
TITS’ TYPE ALTERNATIVE FOR GROUPS ACTING ON TORIC
AFFINE VARIETIES

IVAN ARZHANTSEV AND MIKHAIL ZAIDENBERG

Abstract. Given a toric affine algebraic variety X and a collection of one-parameter unipo-
tent subgroups U1, . . . , Us of Aut(X) which are normalized by the torus acting on X, we show
that the group G generated by U1, . . . , Us verifies the following alternative of Tits’ type: ei-
ther G is a unipotent algebraic group, or it contains a non-abelian free subgroup. We deduce
that if G is 2-transitive on a G-orbit in X, then G contains a non-abelian free subgroup, and
so, is of exponential growth.

1. Introduction

We fix an algebraically closed field k of characteristic zero. Let An stand for the affine
space of dimension n over k and Ga (Gm) for the additive (multiplicative, respectively) group
of k viewed as an algebraic group. Consider an algebraic variety X over k and an effective
regular action Ga ×X →X. The image of Ga in Aut(X) is called a one-parameter unipotent
subgroup of Aut(X), or a Ga-subgroup, for short. Any Ga-subgroup U of Aut(X) has the form
U = {exp(t∂) ∣ t ∈ k}, where ∂ is a locally nilpotent derivation of the structure ring O(X).
This correspondence between the Ga-subgroups and locally nilpotent derivations does not
hold in prime characteristic, and so, we prefer in this paper to work in characteristic zero.

The main result of the paper is the following

Theorem 1.1. Consider a toric affine variety X with no torus factor. Let a subgroup G of
Aut(X) be generated by a finite collection U1, . . . , Us of one-parameter unipotent subgroups
normalized by the acting torus. Then either

(i) G is a unipotent algebraic group,
or

(ii) G contains the free group F2 of rank two as a subgroup.

One says that a variety X over k has a torus factor if X ≅ Y × (k ∖ {0}) for some variety
Y . A toric affine variety X has a torus factor if and only if there is a nonconstant invertible
regular function on X.

From Theorem 1.1 we deduce the following corollary.

Corollary 1.2. Let G be a group acting on a toric affine variety X and generated by a finite
collection U1, . . . , Us of one-parameter unipotent subgroups normalized by the acting torus. If
G is doubly transitive on a G-orbit in X, then G contains a free subgroup of rank two.

The expression “Tits’ type alternative” in the present paper addresses a property of a class
of groups which asserts that any group from this class either is virtually solvable (resp., virtu-
ally nilpotent, virtually abelian, etc.), or contains a non-abelian free subgroup. This (rather
weak) form of the original Tits alternative disregards whether or not the alternative remains
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true when passing to a subgroup. We wonder whether, under the setup of Theorem 1.1, any
(finitely generated) subgroup H of G either is virtually solvable, or contains a free subgroup
of rank two.

Let us provide a brief survey on the classical Tits alternative for the automorphism groups
arising in algebraic geometry. Recall that, due to the original Tits’ theorem [Tits(1972)], any
finitely generated subgroup of a linear algebraic group either is virtually solvable, or contains
a non-abelian free subgroup. Over a field of characteristic zero, the Tits alternative holds
for any, not necessarily finitely generated, linear group [Tits(1972)]; in the sequel we call this
property the enhanced Tits alternative. As an example, we can cite the following result due
to S. Cantat and Ch. Urech.

Theorem 1.3 ([Cantat(2011), Urech(2017)]). The group of birational transformations of a
compact complex Kähler surface verifies the enhanced Tits alternative, that is, any of its
non-virtually solvable subgroups contains a free subgroup of rank two.

This theorem extends the earlier result of S. Lamy [Lamy(2011)] which says that Aut(A2)
verifies the enhanced Tits alternative. The Tits alternative holds also for the tame auto-
morphism group of SL2(C) viewed as an affine quadric threefold [Bisi et al.(2014), Thm. C].
The enhanced Tits alternative is known to hold for the automorphism group of any compact
Kähler variety [Dinh et al.(2015), Thm. 1.1] (cf. also [Hu(2019)] for the positive characteris-
tic case), and as well for the group of birational transformations of any hyperkähler variety
[Oguiso(2006)]; see also [Kurnosov et al.(2019)].

Our starting point was actually the transitivity issue, see Corollary 1.2. Let X be
a toric affine variety over k of dimension at least two with no torus factor, and let
SAut(X) ⊂ Aut(X) be the subgroup generated by all the Ga-subgroups of Aut(X). It is
known [Arzhantsev et al.(2012), Thm. 2.1] that SAut(X) acts highly transitively 1 on the
smooth locus reg(X), that is, m-transitively for any m ≥ 1. A variety X satisfying the latter
property is called flexible; see [Arzhantsev et al.(2013), Thm. 1.1] for a criterion of flexibility.
Notice that an algebraic subgroup G ⊂ Aut(X) cannot act highly transitively on its orbit, by
a dimension count argument.

A Ga-subgroup acting on a toric variety X is called a root subgroup if it is normalized
by the acting torus. The term root subgroup is due to the fact that any such subgroup is
associated with a certain lattice vector called a Demazure root, see subsection 2.2. Assuming
in addition that a toric affine variety X is smooth in codimension two, one can find a finite
number of root subgroups U1, . . . , Us of Aut(X) such that the group G = ⟨U1, . . . , Us⟩ gen-
erated by these subgroups still acts highly transitively on reg(X) [Arzhantsev et al.(2019),
Thm. 1.1]. 2 If X = An, n ≥ 2, then just three Ga-subgroups (which are not root subgroups, in
general) are enough [Arzhantsev et al.(2019), Thm. 1.3]; such subgroups are found explicitly
in [Andrist(2019)]. For instance, for n = 2 the group G generated by the root subgroups

U1 = {(x, y)↦ (x + t1y2, y)} and U2 = {(x, y)↦ (x, y + t2x)}, t1, t2 ∈ k

1Or infinitely transitively, in the terminology of [Arzhantsev et al.(2013)].
2It is conjectured [Arzhantsev et al.(2019), Conj. 1.1] that an analogous result holds for any flexible affine
variety.
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acts highly transitively on A2 ∖ {0} equipped with the standard action of the 2-torus, see
[Lewis et al.(2018), Cor. 21]. Adding one more root subgroup

U3 = {(x, y)↦ (x + t3, y)}, t3 ∈ k,

one gets the group ⟨U1, U2, U3⟩ acting highly transitively on A2 (cf. [Chistopolskaya(2018)]).
The following question arises: What can one say about a group acting highly transitively

on an algebraic variety? More specifically, let us formulate the following conjecture.

Conjecture 1. Let X be an affine variety over k of dimension ≥ 2. Consider the group

G = ⟨U1, ...Us⟩
generated by Ga-subgroups U1, ...Us of Aut(X). Suppose G is doubly transitive on a G-orbit.
Then G contains a non-abelian free subgroup.

Corollary 1.2 partially confirms Conjecture 1. Of course, an analog of this conjecture makes
sense in different categories. For instance, one might ask (following a referee’s suggestion)
whether any highly transitive group of homeomorphisms of a compact manifold contains
a non-abelian free subgroup; see, e.g., [Whittaker(1967)] for examples of highly transitive
groups of homeomorphisms. However, the group-combinatorial analog of the conjecture fails;
indeed, the torsion group of finite permutations of N is highly transitive. The same holds for
the infinite alternating group, that is, the simple group of finite even permutations of N.

Conjecture 1 is inspired in turn by the following question proposed by J.-P. Demailly:

Question 1. What can one say about the growth of the group

G = ⟨U1, ..., Us⟩
generated by a sequence of one-parameter unipotent subgroups, meaning by “growth” the max-
imal growth of the finitely generated subgroups of G?

For instance, the group G in Conjecture 1 has exponential growth provided the conjecture
is true. Anyway, this group G cannot have a polynomial growth, see Proposition 5.5. The
group G in Theorem 1.1 is of polynomial growth in case (i), and of exponential growth in
case (ii); the latter holds as well for the group G in Corollary 1.2. In the combinatorial setup,
we do not know the answer to the following general question.

Question 2. Let G be a finitely generated group. Assume G acts highly transitively on a set
X. Can G be of intermediate growth?

See, e.g., [Fima et al.(2015), Fima et al.(2020), Garion et al.(2013), Hull et al.(2016)] for
recent studies on highly transitive actions of countable groups, and [Hull et al.(2016),
Fima et al.(2020)] for surveys. However, the groups of algebro-geometric nature that we
study in this paper are quite different.

The proof of our main Theorem 1.1 exploits a constructive criterion/algorithm to decide
whether the group G in this theorem is a unipotent algebraic group. We introduce a com-
binatorial data associated to the given collection of the one-parameter unipotent subgroups
U1, . . . , Us acting on our toric variety X. This data is expressed in terms of Demazure roots
(ρ, e). To a Demazure root there corresponds a root derivation ∂ρ,e acting on the structure
ring O(X). It can be viewed as a vector field, and it generates a root subgroup Uρ,e. If
G does not contain any non-abelian free group, then there are strong constraints on the Lie
brackets between the root derivations generating the root subgroups of G; namely, the bracket
of any two such derivations is proportional to one of them. These constraints are encoded
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in a directed graph Γ whose vertices are certain abelian Lie algebras which are indexed via
the facets of the associated polyhedral cone of X and generated by the corresponding root
derivations; see Definition 4.5. Any edge of Γ is oriented in the direction of the bracket of its
end vertices provided the corresponding subalgebras do not commute; otherwise, the edge is
absent. The geometry of Γ determines the structure of G. It occurs that Γ has no oriented
cycle if and only if it has no bidirected edge, if and only if G is a unipotent algebraic group,
see Proposition 4.8. Theorem 1.1 is a byproduct of this criterion.

The content of this paper is as follows. Besides the Introduction, the paper includes
four sections. Section 2 contains the notation and preliminary facts from toric geometry.
In Section 3 we prove Theorem 1.1 in the particular case of a group G generated by just
two root subgroups, see Proposition 3.1. The main results of subsections 4.1 and 4.2 are
Propositions 4.7 and 4.8, respectively. The former contains a combinatorial criterion for
a Lie algebra of derivations to be nilpotent and finite dimensional. The latter provides,
in our framework, a link between nilpotent Lie algebras and unipotent algebraic groups.
Together, these give Proposition 4.1 which says that if any two root subgroups from the group
G = ⟨U1, . . . , Us⟩ generate a unipotent algebraic group, then G itself is a unipotent algebraic
group. Theorem 1.1 follows immediately from Propositions 3.1 and 4.1. Corollary 1.2 follows
from this theorem due to Proposition 5.2 in subsection 5.1. According to this proposition,
a unipotent linear algebraic group cannot act 2-transitively on an algebraic variety. Finally,
in subsection 5.2 we establish that a highly transitive group cannot be virtually solvable; see
Corollary 5.8. In particular, such a group is of exponential growth provided it satisfies a Tits’
type alternative; cf. Question 2.

2. Preliminaries from toric geometry

We start by recalling the standard notation and definitions of toric geometry.

2.1. Toric affine varieties. Consider an algebraic torus T = (Gm)n. Let N be the lattice
of one-parameter subgroups of T, N∨ = Hom (T,Gm) the dual lattice of characters, and
⟨⋅, ⋅⟩∶N × N∨ → Z the natural pairing; see, e.g., [Cox et al.(2011)] or [6, Def. 4.2]. Let χm

stand for the character of T which corresponds to m ∈ N∨, so that χmχm
′ = χm+m′

. The group
algebra k[N∨] = ⊕m∈N∨kχm can be identified with the structure algebra O(T).

Consider further the pair of dual Q-vector spaces NQ = N ⊗Q and N∨
Q = N∨ ⊗Q, a closed

polyhedral cone ∆Q ⊂ NQ and its dual cone ∆∨
Q ⊂ N∨

Q. By abuse of language, by the associated
pair of lattice cones we mean the pair (∆,∆∨), where ∆ = N ∩ ∆Q and ∆∨ = N∨ ∩ ∆∨

Q,
respectively. With any (closed) polyhedral lattice cone ∆ ⊂ N one associates the normal toric
affine variety

X = Spec ( ⊕
m∈∆∨

kχm) ,

and any normal toric affine variety arises in this way. The T-action on X is induced by the ∆∨-
grading on the structure algebra O(X). By Gordon’s Lemma [Cox et al.(2011), Prop. 1.2.17],
the cones ∆ and ∆∨ are both finitely generated monoids. The lattice vectors (ρj)j=1,...,k on
the extremal rays of ∆Q, which are elements of the minimal system of generators of ∆, are
called ray generators. These are in one-to-one correspondence with the facets of the dual
polyhedral cone ∆∨

Q. The variety X has no torus factor if and only if ∆Q is full dimensional,
4



if and only if ∆∨
Q ⊂ N∨

Q is pointed, that is, contains no affine line. See also [Cox et al.(2011),
Fulton(1993), Oda(1988)] for a detailed exposition.

2.2. Root derivations and root subgroups. The Demazure facets

Sj = {e ∈ N∨ ∣ ⟨ρj, e⟩ = −1, ⟨ρi, e⟩ ≥ 0, i = 1, . . . , k, i ≠ j}, j = 1, . . . , k

are lattice polyhedra in N∨. Each of them is contained in a hyperplane of N∨
Q parallel to a facet

of ∆∨
Q and situated outside the cone ∆∨

Q. The lattice vectors e ∈ ⋃kj=1 Sj are called Demazure
roots. Any Demazure facet contains an infinite set of Demazure roots. To a Demazure root
e ∈ Sj one associates the root derivation ∂ρj ,e ∈ Der (O(X)), which acts on the character χm

via

∂ρj ,e(χm) = ⟨ρj,m⟩χm+e.
The kernel of ∂ρj ,e is spanned by the characters χm, where m runs over the facet of ∆∨ defined
by ⟨ρj,m⟩ = 0.

The root derivations are precisely the homogeneous locally nilpotent derivations of the
graded algebra O(X) =⊕m∈∆∨ kχm. Recall [Liendo(2010), Thm. 2.4] that any homogeneous
derivation of O(X) is proportional to one of the form ∂ρ,e for some ρ ∈ N and e ∈ N∨ acting
via

∂ρ,e(χm) = ⟨ρ,m⟩χm+e,
where e is called the degree of ∂ρ,e. One has [Romaskevich(2014), Sect. 3]

(1) [∂1, ∂2] = ∂ρ,e1+e2 with ρ = dρ2 − cρ1.

The root subgroups exp(t∂ρj ,e) are precisely the Ga-subgroups of Aut(X) normalized by
the torus T. See, e.g., [Arzhantsev et al.(2019), Arzhantsev et al.(2021), Freudenburg(2017),
Liendo(2010)] for further details.

2.3. Cox rings and total coordinates. Let X be a normal toric affine variety X with no
torus factor. The divisor class group Cl(X) is the abelian group generated by the classes of the
prime T-invariant divisors D1, . . . ,Dk on X. These divisors are in one-to-one correspondence
with the ray generators (ρj)j=1,...,k. The Cox ring of X is the polynomial ring O(Ak) =
k[x1, . . . , xk] on a distinguished set of variables called the total coordinates. It is equipped
with a Cl(X)-grading defined by deg(xi) = [Di], i = 1, . . . , k. This grading corresponds to a
diagonal action on Ak = Spec(k[x1, . . . , xk]) of the Cox quasitorus FCox = Hom (Cl(X),Gm).
Recall that a quasitorus is a direct product of an algebraic torus and a finite abelian group.
One has [Arzhantsev et al.(2015), Thm. 2.1.3.2]

X ≅ Spec(O(Ak)FCox) = Ak//FCox.

See also [Arzhantsev et al.(2015), Arzhantsev et al.(2019)], [Cox et al.(2011), Ch. 5].

Lemma 2.1. Let e ∈ Sj be a Demazure root, and let ê = (c1, . . . , ck) ∈ Zk, where ci = ⟨ρi, e⟩.
Then the following hold.

(a) The integer lattice vector ê is a Demazure root of Ak (viewed as a toric variety with

the standard action of the k-torus) which belongs to the jth Demazure facet Ŝj of the
first octant Zk≥0 ⊂ Zk.
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(b) Let (εi)i=1,...,k be the ray generators of the lattice cone Zk≥0. Then one has

(2) ∂̂ ∶= ∂εj ,ê =Mj
∂

∂xj
, where Mj = xc11 ⋯x

cj−1
j−1 x

cj+1
j+1 ⋯x

ck
k ∈ k[x1, . . . , xj−1, xj+1, . . . , xk].

The associated Ga-subgroup consists of elementary transformations

(3) exp(t∂̂) ∶ (x1, . . . , xk)↦ (x1, . . . , xj−1, xj + tMj, xj+1, . . . , xk), t ∈ k.

This is a subgroup of the tame automorphism group Tame (Ak).

(c) The Cox quasitorus FCox and the Ga-subgroup exp(t∂̂) commute in Aut(O(Ak)), and

(4) exp(t∂̂)∣O(Ak)FCox = exp(t∂ρj ,e).

(d) Given a sequence (∂1, . . . , ∂s) of root derivations of O(X), where ∂i = ∂ρj(i),ei with a
Demazure root ei ∈ Sj(i) of X, and the sequence of the corresponding root derivations

∂̂i = ∂εj(i),êi of the Cox ring O(Ak) = k[x1, . . . , xk] with êi ∈ Ŝj(i), i = 1, . . . , s, consider

the Lie algebras L and L̂ generated, respectively, by ∂1, . . . , ∂s and ∂̂1, . . . , ∂̂s. Then the
correspondence ∂i ↦ ∂̂i, i = 1, . . . , s, induces an isomorphism of Lie algebras L ≅ L̂.

Proof. Statement (a) is immediate; statements (b) and (c) follow easily from
[Arzhantsev et al.(2019), Lem. 4.20.b]; see [Arzhantsev et al.(2019), (12)] for (2). To show
(d), consider the morphism π∶Ak → X = Ak//FCox. The induced pullback homomorphism
π∗∶O(X) → O(Ak) is injective, and its image coincides with the algebra of invariants
O(Ak)FCox . The induced homomorphism of the Lie algebras of vector fields π∗∶Vec(X) →
Vec(Ak) is as well injective, and its image coincides with the Lie subalgebra of FCox-invariant
vector fields on Ak yielding an isomorphism Vec(X) ≅ Vec(Ak)FCox . Considering the deriva-

tions as vector fields, we have π∗(∂i) = ∂̂i, i = 1, . . . , s, and π∗(L) = L̂. �

Recall that a linear algebraic group is called unipotent if it consists of unipotent matrices.
In characteristic zero, any unipotent algebraic group is isomorphic to an affine space An as
a variety. Any orbit of a unipotent algebraic group acting regularly on an affine variety is
closed and isomorphic to an affine space. In the sequel we need the following technical results.

Proposition 2.2. Given a collection of Demazure roots (ej(i),i ∈ Sj(i))i=1,...,s
, let

G = ⟨Ui ∣ i = 1, . . . , s⟩ ⊂ Aut(X) where Ui = exp(t∂ρj(i),ej(i),i).

Consider the root derivations ∂̂i = ∂̂εj(i),êj(i),i and the root subgroups Ûi = exp(t∂̂i) acting on

Ak, i = 1, . . . , s. Let

Ĝ = ⟨Ûi ∣ i = 1, . . . , s⟩ ⊂ Aut(Ak).
Then the following holds.

(a) If Ĝ contains a free subgroup Fm of rank m ≥ 2 then G does.

(b) If Ĝ is a unipotent algebraic group then G is, and, moreover, G ≅ Ĝ.

Proof. (a) Since any subgroup Ûi, i = 1, . . . , s commutes with the quasitorus FCox in Aut(Ak)
one has

Ĝ ⊂ CentrAut(Ak)(FCox) ⊂ NormAut(Ak)(FCox),
6



where CentrAut(Ak)(FCox) and NormAut(Ak)(FCox) are the centralizer and the normalizer of
FCox in Aut(Ak), respectively. There is the exact sequence [Arzhantsev et al.(2010), Thm. 5.1]

(5) 1→ FCox → NormAut(Ak)(FCox)
τÐ→ Aut(X)→ 1.

Assume Ĝ contains a free subgroup Fm of rank m ≥ 2. We claim that the restriction

τ ∣Fm ∶Fm → Fm/(Fm ∩ FCox) ⊂ Aut(X)
is an isomorphism, that is, Fm ∩ FCox = 1. Indeed, the latter intersection is a normal abelian
subgroup of the non-abelian free group Fm, hence the trivial group.

(b) Suppose Ĝ is a unipotent algebraic group. Then, once again, the restriction

τ ∣Ĝ∶ Ĝ→ Ĝ/(Ĝ ∩ FCox) ⊂ Aut(X)
is an isomorphism, that is, Ĝ ∩ FCox = 1. Indeed, the unipotent linear algebraic group Ĝ has
no torsion. Hence, Ĝ ∩ FCox is an algebraic subgroup of the quasitorus FCox with no torsion,
therefore, the trivial group. �

Remarks 2.3. 3 In the proof we have used the fact that Fm, m > 1, does not contain any
normal abelian subgroup. This can be deduced as follows. Such an abelian subgroup A is
cyclic because any subgroup of Fm is free. It fixes two points on the boundary ∂Fm, namely,
the ends of the Caley graph of A ≅ Z. These two points form an invariant set of ∂Fm provided
A is normal. However, no finite set is fixed by the Fm-action on ∂Fm.

More generally, no nontrivial abelian subgroup of Fm, m > 1, is subnormal (see subsec-
tion 5.2 for the definition). Indeed, assume there is a descending series Fm ⊵ N1 ⊵ . . . ⊵ Ns ⊵ A,
where A ≠ 1 is abelian, hence a free cyclic group. One may suppose that Ns is a non-abelian
free group of finite rank, and then the previous result applied to the pair (Ns,A) gives a
contradiction.

3. Tits’ type alternative for a pair of root subgroups

In this section we still deal with a toric affine variety X over k with no torus factor, and
freely use the notation from 2.1–2.3. We prove the following partial result; cf. Theorem 1.1.

Proposition 3.1. Consider the group H = ⟨U1, U2⟩ ⊂ Aut(X) generated by the root subgroups
Ui = exp(t∂i), i = 1,2, associated with two different ray generators, say, ρ1 and ρ2, respectively.
Then either H is a unipotent algebraic group, or H contains a free subgroup of rank 2.

Proof. Introducing the total coordinates (x1, . . . , xk), we let U1 and U2 act on Ak as Ga-

subgroups Û1 and Û2 of the tame automorphism group Tame (Ak) commuting with the Cox

quasitorus FCox, see Lemma 2.1. We let Ĥ = ⟨Û1, Û2⟩. By Proposition 2.2 it suffices to prove

the above alternative for Ĥ instead of H.
Let in these coordinates êi = (cij) where cii = −1 and cij ≥ 0 for j ≠ i, i ∈ {1,2}. One can

write

ê1 = (−1, c,∗, . . . ,∗) and ê2 = (d,−1,∗, . . . ,∗), where c = ⟨ρ2, e1⟩, d = ⟨ρ1, e2⟩,
and the stars stand for nonnegative integers. The elements ûi ∈ Ûi, i = 1,2 can be written as

(6) û1 = (x1 + sxc2N1, x2, . . . , xk) and û2 = (x1, x2 + txd1N2, x3, . . . , xk),
3This remarks is due to a referee.
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where s, t ∈ k and N1,N2 ∈ k[x3, . . . , xk] are nonzero monomials, cf. (2)–(3).

By (1), Ĥ is abelian (and then Ĥ ≅ Ga ×Ga) if and only if c = d = 0. More generally, the
following holds.

Claim 1. Assume c > 0 and d = 0. Then Ĥ = ⟨Û1, Û2⟩ is a unipotent linear algebraic group.

Proof of Claim 1. Under our assumptions, Ĥ is a closed subgroup of the unipotent linear
algebraic group consisting of the triangular transformations

(x1, . . . , xk)↦ (x1 + F (x2,N2)N1, x2 + tN2, x3, . . . , xk),
where t ∈ k and F runs over the linear space of homogeneous polynomials in two variables of
degree c. So, Ĥ is a unipotent linear algebraic group. 4 �

Suppose now that c ≥ 1 and d ≥ 1. In this case we show, using ping-pong type arguments,
that Ĥ contains a free subgroup of rank two, see Claims 2–4. We analyze separately the
cases c, d ≥ 2, c ≥ 2 and d = 1, and c = d = 1. This analysis is close to the original Jung
approach in [Jung(1942)]; cf. also [Kambayashi(1979), Lem. 4.1] and [Wright(1975), 5.31,
p. 65]. Another reference in order is [Lamy(2011)], where the enhanced Tits alternative
for the group Aut(A2

C) was established playing the ping-pong on the Bass-Serre tree. On
can apply this alternative to the group Aut(A2

K), where K is the rational function field
k(x3, . . . , xn).

Notice that by (6), any ĥ ∈ Ĥ can be written as

(7) ĥ = (p, q, x3, . . . , xk) with p, q ∈ k[x1, . . . , xk] ∖ k.

Claim 2. Assume c, d ≥ 2. Then one has Ĥ = Û1 ∗ Û2 ≅ Ga ∗ Ga. Consequently, any two
non-unit elements ûi ∈ Ûi, i = 1,2, generate a free subgroup of rank two.

Proof of Claim 2. Fixing ûi ∈ Ûi, i = 1,2 as in (6) with nonzero s, t ∈ k, for ĥ as in (7) one has

û1ĥ = (p1, q, x3, . . . , xk) and û2ĥ = (p, q2, x3, . . . , xk),
where by (6),

(8) p1 = p + sqcN1 and q2 = q + tpdN2.

For deg(p) ≤ deg(q) one gets

(9) deg(p1) = cdeg(q) + deg (N1) > deg(q),
and, similarly, for deg(p) ≥ deg(q) one deduces

(10) deg(q2) > deg(p).
Consider a nontrivial reduced word w in two letters, and let ĥ = w(û1, û2) ∈ Ĥ, where

û1, û2 ≠ 1. Using (9)–(10) one concludes by recursion on the length of w that deg(p) > deg(q)
if w(û1, û2) starts on the left with û1, and deg(p) < deg(q) if w(û1, û2) starts with û2. Anyway,

deg(p) ≠ deg(q), hence ĥ ≠ 1. �

Claim 3. Assume c ≥ 2 and d = 1. Then ⟨û1, û2⟩ is a free subgroup of rank two for any

non-unit elements û1 ∈ Û1, û2 ∈ Û2.

4Alternatively, one can deduce the conclusion by using Proposition 4.8.
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Proof of Claim 3. The Jung-van der Kulk Theorem [Jung(1942), van der Kulk(1953)] implies
the presentation

Aut(A2) = A ∗C J,
where C = A ∩ J, A = Aff(A2) is the affine group, and J is the de Jonquières subgroup of
Aut(A2) consisting of the transformations of the form

(x1, x2)↦ (α1x1 + β1(x2), α2x2 + β2) with αi ∈ k∗, i = 1,2, β1 ∈ k[x2], β2 ∈ k;

see [Dicks(1983), Nagata(1972), Wright(1975)], [Kambayashi(1975), Thm. 2], and
[Kambayashi(1979), Lem. 4.1].

Let û1 = û1(s), û2 = û2(t), and N1, N2 ∈ k[x3, . . . , xk] be as in (6). Pick a point P0 =
(x0

3, . . . , x
0
k) ∈ Ak−2 with only nonzero coordinates, so that both N1(P0) and N2(P0) do not

vanish. Letting

(11) b1(s) = sN1(P0), b2(t) = tN2(P0), û
(0)
1 = û1(s,P0), û

(0)
2 = û2(t, P0)

one gets

(12) ⟨û(0)1 , û
(0)
2 ⟩ = ⟨(x1 + b1(s)xc2, x2), (x1, x2 + b2(t)x1)⟩ ⊂ Aut(A2),

where b1(s), b2(t) do not vanish for any (s, t) ∈ (A1 ∖ {0})2. Since c > 1 and d = 1, for any

nonzero m ∈ Z one has (û(0)1 )m ∈ J ∖ C and (û(0)2 )m ∈ A ∖ C provided (s, t) ∈ (A1 ∖ {0})2 is

fixed. Write ĥ ∈ ⟨û(0)1 , û
(0)
2 ⟩ as

ĥ = w(û(0)1 , û
(0)
2 ),

where w is a reduced word in two letters. Applying the Jung-van der Kulk Theorem to

w(û(0)1 , û
(0)
2 ) we conclude that ĥ = 1 if and only if w is the trivial word. Thus, one has

⟨û(0)1 , û
(0)
2 ⟩ ≅ F2 for any fixed (s, t) ∈ (A1 ∖ {0})2. The specialization (û1, û2) ↦ (û(0)1 , û

(0)
2 )

defines an isomorphism ⟨û1, û2⟩ ≅ F2. �

The next claim ends the proof of Proposition 3.1.

Claim 4. Assume c = d = 1. Then there exist (û1, û2) ∈ Û1 × Û2 such that the group ⟨û1, û2⟩
surjects onto SL2(Z) and so, contains a free subgroup of rank two.

Proof of Claim 4. We repeat the argument from the proof of Claim 3. Choosing in (11) the
value of (s, t) such that b1(s) = b2(t) = 1, by (12) we obtain

⟨û(0)1 , û
(0)
2 ⟩ = ⟨(x1 + x2, x2), (x1, x2 + x1)⟩ = SL2(Z).

This yields the desired surjection ⟨û1, û2⟩ → SL2(Z). It remains to recall [Wikipedia(), 3.1]
that SL2(Z) is virtually free with ⟨(x1 + 2x2, x2), (x1, x2 + 2x1)⟩ ≅ F2. �

Corollary 3.2. In the notation as before, the following conditions are equivalent:

(i) Ĥ = ⟨Û1, Û2⟩ is a unipotent algebraic group;

(ii) letting K = k[x3, . . . , xk] the Lie algebra L̂ = Lie(∂̂1, ∂̂2) ⊂ DerK(K[x1, x2]) generated
by the root derivations (see (6))

∂̂1 = xc2N1∂/∂x1, ∂̂2 = xd1N2∂/∂x2

is finite dimensional and nilpotent;
(iii)

(13) min{⟨ρ̂1, ê2⟩, ⟨ρ̂2, ê1⟩} = min{c, d} = 0.
9



These equivalences remain valid after taking off the hats.

Proof. The implication (i) ⇒ (ii) is immediate; indeed, L̂ = Lie(Ĥ) provided (i) is fulfilled.
The equivalence (i)⇔ (iii) is established in the course of the proof of Proposition 3.1. Hence, it

suffices to show (ii)⇒ (iii). Notice that the specialization (x1, . . . , xk)↦ (x1, x2, x
(0)
3 , . . . , x

(0)
k )

yields a surjective homomorphism of Lie algebras DerK(K[x1, x2])→ Derk(k[x1, x2]). Choos-

ing a point P0 = (x(0)3 , . . . , x
(0)
k ) ∈ (A1 ∖ {0})k−2 so that N1(P0) and N2(P0) do not vanish we

may assume that ∂̂1 = yc∂/∂x, ∂̂2 = xd∂/∂y, and L̂ = Lie(∂̂1, ∂̂2) ⊂ Derk(k[x, y]) is finite di-

mensional and nilpotent. Suppose (iii) fails. If c = d = 1 then L̂ = sl2(k) is not nilpotent. If,
say, c ≥ 1 and d > 1 then we have

ad(∂̂1)d+1(∂̂2) = −c(d + 1)!ye∂/∂x ∈ L̂, where e = (d + 1)c − 1 > c.
Replacing now ∂̂1 = yc∂/∂x by ye∂/∂x and repeating the trick, we obtain a sequence of

elements of L̂ of unbounded degrees. Thus, in this case L̂ has infinite dimension. In any case,
(ii) fails, a contradiction.

For the last assertion, see Lemma 2.1.d and Proposition 2.2.b. �

4. Tits’ type alternative for a sequence of root subgroups

Let as before X be a toric affine variety with no torus factor, and let

G = ⟨U1, ..., Us⟩
be the group generated by a finite set of root subgroups Uj = exp(t∂j) ⊂ Aut(X), j = 1, . . . , s,
where ∂j are root derivations. According to Corollary 3.2, in the case that G does not
contain any non-abelian free subgroup, for any i ≠ j either Ui and Uj belong to the same ray
generator (and then commute), or they belong to two different ray generators ρ and ρ′ and for
the corresponding roots e, e′ one has min{⟨ρ, e′⟩, ⟨ρ′, e⟩} = 0. In Proposition 4.1 we establish
that under these assumptions G is a unipotent algebraic group. To be more precise, notice
that the Lie algebra L generated by the root derivations ∂j, j = 1, . . . , s, might contain extra
root derivations, cf. Example 4.2. Let Ri be the set of Demazure roots eij ∈ Si of X such that
∂ρi,eij ∈ L. A priori, the cardinal card(Ri) could be infinite countable, and then the abelian
subalgebra

(14) Li = Lie(∂ρi,eij ∣eij ∈ Ri) ⊂ L
is infinite dimensional. We may suppose that

Ri ≠ ∅ ∀i = 1, . . . , r and Ri = ∅ ∀i = r + 1, . . . , k.

Let R = ⋃ri=1Ri. For e ∈ Ri we let Ue = exp(t∂ρi,e). In this section we prove the following
proposition.

Proposition 4.1. Suppose that for all e, e′ ∈ R the group ⟨Ue, Ue′⟩ is unipotent. Then G is a
unipotent algebraic group.

The proof is done at the end of the section. The assumption of Proposition 4.1 is equivalent
to the fact that ⟨Ue, Ue′⟩ for any e, e′ ∈ R does not contain any free subgroup of rank two. The
latter is equivalent to the fact that (13) holds for any e, e′ ∈ R, see Proposition 3.1 and Corol-
lary 3.2. Theorem 1.1 from the introduction is an immediate consequence of Propositions 3.1
and 4.1. In turn, Proposition 4.1 follows from Propositions 4.7 and 4.8.
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4.1. Acyclicity and nilpotent Lie algebras. Before passing to the proof of Proposi-
tion 4.1, let us give an example.

Example 4.2. Consider the group G = ⟨U1, U2, U3, U4⟩ acting on A3 = Speck[x, y, z], where
Ui = exp(t∂i), i = 1, . . . ,4 with

∂1 = yz
∂

∂x
, ∂2 = z

∂

∂y
, ∂3 = z2 ∂

∂y
, ∂4 =

∂

∂z
.

We have
∂1 = ∂ρ1,e1 , ∂2 = ∂ρ2,e2 , ∂3 = ∂ρ2,e3 , ∂4 = ∂ρ3,e4 ,

where the ray generators ρ1, ρ2, ρ3 are the vectors of the standard basis in A3, and

e1 = (−1,1,1), e2 = (0,−1,1), e3 = (0,−1,2), e4 = (0,0,−1).
Any pair of these root derivations verify (13). They generate the Lie algebra

L = span( ∂
∂x
, y

∂

∂x
, yz

∂

∂x
, z

∂

∂x
, z2 ∂

∂x
, z3 ∂

∂x
,
∂

∂y
, z

∂

∂y
, z2 ∂

∂y
,
∂

∂z
) .

Consider the abelian Lie subalgebras

L1 = span( ∂
∂x
, y

∂

∂x
, yz

∂

∂x
, z

∂

∂x
, z2 ∂

∂x
, z3 ∂

∂x
) ,

L2 = span( ∂
∂y
, z

∂

∂y
, z2 ∂

∂y
) , and L3 = span( ∂

∂z
) .

We have
L = L1 ⊕L2 ⊕L3, where [L1, Li] ⊂ L1, i = 2,3, [L2, L3] ⊂ L2,

and, furthermore,

ad(Li)(Li) = 0, i = 1,2,3, ad(L3)4(L1) = 0, ad(L2)2(L1) = 0, ad(L3)3(L2) = 0.

For the lower central series Li = [L,Li−1] of L we obtain L5 = 0. Thus, L is nilpotent, and so,
by Proposition 4.8, G is a unipotent algebraic group.

The proof of Proposition 4.1 is based on Proposition 4.7, which strengthens
[Arzhantsev et al.(2021), Thm. 5.1] in our particular context. Let us recall the terminol-
ogy of [Arzhantsev et al.(2021)] and introduce the necessary notation.

Definition 4.3. Consider a finite sequence of root derivations

D = (D1, . . . ,Dt,Dt+1) where Di = ∂ρj(i), ej(i),i ∈ Lj(i) with ej(i),i ∈ Rj(i), j(i) ∈ {1, . . . , r}.
One says that D is a cycle (more precisely, a t-cycle) if Dt+1 =D1 and

(15) ⟨ρj(i+1), ej(i),i⟩ > 0 ∀i = 1, . . . , t.

For instance, (D1,D2,D1) forms a 2-cycle if and only if (13) fails, that is,

⟨ρj(2), ej(1),1⟩ > 0 and ⟨ρj(1), ej(2),2⟩ > 0.

We say that D is a pseudo-cycle if (15) holds and j(t+1) = j(1), but not necessarily ej(t+1),t+1 =
ej(1),1; that is, ρj(t+1) = ρj(1) but possibly Dt+1 ≠D1.

In this subsection we mainly deal with the case where G contains no non-abelian free
subgroup, or, which is equivalent, L contains no 2-cycle of root derivations. We need the
next technical lemma.
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Lemma 4.4. The following conditions are equivalent:

(i) L contains no 2-cycle of root derivations;
(ii) L contains no 2-pseudo-cycle of root derivations;
(iii) for any pair of indices i, j ∈ {1, . . . , r} such that i ≠ j, at least one of the abelian Lie

subalgebras Li, Lj from (14) is an ideal of the Lie algebra Lie (Li, Lj);
(iv) the Lie algebra Lie(∂ρi,e, ∂ρj,e′) is finite dimensional and nilpotent for any pair of indices

i, j ∈ {1, . . . , r} and any pair of roots e ∈ Ri, e′ ∈ Rj.

Proof. (i) ⇔ (ii). Assume (i) holds. Then we have

(16) min{⟨ρi, e′⟩, ⟨ρj, e⟩} = 0 ∀e ∈ Ri, ∀e′ ∈ Rj with 1 ≤ i ≠ j ≤ r.
Condition (ii) is clearly fulfilled if Li and Lj commute. Otherwise, up to interchanging i and
j, there exists ei ∈ Ri such that ⟨ρj, ei⟩ = c > 0, see (1). By virtue of (16) one has

(17) ⟨ρi, e′⟩ = 0 ∀e′ ∈ Rj.

It follows that L has no 2-pseudo-cycle, that is, (ii) holds. The converse implication is
immediate.

(ii) ⇔ (iii). Assume (ii) holds. Then (16) is fulfilled. As before, (iii) is evidently true if Li
and Lj commute. Suppose this is not the case, and let ⟨ρj, ei⟩ = c > 0 for some ei ∈ Ri. From
(1) and (17) one deduces that ei + e′ ∈ Ri for any e′ ∈ Rj, and

(18) [∂ρj ,e′ , ∂ρi,ei] = c∂ρi,ei+e′ ∈ Li ∀e′ ∈ Rj,

that is,

(19) 0 ≠ [Lj, Li] ⊂ Li.
Thus, (iii) is fulfilled. To show the converse, notice that [Lj, Li] ⊂ Li for i ≠ j implies (18) for
any ei ∈ Ri, e′ ∈ Rj with c = ⟨ρj, ei⟩, and also implies ⟨ρi, e′⟩ = 0. Thus, (16) holds, and so, one
has the implication (iii) ⇒ (ii).

The equivalence (iv) ⇔ (i) holds by Corollary 3.2.
�

Definition 4.5. To any Lie algebra L as before we associate a directed graph Γr = Γr(L) on
r vertices {Li}i=1,...,r, where a directed edge [Lj → Li] joins the vertices Li and Lj if and only
if ⟨ρj, ei⟩ > 0 for some ei ∈ Ri.

Thus, there is no edge joining the vertices Li and Lj of Γr if and only if [Li, Lj] = 0, that
is, the Lie algebra Lie (Li, Lj) is abelian. Furthermore, Γr has no bidirected edge if and only
if L has no 2-pseudo-cycle of root derivations. For instance, this holds for the following graph
Γ3 = Γ3(L) associated with the Lie algebra L from Example 4.2:

(20) Γ3 ∶
L3

$$

// L2

zz
L1

Lemma 4.6. The following are equivalent:

(i) L contains no pseudo-cycle of root derivations;
(ii) L contains no cycle of root derivations;
(iii) L contains no 2-cycle of root derivations.
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Proof. It suffices to prove (iii)⇒(i), the two other implications being immediate.
Assume L contains no 2-cycle, and then also no 2-pseudo-cycle of root derivations, see

Lemma 4.4. Suppose to the contrary that L has a pseudo-cycle of root derivations D =
{D1, . . . ,DN ,DN+1} with N ≥ 3. Then Γr has the oriented cycle

Lρj(1) → Lρj(N) → . . .→ Lρj(2) → Lρj(1) .

The sequence ρj(1), . . . , ρj(N) of the corresponding ray generators can eventually contain rep-
etitions. However, it is possible to subtract a subsequence ρj(1), . . . , ρj(t) without repetition,
where 3 ≤ t ≤ N , such that ρj(t+1) = ρj(1). Then D′ = {D1, . . . ,Dt,Dt+1} is again a pseudo-cycle,
and the cycle

Lρj(1) → Lρj(t) → . . .→ Lρj(2) → Lρj(1)
has no self-intersection. To any e ∈ R we associate the integer vector of length t,

v(e) = (⟨ρj(1), e⟩, . . . , ⟨ρj(t), e⟩) ∈ Zt.
One has

(21)

v(ej(1),1) = (−1, ●,∗, . . . ,∗,∗)
v(ej(2),2) = (0,−1, ●,∗, . . . ,∗)
v(ej(3),3) = (∗,0,−1, ●, . . . ,∗)

⋮
v(ej(t−1),t−1) = (∗,∗, . . . ,0,−1, ●)

v(ej(t),t) = (●,∗,∗, . . . ,0,−1)
The stars in (21) stand for nonnegative integers, the bullets stand for positive integers, and
the zeros on the lower subdiagonal are due to (15) and (16). In fact, (15) and (16) imply

(22) ⟨ρj(i), e⟩ = 0 ∀e ∈ Rj(i+1).

From (1), (15) and (22) one deduces

⟨ρj(i+2), e′j(i),i⟩ > 0 where e′j(i),i ∶= ej(i),i + ej(i+1),i+1 ∈ Rj(i), i = 1, . . . , t − 2.

Then (16) gives

⟨ρj(i), e⟩ = 0 ∀e ∈ Rj(i+2).

This means that the second lower subdiagonal in (21) consists of zeros. In the same fashion
one can show that the third lower subdiagonal in (21) consists of zeros. Finally, we arrive by
recursion to the conclusion that the matrix in (21) is upper triangular. Moreover, one has

⟨ρj(t+1), e⟩ = ⟨ρj(1), e⟩ = 0 ∀e ∈ Rj(t).

The latter contradicts (15) for i = t and e = ej(t),t. �

The following statement strengthens Theorem 5.1 in [Arzhantsev et al.(2021)] in applica-
tion to our (simpler) setup. For the convenience of the reader we provide a complete proof,
which exploits Lemma 4.6.

Proposition 4.7. Assume L contains no 2-cycle of root derivations. Then the associated
graph Γr is acyclic, that is, does not contain any oriented cycle, and the Lie algebra L is
finite-dimensional and nilpotent.
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Proof. We freely use the notation from the proof of Lemma 4.6. Consider the one-dimensional
Lie subalgebras lρi,ei of Li generated by the root derivations, where

lρi,ei = span(∂ρi,ei) = k∂ρi,ei with ei ∈ Ri.

Since L has no 2-cycle then (16) holds. Hence, for i ≠ j there is the alternative:

(23) either [lρi,ei , lρj ,ej] = 0, or [lρi,ei , lρj ,ej] ∈ {lρi,ei+ej , lρj ,ei+ej}.
Due to (1) one has

(24) [lρi,ei , lρj ,ej] = lρi,ei+ej if and only if ⟨ρj, ei⟩ > 0.

In the latter case Γr contains the directed edge [Lj → Li]. It is clear that

Li = ⊕
e∈Ri

lρi,e and L =
r

⊕
i=1

Li.

Therefore, one has

(25) dim(L) =
r

∑
i=1

dim(Li) =
r

∑
i=1

card (Ri) = card (R).

Let us show that under our assumptions Γr is acyclic, that is, does not contain any oriented
cycle. Indeed, given an oriented cycle in Γr,

Lj(1) → Lj(2) → . . .→ Lj(t) → Lj(t+1) = Lj(1),
one can find a sequence of roots ej(i),i ∈ Rj(i) such that, with the usual convention ρj(t+1) =
ρj(1), one has

⟨ρj(i+1), ej(i),i⟩ > 0, i = 1, . . . , t.

Thus, D = (Di = ∂ρj(i), ej(i),i)i=1,...,t is a pseudo-cycle of root derivations in L. By Lemma 4.6,
the latter contradicts our assumption on absence of 2-cycles in L.

A vertex Li is called a sink if either Li is isolated in Γr, or all the incident edges of Γr at
Li have the incoming direction, that is, Li does not emit any edge. The vertex Li of Γr is a
sink if and only if Li is an ideal of the Lie algebra L.

The end vertex of any maximal oriented path in Γr is a sink. Since Γr is acyclic it has at
least one sink. Moreover, any connected component of Γr contains a sink.

We can choose a new enumeration of the vertices of Γr taking for L1 a vertex which is a
sink of Γr. Deleting L1 from Γr along with its incident edges yields a directed graph Γr−1.
The corresponding Lie subalgebra of L still has no pseudo-cycle of root derivations. Hence,
Γr−1 has at least one sink. We choose a sink of Γr−1 to be L2, etc. By construction, with this
new enumeration one has (cf. Example 4.2)

(26)

[Li, L1] ⊂ L1, i = 2, . . . , r,

[Li, L2] ⊂ L2, i = 3, . . . , r,

⋮
[Lr, Lr−1] ⊂ Lr−1,

[Lr, Lr] = 0 .

To show that L is of finite dimension, we use the enumeration of the subalgebras Lj ⊂ L
satisfying (26). We establish that the total coordinates of the vectors in R are uniformly
bounded above, and so, R is finite. Due to (25) this yields the result.
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At the beginning of Section 4 we defined L as the Lie algebra generated by the finite set
of root derivations ∂i, i = 1, . . . , s. Given a ray generator ρj, consider all the root derivations

∂i among ∂1, . . . , ∂s which belong to ρj, and let R
(0)
j ⊂ Rj be the set of their roots. It follows

from (23) and (26) that Rr = R(0)r , and so, Rr is finite. Furthermore, by (17), (19), and (26)
for any e ∈ Rr one has

⟨ρi, e⟩ = 0 ∀i = 1, . . . , r − 1 and ⟨ρr, e⟩ = −1.

Again by (23) and (26), any root e ∈ Rr−1 is of the form

(27) e = e(0)r−1 + er,1 + . . . + er,m with e
(0)
r−1 ∈ R

(0)
r−1 and er,i ∈ Rr, i = 1, . . . ,m,

where the lattice vectors er,i ∈ Rr are not necessarily distinct. We claim that

0 ≤m ≤ ⟨ρr, e(0)r−1⟩.
Indeed, for the rth total coordinate of the lattice vectors in (27) we have

⟨ρr, er,i⟩ = −1, i = 1, . . . ,m, and ⟨ρr, e⟩ = ⟨ρr, e(0)r−1⟩ −m ≥ 0.

Since both R
(0)
r−1 and Rr are finite, we conclude that Rr−1 is as well.

Suppose by induction that the Ri are finite for i = t, . . . , r, where 2 ≤ t ≤ r − 1. By (23) and
(26), any root e ∈ Rt−1 is of the form

(28) e = e(0)t−1 +
r

∑
i=t

mi

∑
j=1

ei,j with e
(0)
t−1 ∈ R

(0)
t−1 and ei,j ∈ Ri,

with possible repetitions of the summands. Likewise in (21), due to the chosen enumeration
we obtain for the first i total coordinates of the vector ei,j ∈ Ri,

(29) ⟨ρl, ei,j⟩ = 0 ∀l = 1, . . . , i − 1 and ⟨ρi, ei,j⟩ = −1, j = 1, . . . ,mi.

Letting l = t yields

(30) ⟨ρt, ei,j⟩ = { 0, i = t + 1, . . . , r

−1, i = t .

From (28)–(30) we deduce

⟨ρl, e⟩ = 0 ∀l < t − 1, ⟨ρt−1, e⟩ = −1, and ⟨ρt, e⟩ = ⟨ρt, e(0)t−1⟩ −mt ≥ 0.

Therefore, one has

mt ≤ ⟨ρt, e(0)t−1⟩ =∶ m̃t.

To find a uniform bound for the (t + 1)st total coordinate ⟨ρt+1, e⟩ of e we let

m̃t+1 = max
e
(0)
t−1∈R(0)t−1

{⟨ρt+1, e
(0)
t−1⟩} + max

mt≤m̃t

{
mt

∑
j=1

⟨ρt+1, et,j⟩ ∣ (et,1, . . . , et,mt) ∈ Rmt
t } < +∞.

Arguing as before we obtain mt+1 ≤ m̃t+1. Continuing in this way we arrive at the conclusion
that all the total coordinates of the vectors e from Rt−1 are uniformly bounded above, and so,
Rt−1 is finite. This gives the induction step. Thus, R is finite, and the dimension dim(L) =
card (R) is finite too, see (25).
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Let us show finally that L is nilpotent. Indeed, let 1 ≤ i < j ≤ r. Using the relations similar
to (29) and the fact that R is finite, for N ≫ 1 one deduces

(31) ⟨ρj, e + e1 + . . . + eN⟩ = ⟨ρj, e⟩ −N ≤ −2 whenever e ∈ Ri and e1, . . . , eN ∈ Rj.

Letting l = k∂ρi,e ⊂ Li and lk = k∂ρj ,ek ⊂ Lj, k = 1, . . . ,N and using (24) we obtain by (31)

[l1, [l2, [. . . , [lN , l] . . .] = 0 whenever lk ⊂ Lj, k = 1, . . . ,N, and l ⊂ Li, i ≤ j.
For N ≫ 1 the latter vanishing reads

(32) ad(Lj)N(Li) = 0 ∀j ≥ i, i, j ∈ {1, . . . , r}.
Taking into account (26), from (32) we deduce

ad(L)Nr(L) = 0,

which means that L is nilpotent. �

4.2. From nilpotent Lie algebras to unipotent groups. It is well known, see, e.g.,
[Hochschild(1981), Ch. XVI, Thm. 4.2], that over a field of characteristic zero, the Lie functor
realizes the equivalence between the categories of unipotent algebraic groups and of nilpotent
Lie algebras. In our particular case, this correspondence can be made quite explicit.

Proposition 4.8. Let X be a toric affine variety over k with no torus factor, let G =
⟨U1, . . . , Us⟩ ⊂ Aut(X) be a subgroup generated by the root subgroups Ui = exp(t∂i), where
the ∂i are locally nilpotent derivations of the structure algebra O(X) associated with De-
mazure roots, let L be the Lie algebra generated by ∂1, . . . , ∂s, and let Γ(L) = Γr(L) be the
associated directed graph, see Definition 4.5. Then the following are equivalent:

(i) L has no 2-cycle of root derivations;
(ii) the graph Γ(L) has no oriented cycle, in particular, no bidirected edge;

(iii) L is finite-dimensional and nilpotent;
(iv) G is a unipotent algebraic group acting regularly on X.

In the latter case one has L = Lie (G).

Proof. The implications (i) ⇒ (ii)&(iii) follow from Proposition 4.7. Condition (iii) implies
(iv) of Lemma 4.4, and so, by virtue of this lemma, implies (i). Therefore, there is the
equivalence (i) ⇔ (iii). By Definition 4.5, Γ(L) has no bidirected edge if and only if L has
no 2-pseudo-cycle of root derivations. By virtue of Lemma 4.4 this is equivalent to (i). Thus,
one has (i) ⇔ (ii) ⇔ (iii).

If (iv) holds, then G is a nilpotent group, and so, it contains no non-abelian free subgroup.
This implies (i) due to Proposition 3.1 and Corollary 3.2. Hence, we have the implications (iv)
⇒ (i) ⇔ (iii). The converse implication (iii) ⇒ (iv) is proven in Lemmas 4.9–4.12 below. �

Convention. We assume in the sequel that the Lie algebra L is finite-dimensional and
nilpotent, and so, (i)–(iii) hold. We use the enumeration of the subalgebras Li ⊂ L, i = 1, . . . , r
introduced in the proof of Proposition 4.7, so that (26) and (32) hold.

Let us recollect the notation. Recall that k stands for the number of total coordinates
on our toric affine variety X; this is at the same time the number of extremal rays ρi of
the cone ∆Q, see subsections 2.1 and 2.3. Due to (5), any automorphism of X lifts to an
automorphism of the Cox ring O(Ak) = k[x1, . . . , xk] of X, and to an automorphism of the
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spectrum Ak of the Cox ring. The algebra O(X) coincides with the algebra of the FCox-
invariants of the Cox ring O(Ak). By Lemma 2.1.b any root derivation ∂i, i = 1, . . . , s, lifts

to a root derivation ∂̂i of k[x1, . . . , xk] of form (2), and any root subgroup Ui = exp(t∂i) lifts

to a root subgroup Ûi = exp(t∂̂i) consisting of elementary transformations (3) and centralized

by the Cox quasitorus FCox. The derivation ∂i is the restriction of ∂̂i to O(Ak)FCox ≅ O(X),
i = 1, . . . , s. This yields an isomorphism L ≅ L̂, where L̂ is the Lie algebra generated by
∂̂1, . . . , ∂̂s, see Lemma 2.1.d.

Assuming that Ĝ = ⟨Û1, . . . , Ûs⟩ is a unipotent linear algebraic group, one has an isomor-

phism G ≅ Ĝ, and so, G is a unipotent linear algebraic group too, see Proposition 2.2.b.
Thus, it suffices to show that Ĝ is a unipotent linear algebraic group provided L̂ is a finite-
dimensional nilpotent Lie algebra.

Let L̂i be the image of Li under the isomorphism L ≅ L̂ from Lemma 2.1.d. It is easily
seen that L satisfies (i)–(iii) if and only if L̂ does.

Recall that the automorphisms of Ak of the form

(33) (x1, . . . , xk)↦ (x1 + f1, . . . , xk + fk), where fi ∈ k[xi+1, . . . , xk], i = 1, . . . , k,

are called unitriangular. These automorphisms form the unitriangular subgroup of the group
Aut(Ak), see [Freudenburg(2017), Ch. 3]. In Lemmas 4.9 and 4.10 we present Ĝ = ⟨Û1, . . . , Ûs⟩
as a subgroup of the unitriangular group with Lie(Ĝ) = L̂.

Lemma 4.9. Any ∂ ∈ L is a locally nilpotent derivation of O(X).

Proof. Due to (2), in the total coordinates (x1, . . . , xk) any derivation ∂̂ ∈ L̂i, i ∈ {1, . . . , r},
acts on Ak via

(34) ∂̂ = p∂/∂xi where p ∈ k[x1, . . . , xi−1, xi+1, . . . , xk].

The monomials Mj in (2), taken up to proportionality, of all possible polynomials p in (34)
are in one-to-one correspondence with the roots in the subset Rj of R. Since Rj is finite, it
follows that

(35) max
∂̂∈L̂j

{deg(p)} ≤ dj for some dj ∈ N.

Due to our choice of enumeration, the subalgebras L̂i ⊂ L̂ satisfy (26). Hence, the total
coordinates of the roots in Ri form a triangular-like matrix, cf. (29), that is, p ∈ k[xi+1, . . . , xk]
for any p in (34). Since ∂̂2(xi) = 0, i = 1, . . . , k, the Ga-subgroup exp(t∂̂) of Aut(Ak) generated

by ∂̂ from (34) acts on Ak via the unitriangular (elementary) transformations

(36) exp(t∂̂)∶ (x1, . . . , xk)↦ (x1, . . . , xi−1, xi + tp(xi+1, . . . , xk), xi+1, . . . , xk), t ∈ k,

cf. (3). More generally, any derivation ∂̂ ∈ L̂ is triangular of the form

(37) ∂̂ =
r

∑
i=1

δi =
r

∑
i=1

pi∂/∂xi, where δi ∈ L̂i and pi ∈ k[xi+1, . . . , xk], i = 1, . . . , r.

According to [Freudenburg(2017), Prop. 3.29], ∂̂ is locally nilpotent on O(Ak), and then also
∂ is locally nilpotent on O(X) = O(Ak)FCox . �
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Notice that for r < k the variables xr+1, . . . , xk belong to the kernel of any derivation ∂̂ ∈ L̂.

Classical formulas. In what follows we use the classical Baker-Campbell-Hausdorff (BCH)
and Zassenhaus formulas. Let us recall these formulas following [Bonfiglioli et al.(2012),
Li et al.(2019), Manetti(2012), Wang et al.(2019)]. Let A be an associative algebra with unit
over k. In the formal power series algebra A[[t]] the function exp is well defined for any
series without constant term, and log is well defined for any series with the constant term
equal 1. For a, b ∈ A consider the Lie subalgebra Lie(a, b) of A, that is, the smallest subspace
of A which contains a and b and is stable under commutators. The BCH formula expresses
c(t) ∶= log(exp(ta) exp(tb)) ∈ Lie(a, b)[[t]]. Plugging in formally t = 1, the formula reads:

(38) c ∶= c(1) = a + b + 1

2
[a, b] + 1

12
[a, [a, b]] + 1

12
[b, [b, a]] + . . . ,

where each term is a rational multiple of the Lie monomial in a and b of degree m obtained
from the universal Lie monomial α[z1, [z2, [. . . , zm] . . .], α ∈ Q, after substitution of either a
or b instead of every zi.

Likewise, for given a1, . . . , aν ∈ A, the multivariate Zassenhaus formula reads:

(39) exp(a1 + . . . + aν) = exp(a1)⋯ exp(aν)
∞
∏
m=2

exp(ψm(a1, . . . , aν)),

where ψm(a1, . . . , aν) is a homogeneous Lie polynomial in a1, . . . , aν of degree m.
In our setup, it occurs that the both formulas contain just a finite number of terms, and,

respectively, factors. Indeed, letting L = Lie(a, b) in the former case and L = Lie(a1, . . . , aν) in
the latter case, suppose that L is nilpotent of nilpotency class n, that is, Ln+1 = ad(L)n(L) = 0,
where n ∈ N is minimal with this property. Then the homogeneous Lie polynomials of degree
m > n in the both formulas vanish, hence the sum in (38) and the product in (39) are finite.

Lemma 4.10. In the total coordinates, the automorphisms exp(L̂) = {exp(∂̂) ∣ ∂̂ ∈ L̂} form a

group of unitriangular automorphisms of Ak. The map exp ∶ L̂ → exp(L̂) is well defined and
bijective.

Proof. By virtue of (36) and (37), any automorphism exp(∂̂) ∈ exp(L̂) ⊂ Aut(Ak) is unitri-
angular of the form

(40) exp(∂̂)∶ (x1, . . . , xk)↦ (x1 + f1, . . . , xr + fr, xr+1, . . . , xk) with fi ∈ k[xi+1, . . . , xk].
Any unitriangular automorphism α ∈ Aut(Ak) can be written as the exponential α = exp(c)
of the triangular derivation

c = log(α) = log(id + (α − id)) ∈ Der(O(Ak)),
see [Freudenburg(2017), Prop. 3.30] and its proof. Consider a pair (a, b) of triangular deriva-

tions of O(Ak) from L̂. The product exp(a) exp(b) of the corresponding unitriangular auto-
morphisms is again unitriangular. In more detail, exp(a) exp(b) = exp(c) with a triangular
derivation

c = log(exp(a) exp(b)) ∈ Der(O(Ak)),
see [Freudenburg(2017), Cor. 3.31]. The latter derivation can be expressed via the BCH

formula (38) truncated on level n + 1, where n is the nilpotency class of L̂. It follows that
18



c ∈ L̂. Thus, exp(L̂) is a subgroup of the group of unitriangular automorphisms of Ak. Since

log and exp are mutually inverse, the map exp ∶ L̂→ exp(L̂) is a bijection. �

Lemma 4.11. The degrees of exp(∂̂) are uniformly bounded for ∂̂ ∈ L̂.

Proof. Write ∂̂ = a1 + . . . + aν ∈ L̂, where ai ∈ L̂i. We can express exp(∂̂) = exp(a1 + . . . + aν)
via the Zassenhaus formula (39), where the product is truncated on level n + 1 with n being

the nilpotency class of L̂.
Consider the increasing chain of ideals of L̂,

L1 ⊂ L2 ⊂ . . . ⊂ Lr = L̂, where Lν ∶= L̂1 ⊕ . . .⊕ L̂ν ,
see (26). Notice that ∂̂ = a1 + . . . + aν ∈ Lν . Let us show that in (39) one has ψm(a1, . . . , aν) ∈
Lν−1 for any ν ∈ {2, . . . , r}, m ≥ 2. Indeed, it suffices to check this for ψm which is a Lie
monomial in a1, . . . , aν of degree m. In this case, our claim follows from the fact that the
abelian Lie algebras L̂1, . . . , L̂r verify (26).

Now we proceed by induction on ν = 1, . . . , r. The assertion of the lemma holds for L1 due
to (35) and (36). Suppose it holds for some Lν−1. Take

∂̂ =
ν

∑
i=1

ai =
ν

∑
i=1

pi∂/∂xi ∈ Lν , where ai ∈ L̂i.

Using (39) and the preceding observation, we can write

(41) exp(∂̂) = g1 exp(aν)g2 = g1 exp(pν∂/∂xν)g2, where g1, g2 ∈ exp(Lν−1).
Since our assertion holds for exp(Lν−1) by the induction hypothesis and for exp(L̂ν) by (35)–
(36), the degrees of all the automorphisms in (41) are uniformly bounded above. Therefore,
the assertion holds for exp(Lν) as well. This concludes the induction. �

Lemma 4.12. Assume L is a finite dimensional nilpotent Lie algebra. Then G is a unipotent
algebraic group acting regularly on X, and L = Lie(G).

Proof. Due to Lemma 4.11, the span F of exp(L̂) is a finite-dimensional subspace of the

vector space End(Ak). One can take for the coordinates in L̂ and F the coefficients of the
polynomials p1, . . . , pr and f1, . . . , fr in (37) and (40), respectively. The map

L̂ ∋ ∂̂ ↦ exp(∂̂) ∈ exp(L̂), (p1, . . . , pr)↦ (f1, . . . , fr),
defines a morphism of algebraic varieties L̂ → F . The image exp(L̂) is an irreducible con-

structible subset of F . Since exp(L̂) is a connected group, this is a locally closed smooth

subvariety of F . By Zariski’s Main Theorem, the bijective morphism exp ∶ L̂ → exp(L̂) of

smooth varieties is an isomorphism. Since L̂ is an affine variety, exp(L̂) is too. Using (33),

it is easily seen that exp(L̂) is an affine algebraic group which acts regularly on Ak. The

exponential of a nilpotent matrix is unipotent. Therefore, the group exp(L̂) is unipotent
since it consists of unipotent elements.

Recall that Ĝ = ⟨Û1, . . . , Ûs⟩, where Ûj = exp(t∂̂j) with ∂̂j ∈ L̂. So, Ûj ⊂ exp(L̂) for any

j = 1, . . . , s. It follows that Ĝ ⊂ exp(L̂). In fact, Ĝ = exp(L̂) because the Lie subalgebras

Lie(Ûj) = k∂̂j ⊂ L̂, j = 1, . . . , s, generate L̂. By the preceding discussion we deduce Lie(Ĝ) = L̂.
It follows that Lie(G) = L. �
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Proof of Proposition 4.1. Due to Corollary 3.2, under the assumption of Proposition 4.1,
(16) holds for any e ∈ Ri, e′ ∈ Rj. Then L has no 2-cycle of root derivations. Now the assertion
follows from Propositions 4.7 and 4.8. �

5. Transitive actions

5.1. Doubly transitive groups acting on toric affine varieties. In this section we apply
the Tits’ type alternative to answer Question 1 under the assumption of double transitivity
of the group in question. We start with the following simple combinatorial lemma.

Lemma 5.1. The group which acts effectively and doubly transitively on a set of cardinality
at least three has trivial center.

Proof. Let a group G act effectively and doubly transitively on a set X, where card(X) ≥ 3.
Then the following hold.

(a) Any non-trivial normal subgroup H of G is transitive on X;
(b) the stabilizer Gx of a point x ∈ X acts transitively on X ∖ {x}, and so, x is a unique

fixed point of Gx.

To show (a) it suffices to notice that G permutes the H-orbits on X. Statement (b) is
immediate.

Assume now that the center Z of G is nontrivial. Then by (a), Z is transitive on X. On
the other hand, since Z commutes with Gx, it fixes the unique fixed point x of Gx, see (b).
This gives a contradiction. �

The next statement follows immediately.

Proposition 5.2. No nilpotent group acts doubly transitively on a set X with card(X) > 2.
In particular, a unipotent linear algebraic group cannot act 2-transitively on an algebraic
variety.

Remark 5.3. Alternatively, the second statement can be deduced from the classifica-
tion of doubly transitive groups of homeomorphisms and doubly transitive Lie groups,
see [Kramer(2003), Tits(1952), Tits(1956)], or by using [Humphreys(1975), Prop. 17.4 and
Cor. 17.5].

Now we can deduce Corollary 1.2 from the Introduction.

Proof of Corollary 1.2. The assertion follows immediately from Theorem 1.1 and Propo-
sition 5.2. �

5.2. High transitivity of a subnormal subgroup. As we indicated in the Introduction,
the highly transitive actions of the groups generated by one-parameter unipotent subgroups
were a starting point of this research. We add below some results concerning a combinatorial
aspect of high transitivity, which could be useful in order to attack Conjecture 1.

Definition 5.4. Let G be a group. We say that G is highly transitive if G admits an effective
action on a set X which is m-transitive for any m ∈ N.
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Attention: one can find in the literature another definition of high transitivity, which does
not require effectiveness.

The non-abelian free groups provide examples of highly transitive groups [Cameron(1987),
McDonough et al.(1977)]. Recall that a subgroup N of a group G is called subnormal if there
exists a descending normal series

(42) G ⊵ N1 ⊵ N2 ⊵ . . . ⊵ Nk = N .

Proposition 5.5. Assume that a group G acts effectively and highly transitively on an infinite
set X. Then any nontrivial subnormal subgroup N of G is also highly transitive on X. In
particular, N cannot be virtually solvable.

The proof is done at the end of the section; it is based on the following lemma. In turn,
the proof of the lemma imitates the one of [Dixon et al.(1996), Cor. 7.2A]. For the sake of
completeness, we provide the argument.

Lemma 5.6. Assume that a group G acts effectively and highly transitively on a set X. Let
H be a non-trivial normal subgroup of G. Then H acts on X highly transitively.

Proof. For any m-tuple α = {x1, . . . , xm} of pairwise distinct points in X we consider the
stabilizers

Gα = Gx1 ∩ . . . ∩Gxm and Hα =Hx1 ∩ . . . ∩Hxm .

Then Hα is a normal subgroup in Gα.
We have to show that for any positive integer m and for any m-tuple α the group Hα acts

transitively on X ∖ {x1, . . . , xm}.
By assumption, Gα acts highly transitively on X ∖ {x1, . . . , xm}. By Claim (a) from the

proof of Lemma 5.1, either Hα is transitive on X ∖ {x1, . . . , xm}, or Hα = {e}.
Assuming the latter, take the minimal m with this property, where m ≥ 1 by Claim (a)

from the proof of Lemma 5.1. Let β = {x1, . . . , xm−1}. By assumption, the stabilizer Hβ is
transitive on X∖{x1, . . . , xm−1} (for m = 1 we have Hβ =H, and the latter follows by Claim (a)
from the proof of Lemma 5.1). Moreover, Hβ is simply transitive on X ∖ {x1, . . . , xm−1}, and
so, we can identify the set X ∖ {x1, . . . , xm} with Hβ ∖ {e} via the bijection

X ∖ {x1, . . . , xm} ∋ y ↦ h ∈Hβ ∖ {e}, where y = hxm.

Under this identification, the action of Gα on X ∖ {x1, . . . , xm} goes to the action of Gα on
Hβ ∖ {e} by conjugation, due to the relation

ghxm = ghg−1gxm = ghg−1xm ∀g ∈ Gα, ∀h ∈Hβ ∖ {e}.

The action by conjugation sends a pair (h,h−1) to a pair of the same type. Since Hβ is
infinite, it follows that the action of Gx ⊂ Aut(N) on Hβ ∖ {e} cannot be 2-transitive, unless
Hβ is a group of exponent two.

Suppose finally that Hβ is a group of exponent two. It is well known that Hβ is a power of
Z/2Z, or, in other words, the additive group of a vector space V over the field F2 with two
elements. However, the action of Aut(Hβ) = GL(V ) is not 3-transitive on Hβ ∖ {e} = V ∖ {0}
contrary to our assumption, because it preserves the linear (in)dependence. This contradiction
completes the proof. �
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Remark 5.7. Notice that the affine group G = Aff (V ) of the vector space V = An
F2

, n ≥ 3, acts
3-transitively on V , while the normal subgroup of translations acts just simply transitively
on V , contrary to [Dixon et al.(1996), Exercise 2.1.16].

Corollary 5.8. A virtually solvable group cannot be highly transitive.

Proof. Any virtually solvable group G contains a normal solvable subgroup H of finite index.
In turn, H contains a nontrivial normal abelian subgroup A, and A contains a nontrivial
cyclic subgroup C. Clearly, a cyclic subgroup cannot be highly transitive. �

Remark 5.9. By Gromov’s Theorem [Gromov(1981)], a finitely generated group has poly-
nomial growth if and only if it is virtually nilpotent. Hence, the conclusion of Corollary 5.8
holds for any finitely generated group of polynomial growth.

Proof of Proposition 5.5. The first assertion of 5.5 follows from Lemma 5.6 by recursion
on the length of the normal series (42), and the second follows from Corollary 5.8. �
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[Fima et al.(2020)] Fima, P., Le Mâıtre, F., Moon, S., and Stalder, Y. “High transitivity for more groups

acting on trees.” eprint arXiv:2003.11116, 2020.
[Freudenburg(2017)] Freudenburg, G. Algebraic theory of locally nilpotent derivations. 2d ed., Encyclopaedia

of Math. Sci. 136, Springer-Verlag, 2017.
[Garion et al.(2013)] Garion, S. and Glasner, Y. “Highly transitive actions of Out(Fn).” Groups Geom. Dyn.

7 (2013):357–376.
[Gromov(1981)] Gromov, M. “Groups of polynomial growth and expanding maps”. With an appendix by

Jacques Tits. Inst. Hautes Études Sci. Publ. Math. 53 (1981):53–73.
[Fulton(1993)] Fulton, W. Introduction to toric varieties. Princeton University Press. Princeton, New Jersey,

1993.
[Hochschild(1981)] Hochschild, G. P. Basic theory of algebraic groups and Lie algebras. Graduate texts in

mathematics. Springer-Verlag, 1981.
[Hu(2019)] Hu, Fei. “A theorem of Tits type for automorphism groups of projective varieties

in arbitrary characteristic.” With an appendix by Tomohide Terasoma. Math. Ann. (2019):
https://doi.org/10.1007/s00208-019-01812-9.

[Hull et al.(2016)] Hull, M. and Osin, D. “Transitivity degrees of countable groups and acylindrical hyperbol-
icity.” Israel J. Math. 216 (2016):307–353.

[Humphreys(1975)] Humphreys, J. E.. Linear Algebraic Groups. Springer-Verlag, 1975.
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