
carried out in a POPC membrane using the default leap-frog inte-
grator. Each simulation was run under NpT conditions using semi-
isotropic pressure coupling (Parrinello–Rahman) at 1 bar pressure.
The lateral directions were coupled together separately from the nor-
mal (z) direction using a coupling time of 12 ps and a compressibility
of 3 × 10−4 bar−1. Temperature was maintained at 310 K using the
v-rescale thermostat65 with a coupling time of 1 ps. Each pHwindow
was run for 50 ns. The system for both simulations was composed of
10 fatty acids in 133 POPC lipids per leaflet solvated in a total of 6747
Martini water beads. Free energies of binding of small molecules to
a lipid bilayer were computed by integrating the PMFs of binding
obtained using adaptive weighted histogram sampling66 along the
bilayer normal direction. Integration was carried out as suggested
by Hinner et al.67 and further described in the supplementary mate-
rial. The parameters for the small molecules were obtained by map-
ping the atomistic structure following the Martini3 guidelines and
assigning neutral bead types based on the free energy of transfer.
Bonded interactions were obtained by mapping atomistic distribu-
tions or QM data. Topology files with all parameters are available in
the supplementary material. For these simulations, the SD integrator
with the same pressure coupling as for the fatty acids was utilized.
Each simulation consisted of 169 lipids per leaflet and about 5800
water molecules in total. Temperature and lipid types are reported
in Table S7 and correspond to the conditions used in experiments.
To obtain an error estimate, we ran three replicates of 800 ns and
computed the error from those.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional verifications,
topology files, video of proton hopping, and fatty acid flip-flop,
individual data points for of free energy of transfer, pKa values
and membrane affinities, and in depth explanation of protocol for
computing membrane affinities.
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