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Abstract 

Background:  Well-balanced interactions between gut microbiota and the immune system are essential to prevent 
chronic intestinal inflammation, as observed in inflammatory bowel diseases (IBD). Toll-like receptor 4 (TLR4) func-
tions as a sensor mediating the crosstalk between the intestinal commensal microbiome and host immunity, but the 
influence of TLR4 on the shaping of intestinal microbiota and immune responses during colon inflammation remains 
poorly characterized. We investigated whether the different susceptibilities to colitis between wild-type (WT) and 
TLR4−/− mice were gut microbiota-dependent and aimed to identify the potential immunity modulation mechanism.

Methods:  We performed antibiotic depletion of the microbiota, cohousing experiments, and faecal microbiota 
transplantation (FMT) in WT and TLR4−/− mice to assess the influence of TLR4 on intestinal microbial ecology. 16S 
rRNA sequencing was performed to dissect microbial discrepancies, and dysbiosis-associated immune perturbation 
was investigated by flow cytometry. Akkermansia muciniphila (A. muciniphila)-mediated immune modulation was 
confirmed through the T-cell transfer colitis model and bone marrow chimaera construction.

Results:  TLR4−/− mice experienced enhanced susceptibility to DSS-induced colitis. 16S rRNA sequencing showed 
notable discrepancy in the gut microbiota between WT and TLR4−/− mice. In particular, A. muciniphila contributed 
most to distinguishing the two groups. The T-cell transfer colitis model and bone marrow transplantation (BMT) 
consistently demonstrated that A. muciniphila ameliorated colitis by upregulating RORγt+ Treg cell-mediated immune 
responses. Mucosal biopsies from human manifested parallel outcomes with colon tissue from WT mice, as evidenced 
by the positive correlation between TLR4 expression and intestinal A. muciniphila colonization during homeostasis.

Conclusions:  Our results demonstrate a novel protective role of TLR4 against intestinal inflammation, wherein it can 
modulate A. muciniphila-associated immune responses. These findings provide a new perspective on host-commen-
sal symbiosis, which may be beneficial for developing potential therapeutic strategies.
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Introduction
Inflammatory bowel disease (IBD) encompasses two 
phenotypes, Crohn’s disease (CD) and ulcerative coli-
tis (UC), which are characterized by chronic relapsing-
remitting inflammatory disorder of the gastrointestinal 
tract [1, 2]. Although the exact aetiology remains unclear, 

it has long been recognized that the pathogenesis of IBD 
consists of a combination of genetic susceptibility, envi-
ronmental exposure, gut microbiota disturbances, and 
immune system dysfunctions [3–5]. Notably, microbial 
dysbiosis, defined as a decrease in gut microbiome diver-
sity owing to a shift in the balance between commensal 
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and potentially pathogenic microorganisms, contributes 
to the occurrence of IBD [6–8]. Emerging evidence indi-
cates that excessively activated immune responses, 
especially toll-like receptor (TLR)-dependent immune 
dysfunctions mediated through perturbations in the 
intestinal microbiome, play key roles in the etiopatho-
genesis of IBD [9–11].

Toll-like receptor 4 (TLR4), an essential member of the 
pattern-recognition receptor (PRR) family, functions as a 
key sensor of intestinal microbiota alterations and specif-
ically recognizes pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns 
(DAMPs) in the intestine [12, 13]. Increased expression 
of TLR4 is observed in epithelial and lamina propria cells 
of patients with IBD [14, 15]. Previous studies have dem-
onstrated that TLR4 activation results in the transcrip-
tion of inflammatory and immunoregulatory genes, and 
subsequent downstream signalling pathway cascades par-
ticipate in the progression of IBD [16]. A large amount 
of evidence supports a negative proinflammatory role of 
the TLR4 signalling pathway in IBD. Interestingly, genetic 
mutations and dysregulations of TLRs (including TLR4) 
are associated with a markedly enhanced predisposition 
and susceptibility to IBD in animal models, indicating 
that TLR4 is required for the intestinal response to epi-
thelial injury and commensal microflora recognition [17, 
18]. TLR4 thus has dual roles in IBD; on the one hand, 
it can amplify inappropriate immune responses that ulti-
mately cause chronic inflammation; on the other hand, 
it is necessary for maintaining tolerance and eliminating 
pathogenic microorganisms during steady-state condi-
tions [19]. The impact of TLR4 on the aetiology of IBD 
is multidimensional and multifactorial, involving inter-
actions among genetics, gut microbiota, and immune 
responses.

Prior studies have demonstrated that TLR4-deficient 
mice develop severe DSS-induced colitis, which is linked 
to impaired intestinal barrier function and changes in the 
inflammatory cytokine profile [18, 20]. Although TLR4 
plays a decisive role in maintaining immune tolerance 
and gut homeostasis, its role in shaping colonic bacte-
rial ecology and microbiota-associated immunity has 
not been investigated in depth. In this study, we inves-
tigated the impact of TLR4 on the shaping of intestinal 
microbiota and host immunity during colon inflamma-
tion. Here, we show that intestinal microbiota dysbio-
sis caused by the loss of TLR4 gives rise to imbalanced 
immune responses and an enhanced predisposition to 
colitis in mice. The reduced abundance of Akkerman-
sia muciniphila (A. muciniphila) and the decreased 
frequency of suppressive RORγt+ Treg cells in TLR4−/− 
mice contribute to the enhanced susceptibility to colon 
inflammation. These findings provide a new perspective 

on host-commensal symbiosis, which may be beneficial 
for the development of potential therapeutic strategies to 
alleviate IBD.

Results
Exacerbated colitis in TLR4−/− mice depends on the gut 
microbiota
TLR4 gene expression was upregulated in the intesti-
nal epithelia of patients with UC, indicating that TLR4 
might be a participant in UC development (Fig. 1a). We 
observed that TLR4−/− mice developed severe colitis, as 
evidenced by increased weight loss (Fig.  1b), decreased 
survival rate (Fig. 1c), a higher DAI score (Fig. S1a), and 
a shortened colon length (Fig.  S1 b and c). Pronounced 
colon inflammation in TLR4−/− mice was also obvious 
based on haematoxylin and eosin (H&E) staining of the 
histology score (Fig. S1 d and e) and endoscopic evalua-
tions of the colonoscopy score (Fig. S1 f and g).

To assess the potential effect of the gut microbiota on 
the enhanced susceptibility of TLR4−/− mice to coli-
tis, WT and TLR4−/− mice were gavaged with antibi-
otic cocktails for gut microbiota depletion [ABX(WT) 
vs. ABX(TLR4−/−)] before 1.5% DSS administration. 
In contrast to conventionally raised mice, ABX(WT) 
mice and ABX(TLR4−/−) mice showed indistinguishable 
body weight loss (Fig. 1d), mortality (Fig. 1e), DAI score 
(Fig.  1f ), colon length (Fig.  1g and h), histology score 
(Fig. 1i and j), and colonoscopy score (Fig. 1k and l) fol-
lowing DSS treatment, indicating a role of gut microbiota 
in the severe colitis observed in TLR4−/− mice.

The gut microbiota differs between WT and TLR4−/− mice
High-throughput gene sequencing of 16S rRNA in faecal 
bacterial DNA isolated from WT and TLR4−/− mice was 
conducted. Different alpha-diversity indices, including 
Simpson-reciprocal (p = 0.0019), Shannon (p = 0.0017), 
Chao (p = 0.0001), and observed features (p = 0.0019), 
displayed similar tendencies, indicating that WT mice 
harboured a microbiota with a distinct diversity com-
pared with TLR4−/− mice (Fig. 2a).

Principal coordinate analysis (PCoA) using the Bray-
Curtis metric distance and weighted UniFrac distance 
algorithms was performed to evaluate the beta diver-
sity. An apparent clustering separation between ampli-
con sequence variants (ASVs) revealed the difference in 
community structures between WT and TLR4−/− mice 
(Fig.  2b and d). Comparison of within- and between-
group dissimilarity analyses revealed that the micro-
biome difference between WT and TLR4−/− mice was 
greater than the difference within each genotype (Fig. 2c, 
calculated from Fig. 2b; Fig. 2e, calculated from Fig. 2d). 
We assessed the general landscape of the gut microbiota 
in all available samples to further investigate the potential 
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compositional differences at various taxonomic levels 
(Fig.  S2 a–c). The intestinal flora composition between 
different genotypes can be segregated by a comparison 

heatmap based on the ASV abundance at both the family 
(Fig. 2f ) and genus levels (Fig. 2g). Lactobacillaceae (the 
family and genus Lactobacillus) and Akkermansiaceae 

Fig. 1  Gut microbiota distinguishes the colitis severity in WT mice from that in TLR4−/− mice. a TLR4 expression is upregulated in tissue samples 
from UC patients by NCBI GEO database. (GSE11223: healthy sample, n = 73, UC patients, n = 128; GSE87466: healthy sample, n = 21, UC patients, 
n = 87; GSE126124: healthy sample, n = 47, UC patients, n = 36). b Body weight change. c Survival. d Body weight change. e Survival. f Disease 
activity index (DAI) score. g Representative pictures of colon gross appearance. h Colon length. i Representative microscopic pictures of H&E 
staining (40× and 200× magnification). j Histology score. k Representative colonoscopy images. (l) Colonoscopy score. (b-l) n = 10 mice per group, 
mean values ± SEM are presented, and p-values were calculated using unpaired T-test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled from 
three independent experiments with n = 10 mice per group
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(the family and genus Akkermansia) displayed a signifi-
cant enrichment in WT mice, while Rikenellaceae (the 
family and genus Rikenella) showed a relatively high 
abundance in TLR4−/− mice. Collectively, these results 
demonstrated that the intestinal microbiome in WT mice 
is obviously differed from TLR4−/− mice.

A predisposing microbiota in TLR4−/− mice is responsible 
for the enhanced susceptibility to colitis
To investigate whether the gut microbiota in TLR4−/− 
mice was responsible for the enhanced susceptibil-
ity to colitis, we performed FMT experiments in 
which pseudosterile WT or TLR4−/− recipient mice 
were reconstructed with the microbiome from WT 
or TLR4−/− donor mice (Fig.  S3a). FM(WT)→WT or 
FM(WT)→TLR4−/− resulted in significantly less body 
weight loss (Fig.  S3b), better survival (Fig.  S3c), higher 
DAI scores (Fig. S3d) and histology scores (Fig. S3 g and 
h), and a greater colon length than FM(TLR4−/−)→WT 
or FM(TLR4−/−)→TLR4−/− (Fig. S3 e and f ). Addition-
ally, FM(WT)→WT and FM(WT)→TLR4−/− mice dis-
played comparable weight loss, survival, disease index, 
colon length, and histology score. FM(TLR4−/−)→WT 
and FM(TLR4−/−)→TLR4−/− mice exhibited similar 
colitis phenotypes (Fig.  S3). Consistent with the pheno-
type, FM(WT)→TLR4−/− and FM(WT)→WT mice har-
boured similar intestinal flora structures following faecal 
transfer from WT donors, while FM(TLR4−/−)→WT 
and FM(TLR4−/−)→TLR4−/− mice exhibited similar tax-
onomic community compositions based on beta diversity 
measurements (Fig. S4 a–c, Fig. S5 a–c).

Subsequently, spontaneous microbiota transfer stud-
ies between different genotypes were performed through 
cohousing experiments. Age- and sex-matched WT and 
TLR4−/− littermates were either housed singly (‘SiHo 
mice’) or cohoused (‘CoHo mice’) for 6 weeks prior to 
DSS administration (Fig.  3a). CoHo TLR4−/− mice and 
their WT cage mates (CoHo WT mice) exhibited a simi-
lar phenotype following microbiota exchange through 
coprophagia, as demonstrated by the corresponding 
body weight loss (Fig.  3b), survival rate (Fig.  3c), DAI 
score (Fig.  3d), colon length (Fig.  3e and f ), and histol-
ogy score (Fig.  3g and h). Consistently, the microbiome 
compositional structure of CoHo TLR4−/− mice was 
comparable to that of CoHo WT mice, as evidenced 
by the overlapping coordinates and locations based on 

PCoA of beta diversity (Fig.  S4 d–f, Fig.  S6 a–c). Taken 
together, the predisposing microbiota in TLR4−/− mice 
was responsible for the enhanced susceptibility to colon 
inflammation.

Colonic suppressive RORγt+ Treg cells mitigate colitis 
in a gut microbiota‑dependent manner
To investigate the imbalance in immune responses 
between WT and TLR4−/− mice, the immune status 
of the intestinal microenvironment was evaluated. The 
frequency of both subpopulations of colon-resident 
macrophages [(R1 fraction, CD11b+ CD11clow F4/80+ 
CD103− macrophages) and (R2 fraction, CD11b+ 
CD11c+ F4/80+ CD103− macrophages)] displayed no 
significant difference between the two genotypes (Fig. S7 
a–c). In addition, the population of CD11blow CD11c+ 
F4/80− CD103+ (R3 fraction) colonic dendritic cells 
(DCs) showed a comparable tendency between WT and 
TLR4−/− mice (Fig. S7 a and d).

Th1 cell responses (Fig.  S8 a and b) and Th2 cell 
responses (Fig.  S8 c and d) showed no significant dif-
ference between WT and TLR4−/− mice. However, the 
proportion of Th17 cells (Fig. S8 e and f ) and Treg cells 
(Fig. S8 g and h) in the colonic lamina propria (LP) of 
TLR4−/− mice was significantly decreased compared 
with that in WT mice, which was inconsistent with the 
phenotype results. To better characterize Th17/Treg 
balance transformation-associated T-cell responses, 
we analysed the expression of both RORγt and Foxp3 
in CD4+ T cell subsets. The abundance of RORγt+ Treg 
cells (coexpression of RORγt and Foxp3) in WT mice 
manifested a pronounced enrichment in comparison 
with TLR4−/− mice (WT vs. TLR4−/−, 2.65% vs. 1.30%; 
p < 0.01) (Fig.  4a and b). The cytokine profile analysis 
of Th17 and Treg cells has also been analysed (Fig. S9 a 
and b). Increasing evidence indicates that RORγt+ Treg 
cells represent a stable regulatory T-cell effector line-
age, with reinforced anti-inflammatory and immune-
suppressing effects during colitis [21, 22]. Given the 
immunological crosstalk between the gut and other 
tissue compartments, we investigated whether the 
observed differences in RORγt+ Treg cell responses in 
the gut could be detected more systemically. However, 
RORγt+ Treg cells were not found in peripheral lym-
phoid organs (such as the spleen) (Fig. 4a and c). Addi-
tionally, we confirmed the RORγt and Foxp3 expression 

Fig. 2  Loss of TLR4 promotes a dysbiotic and communicable microbiome. a Alpha diversity boxplot (based on Simpson reciprocal, Shannon, 
Chao, and observed features index). b Principal coordinate analysis (PCoA) using Bray-Curtis metric distances of beta diversity. c Quantification 
of dissimilarity values based on Bray-Curtis metric distances. d PCoA using weighted-UniFrac distances of beta diversity. e Quantification of 
dissimilarity values based on weighted-UniFrac distances. f Heat map of selected most differentially abundant features at the family level between 
WT and TLR4−/− mice. g Heat map of selected most differentially abundant features at the genus level between WT and TLR4−/− mice

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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in colon tissue using immunofluorescence double stain-
ing, and coexpression of RORγt and Foxp3 in T-cell 
subsets was significantly higher in WT than in TLR4−/− 
mice (Fig.  4d and e). Correlation analysis results 
showed that the ratio of suppressive RORγt+ Treg cells 
in the colonic LP was negatively associated with the 

colitis phenotype (colon length in Fig. S10a, DAI score 
in Fig.  S10b, histology score in Fig.  S10c, colonoscopy 
score in Fig. S10d).

To illustrate whether the colonic RORγt+ Treg 
cell response was gut microbiota-dependent, the 
particular T-cell subsets were also phenotyped 

Fig. 3  Attenuation of colon inflammation in TLR4−/− mice after co-housing. a CoHo-SiHo strategy. b Body weight change. c Survival. d DAI score. 
e Representative pictures of colon gross appearance. f Colon length. g Representative microscopic pictures of H&E staining (40× and 200× 
magnification). h Histology score. b–h n = 10 mice per group, mean values ± SEM are presented, p-values were calculated using two-way analysis 
of variance (ANOVA) test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled from three independent experiments with n = 10 mice per group

Fig. 4  Colonic RORγt+ Treg cell-mediated immune responses are gut microbiota-dependent. a Representative flow cytometric analysis of 
colonic LP and spleen RORγt+ Treg cells (coexpression of RORγt and Foxp3) in WT and TLR4−/− mice. Numbers in outlined areas indicate percent 
cells in each gated area. b Statistics results of Foxp3(+) RORγt(−) T cells, Foxp3(−) RORγt(+) T cells, Foxp3(+) RORγt(+) T cells in colonic LP in WT and 
TLR4−/− mice. c Statistics results of Foxp3(+) RORγt(−) T cells, Foxp3(−) RORγt(+) T cells, Foxp3(+) RORγt(+) T cells in spleen in WT and TLR4−/− mice. d 
Representative immunofluorescence double staining of RORγt and Foxp3 expression in colon tissue in WT and TLR4−/− mice. e Quantification of 
the total number of double staining cells in ten high-power fields (HPFs) between WT and TLR4−/− mice. f Representative flow cytometric analysis 
of colonic RORγt+ Treg cells among SiHo WT, CoHo WT, CoHo TLR4−/−, SiHo TLR4−/− groups. g Statistical analysis of CD4(+) Foxp3(+) RORγt(+) T cells 
frequency in co-housing experiments. h Representative flow cytometric analysis of colonic RORγt+ Treg cells during FMT experiments. i Statistical 
analysis of CD4(+) Foxp3(+) RORγt(+) T cells frequency in FMT experiments. a–e n = 6 mice per group. Data are shown as mean values ± SEM are 
presented, p-values were calculated using unpaired T-test, *p < 0.05, **p < 0.01, ***p < 0.001. f–i n = 6 mice per group. Data are shown as mean 
values ± SEM are presented, p-values were calculated using two-way analysis of ANOVA test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled 
from three independent experiments with n = 6 mice per group

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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following faecal transplantation. Consistent with 
the phenotype in the cohousing experiment, the fre-
quency of RORγt+ Treg cells in CoHo TLR4−/− mice 
was comparable to that of CoHo WT mice (Fig. 4f and 
g). During the FMT experiment, FM(WT)→WT and 
FM(WT)→TLR4−/− recipient mice exhibited a similar 
proportion of colonic RORγt+ Treg cells and decreased 
colon inflammation, while FM(TLR4−/−)→WT and 
FM(TLR4−/−)→TLR4−/− recipient mice manifested 
a comparable abundance of colonic RORγt+ Treg 
cells and aggravated colon inflammation (Fig.  4h and 
i). These results demonstrated that the frequency of 
colonic RORγt+ Treg cells was negatively correlated 
with colitis severity, and that suppressive RORγt+ Treg 
cells mitigated colitis in a gut microbiota-dependent 
manner.

Akkermansia muciniphila is negatively related to the colitis 
phenotype in a murine model and in UC patient samples
Correlation analysis between differential flora and phe-
notypic indicators suggested that the Akkermansia 
muciniphila (A. muciniphila) abundance was negatively 
correlated with the DAI (WT, R2 = 0.5387; TLR4−/−, 
R2 = 0.4106), histology (WT, R2 = 0.6865; TLR4−/−, R2 
= 0.5154), and colonoscopy scores (WT, R2 = 0.5490; 
TLR4−/−, R2 = 0.4589), and positively correlated with 
colon length (WT, R2 = 0.4350; TLR4−/−, R2 = 0.6231) in 
WT (Fig. 5a, Fig. S11a) and TLR4−/− (Fig. 5b, Fig. S11b) 
mice. High-dimensional class comparisons using linear 
discriminant analysis (LDA) of effect size (LEfSe) were 
conducted to confirm which bacterium was pronounc-
edly enriched in WT mice and in turn affected disease 
progression against colon inflammation. Consistently, 
the Akkermansia muciniphila (family Akkermansiaceae; 
order Verrucomicrobiales; class Verrucomicrobiae; phy-
lum Verrucomicrobia) showed a marked predominance 
in WT mice and reached the highest LDA score of 4.6 
(Fig. 5c), in contrast to TLR4−/− mice.

The microbiome taxonomic comparison heat map 
(Fig.  S12a), combined with the LEfSe analysis (Fig.  5d), 
showed that A. muciniphila was notably predominant in 
CoHo TLR4−/− mice after cohousing. The A. muciniphila 
abundance was modestly higher in CoHo TLR4−/− mice 
than in SiHo TLR4−/− mice and was associated with mit-
igated colon inflammation in CoHo TLR4−/− mice. FMT 
sequencing results illustrated that FM(WT)→TLR4−/− 
mice exhibited a slight enrichment of A. muciniphila 
compared with FM(TLR4−/−)→TLR4−/− mice (Fig.  5e, 
Fig.  S12b). In general, the microbiome transferred 
from WT mice, especially the predominant bacterium 
A. muciniphila, ameliorated disease susceptibility in 
TLR4−/− mice.

To determine the correlation between A. muciniphila 
and chronic colon inflammation, 16S rRNA gene high-
throughput sequencing was conducted in faecal bacte-
rial DNA isolated from paired UC patients and healthy 
controls. PCoA revealed an apparent clustering sepa-
ration between UC patients and healthy participants 
in terms of the microbiome structures (Fig.  S13a). 
Remarkably altered bacterial strains were identified by 
a comparison heat map of UC patients with healthy 
participants, and A. muciniphila abundance was signifi-
cantly downregulated in patients with UC (Fig.  S13b). 
LEfSe analysis also indicated that A. muciniphila was 
the predominant biomarker in healthy participants 
compared with UC patients (Fig.  S13c). Additionally, 
we downloaded the published raw 16S rRNA gene 
sequencing data [23] from the open-source microbi-
ome deposition site QIITA (https://​qiita.​ucsd.​edu/) 
under study ID 1939. Microbiome sequencing of 16S 
rRNA obtained from stool samples (Fig. S14 a and b) or 
mucosal biopsies of different intestinal locations (rec-
tum in Fig. S15 a and b, colon in Fig. S16 a and b, ter-
minal ileum in Fig. S17 a and b) of UC patients revealed 
a decreased abundance of A. muciniphila compared 
with the healthy population. Taken together, the A. 
muciniphila abundance was negatively related to colitis 
risk, not only in murine models but also in UC patient 
samples.

Akkermansia muciniphila supplementation suppresses 
colon inflammation and increases the frequency of colonic 
RORγt+ Treg cells
We inoculated WT and TLR4−/− mice with A. mucin-
iphila, and colonization was identified by 16S rRNA 
sequencing (Fig.  S18). Mice that were administered A. 
muciniphila ([WT Akk] or [TLR4−/− Akk]) and control 
mice that received the brain-heart infusion (BHI) vehicle 
([WT BHI] or [TLR4−/− BHI]) had similar body weights 
before DSS treatment (Fig. 6a). Strikingly, [WT Akk] and 
[TLR4−/− Akk] mice exhibited decreased colon inflam-
mation, including reduced body weight loss (Fig.  6a), 
decreased mortality (Fig. 6b), lower DAI scores (Fig. 6c), 
lower colon histopathology scores (Fig.  6f and g), and 
greater colon lengths (Fig. 6d and e) than [WT BHI] or 
[TLR4−/− BHI] mice.

Previous studies have indicated that A. muciniph-
ila induces gut microbiota remodelling and activates 
anti-inflammatory Treg cell responses [23, 24]. In our 
study, colonic tissue Foxp3 and RORγt expression 
were both positively correlated with A. muciniphila 
colonization (Fig.  S19 a and b), suggesting a potential 
induction of Foxp3 and RORγt expression by A. mucin-
iphila. Consistent with the phenotype, A. muciniphila 

https://qiita.ucsd.edu/
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administration significantly increased colonic RORγt+ 
Treg cell responses compared with the BHI vehicle con-
trols (Fig. 6h and i), and A. muciniphila supplementation 
did not change the frequency of RORγt+ Treg cells in 
the mouse spleen (Fig. 6h and j). Colonic innate immune 
responses were also phenotyped, and A. muciniphila 
administration did not significantly transform mac-
rophage and DC immune responses (Fig. S20 a–d).

To demonstrate the specific immune regulation of 
RORγt+ Treg cells by A. muciniphila, a T-cell transfer 
model, which is dependent on both T cells and microbi-
ota, was conducted in our study. At 3 weeks prior to the 
T-cell transfer treatment, we inoculated Rag1-deficient 
(Rag1−/−) mice with A. muciniphila or BHI medium via 

oral gavage for 3 weeks (Fig. 7a). Mice colonized with A. 
muciniphila or BHI medium had comparable initial body 
weights before T-cell transfer (Fig. 7b). Colon inflamma-
tion evaluation was conducted 4 weeks following T-cell 
transfer treatment. As measured by body weight loss 
(Fig. 7b), colon length (Fig. 7c and d), and histology score 
(Fig.  7e and f ), colon inflammation was more severe in 
mice colonized with BHI (Rag1−/− + BHI) than in mice 
colonized with A. muciniphila (Rag1−/− + Akk). In par-
ticular, A. muciniphila supplementation notably elevated 
the ratio of colonic RORrt+ Treg cells in Rag1−/− + Akk 
mice (Fig. 7g–j).

To investigate immune regulation through intesti-
nal epithelial cell or bone marrow-derived cell TLR4 

Fig. 5  Akkermansia muciniphila abundance is negatively related to colitis phenotype. a Spearman correlation heat map between differential 
flora and phenotypic indicators in WT mice. b Spearman correlation heat map between differential flora and phenotypic indicators in TLR4−/− 
mice. c LEfSe analysis depicting taxonomic association between microbiome communities from WT and TLR4−/− mice groups. d LEfSe analysis 
depicting taxonomic association between microbiome communities from CoHo TLR4−/− and SiHo TLR4−/− mice groups. e LEfSe analysis depicting 
taxonomic association between microbiome communities from FM(WT)→TLR4−/− mice and FM(TLR4−/−)→TLR4−/− mice groups
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pathways, bone marrow chimaeras were generated by 
lethally irradiating WT and TLR4−/− recipient mice to 
eliminate haematopoietic stem cells, and the haemat-
opoietic compartment was reconstituted by bone marrow 
transplant (BMT) (Fig. S21a). Flow cytometry phenotyp-
ing results indicated that BMT(TLR4−/−) →WT mani-
fested an increased frequency of colonic RORrt+ Treg 
cells compared with BMT(WT) →TLR4−/− (2.11 

± 0.05% vs. 1.13 ± 0.03%, p < 0.01) (Fig.  S21 b and c). 
The BMT results indicated that the intestinal epithelial-
derived TLR4 pathway participated in the intestinal 
immune activation against colon inflammation. Another 
set of chimaeras was incubated with A. muciniphila 
intragastrically for 3 weeks after bone marrow recon-
stitution (Fig.  8a), and A. muciniphila colonization was 
identified by 16S rRNA sequencing (Fig.  S22). Colitis 

Fig. 6  A. muciniphila administration suppresses colon inflammation both in WT and TLR4−/− mice through regulating T-cell-associated immune 
responses. After incubation with A. muciniphila or BHI for 21 days, mice were consistently given oral administration of 2.5% DSS for 7 days followed 
by normal water drinking for a further 7 days. a Body weight change. b Survival. c DAI score. d Representative pictures of colon gross appearance. 
e Colon length. f Representative microscopic pictures of H&E staining (40× and 200× magnification). g Histology score. h Representative flow 
cytometric analysis of colonic and spleen RORγt+ Treg cells among WT Akk, TLR4−/− Akk, WT BHI, TLR4−/− BHI groups. Numbers in outlined areas 
indicate percent cells in each gated area. i Statistical analysis of CD4(+) Foxp3(+) RORγt(+) T cells frequency in colonic LP among groups. j Statistical 
analysis of CD4(+) Foxp3(+) RORγt(+) T cells frequency in spleen among groups. a–g n = 10 mice per group, h–j n = 6 mice per group, mean values 
± SEM are presented, p-values were calculated using two-way analysis of ANOVA test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled from three 
independent experiments



Page 12 of 20Liu et al. Microbiome           (2022) 10:98 

was more severe in Akk[BMT(WT)→TLR4−/−] than in 
Akk[BMT(TLR4−/−)→WT] after 2.5% DSS administra-
tion, as measured by the DAI score (Fig.  8b) and colon 
length (Fig.  8c and d). Consistent with the phenotype, 
Akk[BMT(TLR4−/−)→WT] displayed a marked enrich-
ment of colonic RORrt+ Treg cells compared with 
Akk[BMT(WT) →TLR4−/−](4.42 ± 0.13% vs. 1.65 ± 
0.10%, p < 0.01) (Fig. 8e and f ). Collectively, A. muciniph-
ila administration suppressed colitis by activating colonic 
RORγt+ Treg cell-mediated immune responses.

The interaction between TLR4 and Amuc‑1100 mediated 
colonization of A. muciniphila
Considering the decreased abundance of A. muciniphila 
in TLR4−/− mice, we proposed that TLR4 might affect 
the intestinal colonization of A. muciniphila. Colon tis-
sue from both healthy participants and WT mice indi-
cated that TLR4 expression was positively correlated 
with A. muciniphila colonization during gut homeosta-
sis (Fig.  S23 a and b). FISH staining of colonic sections 
from WT mice revealed increased hybridization of the 

Fig. 7  A. muciniphila downregulate the colitis predisposition in susceptible mice through induction of suppressive RORγt+ Treg cells. Colitis was 
induced by transferring CD4+ T cells into Rag1-deficient (Rag1−/−) mice colonized with A. muciniphila or BHI medium. a T-cell transfer strategy. 
b Body weight change. Thin lines represent the mean data from a group of 6 mice, and bold lines represent the mean ± SEM of all groups of 
mice colonized either with A. muciniphila or BHI medium. c Representative pictures of colon gross appearance. d Colon length. e Representative 
microscopic pictures of H&E staining (100× and 200× magnification). f Histology score. g Representative flow cytometric analysis of colonic 
RORγt+ Treg cells between (Rag1−/− + Akk) and (Rag1−/− + BHI) mice. h Statistics results of Foxp3(+) RORγt(−) T cells frequency. i Statistics results 
of Foxp3(−) RORγt(+) T cells frequency. j Statistics results of Foxp3(+) RORγt(+) T cells frequency. a–f n = 6 mice per group, g–j n = 5 mice per group, 
mean values ± SEM are presented, p-values were calculated using unpaired T-test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled from three 
independent experiments
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A. muciniphila probe MUC1437 [25, 26] compared 
with those from TLR4−/− mice (Fig. S23c). Based on the 
genomic and proteomic analysis of A. muciniphila, the 
pili-like external membrane protein Amuc-1100 might 
participate in the colonization of A. muciniphila [27, 
28]. Subsequently, we downloaded the molecular model 

of TLR4 (Fig.  S24a) and also constructed the 3D struc-
ture model of protein Amuc-1100 (https://​zhang​lab.​
ccmb.​med.​umich.​edu/I-​TASSER/) on the basis of its 
amino acid sequence (Fig.  S24b). The configurations of 
TLR4 and Amuc-1100 were simulated through Z-DOCK, 
and the 10 top-ranked possible complex scenarios were 

Fig. 8  Mitigated colitis and increased frequency of RORγt+ Treg cells in BMT chimeras following A. muciniphila incubation. a BMT chimeras were 
incubated with A. muciniphila for 21 days before 2.5% DSS administration. b DAI score. c Representative pictures of colon gross appearance. d Colon 
length. e Representative flow cytometric analysis of colonic RORγt+ Treg cells among BMT chimeras following A. muciniphila incubation. f Statistical 
analysis of CD4(+) Foxp3(+) RORγt(+) T cells frequency. a–f n = 6 mice per group, mean values ± SEM are presented, and p-values were calculated 
using two-way analysis of ANOVA test, *p < 0.05, **p < 0.01, ***p < 0.001. Data are pooled from three independent experiments

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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displayed (Figs. S25–27). According to the energy-based 
scoring system, the complex 2 manifested the most likely 
complex scenario one (Fig. S24 c and d). Collectively, our 
results indicated that the interaction between TLR4 and 
Amuc-1100 might mediate the intestinal colonization of 
A. muciniphila.

Discussion
Well-balanced interactions between gut microbiota and 
host immune systems are essential to maintain intestinal 
homeostasis. As a key member of the PRR family, TLR4 
mediates the crosstalk and interplay between the intesti-
nal commensal microbiome and host immune systems. 
In this study, we investigated the protective role of TLR4 
in the shaping of colonic bacterial compositions and 
microbiota-associated immunity against colon inflamma-
tion. Genetic deletion of TLR4 has drastic consequences 
on the structure and composition of the intestinal micro-
bial communities, leading to a shift towards a proinflam-
matory configuration that drives enhanced susceptibility 
and vulnerability to colitis. The decreased abundance 
of the predominant bacterium A. muciniphila and the 
reduced proportion of suppressive RORγt+ Treg cells in 
TLR4−/− mice contribute to the enhanced susceptibility 
to colon inflammation. Therefore, our results demon-
strate that TLR4 is an indispensable regulator and keeper 
of gut homeostasis.

The gastrointestinal tract is populated by trillions of 
diverse and complex microorganisms that function as 
key players in energy metabolism and host susceptibil-
ity to multiple intestinal conditions and diseases [29, 
30]. Previous studies have indicated that TLR4 defi-
ciency renders mice susceptible to DSS-induced coli-
tis, which is associated with impaired intestinal barrier 
function and changes in the inflammatory cytokine pro-
file [18, 20]. Unlike conventionally raised TLR4−/− mice, 
which are more susceptible to colitis than WT mice, 
ABX(TLR4−/−), mice exhibited indistinguishable colon 
inflammation following broad-spectrum antibiotic treat-
ment for gut microbiota deprivation in our study when 
compared with ABX(WT) mice. Our results indicated 
that resident intestinal bacteria were required for the 
enhanced susceptibility of TLR4−/− mice to colitis. Gut 
microbiota dysbiosis, which is usually characterized by 
the loss of beneficial commensal microflora, expansion 
of pathogenic bacteria, and reduced overall biodiversity 
of the microbial ecosystem, is associated with the patho-
genesis of IBD [31, 32]. These compositional abnormali-
ties and structural alterations could be both the cause 
and consequence of IBD, thus inducing a vicious cycle of 
persistent inflammatory responses. Previous studies have 
shown that a deficiency in NOD2 or NLRP6 results in a 
colitogenic microbiota that can exacerbate DSS-induced 

colitis, and the aggravated colitis phenotype exhibited by 
NOD2−/− or NLRP6−/− mice could be transferred to WT 
mice by cohousing [33, 34]. Our cohousing and bacteria-
transfer experiments collectively demonstrate that dys-
biosis and exacerbated colitis caused by the loss of TLR4 
can be partially reversed by transferring gut microbiota 
from WT mice, further supporting our conclusion that 
TLR4 is functionally important for the maintenance of 
intestinal homeostasis and that its deficiency shapes a 
transmissible, disease-predisposing intestinal microflora.

IBD is characterized by unresolved inflammation in 
the intestinal tract, which is controlled by a complex 
interplay of innate and adaptive immune mechanisms 
[35, 36]. Multiple innate and adaptive immune cells and 
cytokines in time and space orchestrate the develop-
ment, recurrence, and exacerbation of the imbalanced 
inflammatory process in IBD [37]. The correlation of the 
gut microbiome with host immunity involves a bidirec-
tional relationship between microbes and the host innate 
and adaptive immune systems [4]. The presence of large 
numbers of symbionts poses an enormous challenge to 
the host immune system because it must activate robust 
immune responses to eliminate invading pathogens 
while maintaining self-tolerance to avoid autoimmune 
responses against symbiotic flora [38]. Excessive activa-
tion of immune systems triggered by bacterial distur-
bance is recognized as the underlying mechanism of 
chronic intestinal inflammatory responses in IBD [32]. 
Accumulating evidence indicates that RORγt+ Treg 
cells represent a stable regulatory T-cell effector lineage 
with reinforced anti-inflammatory and immune-sup-
pressing effects during intestinal-specific inflammation 
[39]. Compared with the gut microbiota from healthy 
donors, transfer of the IBD donor microbiota into 
germ-free mice resulted in exacerbated colitis accompa-
nied by a significantly decreased proportion of colonic 
RORγt+ Treg cells, suggesting a potential immune-
associated mechanism for microbial contribution to IBD 
pathogenesis [38, 40]. In this study, aggravated colon 
inflammation in TLR4−/− mice was accompanied by a 
significantly reduced proportion of RORγt+ Treg cells, 
while mitigated colitis in WT mice was accompanied by 
a relatively higher frequency of suppressive RORγt+ Treg 
cells. A large body of evidence indicates that intestinal 
RORγt+ Treg cells are highly context-dependent and 
have functions in promoting host immunity, particularly 
constraining immunoinflammatory responses under 
inflammatory conditions [41, 42]. Consistent with our 
phenotype, CoHo TLR4−/− and FM(WT)→TLR4−/− 
recipient mice displayed ameliorated colitis and elevated 
colonic RORγt+ Treg cells, indicating that colonic sup-
pressive RORγt+ Treg cells mitigated colitis in a gut 
microbiota-dependent manner.
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Among the next-generation beneficial microbes that 
have been identified, A. muciniphila is strongly posi-
tioned in the forefront of candidates. Belonging to the 
Verrucomicrobia phylum, the gram-negative anaerobic 
commensal A. muciniphila can degrade mucin and is 
an abundant member of the human intestinal microbi-
ota [43–45]. A. muciniphila is inversely associated with 
multiple metabolic disorders and chronic inflammation, 
and colonization with A. muciniphila has been reported 
to have protective effects against high-fat diet (HFD)-
induced obesity, facilitate mucosal wound healing, and 
elevated antitumour responses during anti-PD-1 immu-
notherapy [46–48]. Consistently, we observed a marked 
decrease in the enrichment of A. muciniphila in stool 
samples and intestinal tissue biopsies of patients with 
UC, and A. muciniphila abundance was negatively cor-
related with colitis risk in our animal models. Evidence 
indicates that A. muciniphila administration amelio-
rates DSS-induced colitis in mice either via microbe-
host interactions, which protect gut barrier function 
and reduce the levels of inflammatory cytokines, or by 
improving the microbial community [43]. As expected, 
A. muciniphila supplementation markedly amelio-
rated colitis not only in the WT genotype but also in 
the TLR4-deficient genotype in our study. In particu-
lar, colonic tissue Foxp3 and RORγt expression were 
both positively correlated with A. muciniphila colo-
nization, and A. muciniphila administration signifi-
cantly increased colonic RORγt+ Treg cell responses 
compared with the BHI controls. Studies have shown 
that A. muciniphila induces intestinal adaptive immune 
responses during homeostasis, and that A. muciniphila-
specific contextual signals influence T-cell responses 
to the microbiota and modulate host immune function 
[49]. Oral administration of A. muciniphila induces gut 
microbiota remodelling in nonobese diabetic (NOD) 
mice, which is associated with the promotion of Foxp3+ 
regulatory T cells in islets and interleukin 10 and trans-
forming growth factor β in pancreatic lymph nodes 
[24]. HFD-fed mice administered A. muciniphila show 
improved glucose tolerance and an increased number of 
adipose tissue-resident CD4+ Foxp3 regulatory T cells 
[50]. Therefore, we hypothesized that A. muciniphila 
could specifically immunoregulate colonic RORγt+ 
Treg cells in our study. A recent study highlighted that 
mice colonized with IBD microbiota experienced more 
severe disease and a decreased ratio of RORγt+ Treg 
cells than those colonized with healthy donor microbiota 
based on a T-cell transfer model of colitis [38]. In our 
study, susceptible Rag1−/− mice were inoculated with 
A. muciniphila or BHI medium prior to T-cell transfer 
treatment, and Rag1−/− + Akk mice experienced a miti-
gated colitis phenotype and an increased percentage of 

colonic RORrt+ Treg cells compared with Rag1−/− + 
BHI mice, indicating the potential immune induction of 
colonic RORrt+ Treg cells by A. muciniphila in a specific 
context.

Although the beneficial value of A. muciniphila as a 
potential probiotic has been widely recognized, adverse 
effect may also exist. A prior study demonstrated that 
the presence of A. muciniphila exacerbated the severity 
of colon inflammation caused by Salmonella typhimu-
rium (S. typhimurium) infection in mice colonized with 
a simplified human gut microbiota (SIHUMI) [51]. The 
presence of A. muciniphila alone in mice is not patho-
genic; when both A. muciniphila and S. typhimurium 
were present in SIHUMI mice simultaneously, colonic 
inflammation was exacerbated because of the decreased 
level of IL-18 and macrophage dysfunction. Seregin et al. 
reported that A. muciniphila was sufficient to induce 
colon inflammation in an IL-10 knockout (IL-10−/−) 
model of colitis [52]. This conflicting conclusion may 
be explained by various factors, such as the different 
mouse models used. This phenotype is highly dependent 
on the genetic background of the specific IL-10 knock-
out model. Evidence indicated that different commensal 
bacteria, such as Escherichia coli and Enterococcus fae-
calis, could induce immune-mediated inflammation in 
IL-10−/− mice, but neither bacterial strain caused colon 
inflammation in wild-type mice [53]. Therefore, the coli-
togenicity of A. muciniphila is context dependent. When 
gut homeostasis is disrupted, beneficial microbes may 
switch to potentially virulent species, which may exert 
harmful effects on the host.

Gene-microbiota interactions contribute to the patho-
genesis of IBD, and mutations in genetic pathways linked 
to IBD result in an inability to sense and/or respond to 
beneficial microbes [54, 55]. Previous studies demon-
strated that NLRP12 deficiency in mice promotes a dys-
biotic microbiome, and that NLRP12 attenuates colon 
inflammation by maintaining colonic microbial diversity 
and boosting the growth of the protective gut commen-
sal strain (of the family Lachnospiraceae) [56]. Host gene 
caspase recruitment domain family member 9 (CARD9) 
affects the composition and function of the gut microbi-
ota, altering the production of microbial metabolites and 
intestinal inflammation [57]. Evidence indicates that argi-
nase 1 (Arg1) expression impedes the resolution of intes-
tinal inflammation by altering the faecal microbiome and 
the metabolome [58]. Moreover, unlike pathogens with 
TLR ligands triggering inflammation, some commensal 
bacteria exploit the TLR pathway to actively suppress 
immune reactions [59]. As observed in the interplay 
between A. muciniphila and suppressive RORγt+ Treg 
cells in our study, TLR4 is required for shaping the 
colonic ecology and maintaining intestinal homeostasis. 
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Correlation analysis results indicate that TLR4 expres-
sion is positively related to A. muciniphila colonization 
in both human and mouse samples. Combined with our 
FISH staining results showing that intestinal A. mucin-
iphila colonization manifested significant accumulation 
during homeostasis in WT mouse samples, we hypothe-
sized that TLR4 could exert an influence on the intestinal 
colonization of A. muciniphila. Genomic and proteomic 
analysis of A. muciniphila indicated that external mem-
brane protein Amuc-1100 might participate in the colo-
nization process [27, 28], and our docking results also 
demonstrated the interaction between TLR4 and Amuc-
1100. Further in-depth mechanisms will be explored in 
future research.

Conclusions
In conclusion, our study identified an unexpected role 
for TLR4 in regulating intestinal microbiota composi-
tions and susceptibility to colon inflammation through 
shaping the colonization of A. muciniphila. In particu-
lar, A. muciniphila-based mechanisms play a fundamen-
tal role in driving the divergent induction of suppressive 
RORγt+ Treg cells in the gut-specific microenviron-
ment. Therefore, based on the interplay and crosstalk 
between gut microbiota and immune responses, our 
results may offer alternative avenues for therapeutic 
intervention in IBD.

Methods
Patients
All participants were recruited via the Department of Gas-
troenterology, The Second Affiliated Hospital of Third Mil-
itary Medical University. Participants were excluded if they 
had used antibiotics, sulfasalazine, probiotics, or prebiotics 
in the month preceding faecal sampling, as this could influ-
ence the intestinal microbiota composition and structure. 
We collected faecal samples from 29 UC patients and 35 
age- and sex-matched healthy controls. Both patients and 
healthy subjects were Chongqing habitants and consumed 
an eastern diet. Intestinal biopsy specimens were collected 
from 62 healthy participants who underwent colonos-
copy for dyspeptic symptoms at the Digestive Endoscopy 
Center of The Second Affiliated Hospital of Third Military 
Medical University. The research group strictly followed 
the guidelines of the Declaration of Helsinki and the prin-
ciple of biomedical research involving human norms of 
international ethics established by the WHO and CIOMS. 
The study was approved by the Medical Ethics Committee 
of The Second Affiliated Hospital of Third Military Medi-
cal University (No. AMWUEC2020582). Written informed 
consent was provided by all participants before collection 
of the samples.

Mice
All animal experimental protocols were performed fol-
lowing the guidelines of the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and 
approved by the Laboratory Animals Welfare and Eth-
ics Committee of Third Military Medical University (No. 
AMWUEC2020582). TLR4-knockout (TLR4−/−) mice on 
the C57BL/6J background were obtained from GemPhar-
matech (Co., Ltd., Jiangsu, China). Both TLR4−/− mice 
and wild-type (WT) C57BL/6J mice were originally gen-
erated from the same breeders and house raised at the 
Animal Center of Third Military Medical University Sec-
ond Affiliated Hospital for at least ten generations. Age- 
and sex-matched WT and TLR4−/− littermates were 
employed in our study. All animals were maintained in 
the same room and generally in the same facilities (such 
as racks and litters). They were maintained by the same 
personnel, who changed their gloves and used sterile 
utensils to prevent transfer of microbes between cages. 
Throughout the acclimatization and study periods, all 
animals were maintained on a 12-h light-dark cycle (21 
± 2 °C with a relatively constant humidity of 45 ± 10%) 
under specific pathogen-free (SPF) conditions and had 
access to food and water ad  libitum. All mice were fed 
irradiated food and maintained in autoclaved cages.

DSS‑induced colitis model
To induce acute experimental colitis, mice were admin-
istered 1.5–2.5% (w/v) dextran sodium sulphate (DSS, 
molecular weight, 36–50 kDa; MP Biomedicals, UK) 
in their drinking water ad  libitum for 7 days. To assess 
experimental colitis and repair, a recovery model was 
implemented; specifically, mice were administered 2.5% 
(w/v) DSS in their drinking water ad  libitum for 7 days 
followed by 7 days of normal water. In all colitis models, 
mice were checked daily for morbidity, and body weight 
was recorded. Each mouse was scored for pathologi-
cal features, including stool consistency, the presence of 
blood in the stool, and body weight loss. Individual scores 
were combined to generate the disease activity index 
(DAI), which was calculated daily for each mouse. The 
maximum score was 12 based on assigning a 0–4 scoring 
system for the following parameters: weight loss (0 points 
= 0% weight loss from baseline; 1 point = 1–5% weight 
loss; 2 points = 5–10% weight loss; 3 points = 10–20% 
weight loss; and 4 points = more than 20% weight loss); 
rectal bleeding (0 points = negative; 2 points = positive 
hemoccult test; and 4 points = visible bleeding); and 
stool consistency (0 points = normal faeces; 1 point = 
loose stool; 2 points = watery diarrhoea; 3 points = slimy 
diarrhoea, little blood; and 4 points = severe watery diar-
rhoea with blood).
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T‑cell transfer colitis model
T-cell transfer colitis experiments were performed as 
previously described [38]. Briefly, CD4+ T cells were iso-
lated from the spleen and subcutaneous lymph nodes 
of 6- to 8-week-old SPF C57BL/6J mice. CD4+ T cells 
were enriched using negative magnetic selection (Milte-
nyi Biotec) following tissue dissociation and red blood 
cell lysis. Isolated cells were stained with CD4, CD25, 
and CD45RB, ensuring that CD45RBhighCD4+ T cells 
accounted for ~50% of the fraction. Immunodeficient 
Rag1-deficient (Rag1−/−) mice (8–10 weeks old, male) 
on a C57BL/6 background were employed as recipients 
in our transfer model. Each recipient received an intra-
venous injection of a minimum of 4 × 105 purified cells 
(200 μL/injections). Colitis evaluation was conducted 4 
weeks following T-cell transfer.

Histopathology
The colons were emptied of faecal contents, opened lon-
gitudinally along the mesenteric border, formed a Swiss 
roll from the proximal to the distal end, and then placed 
in 10% neutral buffered formalin for 24 h. The Swiss rolls 
were transferred to 70% ethanol and then processed into 
paraffin-embedded blocks to generate 5-μm-thick sec-
tions for haematoxylin and eosin (H&E) staining. The 
sections were evaluated by an experienced pathologist in 
a blinded manner, and histological scores were assessed 
according to the following parameters: inflammation, 
epithelial defects, crypt atrophy, dysplasia/neoplasia, and 
the area affected by dysplasia. Each parameter generated 
a separate score with a value between 0 and 4 based on 
the colon inflammation severity and extent [60, 61].

Colonoscopy evaluation
Colonoscopy was performed on experimental mice using 
a high-resolution mouse video endoscopic system (KARL 
STORZ, Tuttlingen, Germany). The severity of colitis was 
scored in a blinded manner using MEICS (murine endo-
scopic index of colitis severity) based on the following 5 
parameters: (a) transparency of the colon, (b) changes in 
the vascular pattern, (c) fibrin visible, (d) granularity of 
the mucosal surface, and (e) stool consistency [62, 63]. 
Each parameter was scored with a value between 0 and 3. 
The cumulative score ranged from 0 (no signs of inflam-
mation) to 15 (signs of very severe inflammation).

Bone marrow transplantation (BMT)
Recipient mice (8–10 weeks old, male, WT or TLR4−/− 
mice) received lethal irradiation with a total dose of 11 
Gy in two 5.5-Gy fractions separated by 4–5-h intervals. 
To minimize heterogeneity, bone marrow cells were nor-
mally obtained from the long bones of donor mice (8–10 

weeks old, male, WT or TLR4−/− mice) with recipient 
mice of similar age. Harvesting of bone marrow cells 
for transplant must be done rapidly after death without 
intervention via chemical means that could complicate 
the functional status of stem cells. Each recipient mouse 
typically received 2 × 107 bone marrow cells for engraft-
ment. Peripheral blood was assessed by flow cytom-
etry for the percentage of CD45.1 (donor) and CD45.2 
(recipient) leukocytes using standard techniques 4 
weeks following transplantation [64]. We generated chi-
maeras by transferring bone marrow from WT donors 
or TLR4−/− donors to generate WT mice with myeloid 
cells deficient in TLR4 (BMT(TLR4−/−)→WT) and 
TLR4−/− mice expressing TLR4 only in myeloid cells 
(BMT(WT)→TLR4−/−), as well as control mice (BMT 
(TLR4−/−)→TLR4−/− or BMT (WT)→WT).

Immunofluorescence staining
For immunofluorescence staining, colonic segments were 
embedded in Cryomatrix and frozen on dry ice. Cryo-
sections (10 μm) were fixed for 5 min in 4% paraform-
aldehyde in PBS, washed in PBS-0.05% Tween 20 (PBT), 
incubated for 30 min at room temperature in PBT-5% 
normal goat serum (saturation buffer), and then incu-
bated overnight at 4 °C with primary antibodies diluted 
in saturation buffer. Sections were counterstained with 
4,6-diamidino-2-phenylindole (DAPI) for nuclear stain-
ing. Slides were dried and mounted using ProLong Anti-
fade mounting medium (Invitrogen, Molecular Probes, 
Eugene Oregon). Slides were visualized using a Leica 
TCS SP5 confocal microscope. The following antibodies 
were used: AF647-anti-Foxp3 and PE-anti-RORγt. The 
number of positive cells per field of view under ×800 
magnification was counted, and data were collected from 
ten randomly selected fields.

Cultivation of A. muciniphila and mouse colonization 
with A. muciniphila
A. muciniphila MucT (ATCC BAA835) was cultured 
under strictly anaerobic conditions at 37 °C in brain-
heart infusion (BHI) medium as described previously 
[24, 65], and exponentially growing cultures were washed 
with PBS and immediately frozen in PBS containing 25% 
glycerol to a final concentration of 1 × 1010 cells per mL 
[66]. Prior to administration, a frozen pellet of A. mucin-
iphila was thawed and resuspended in anaerobic PBS to 
a concentration of 1.5 × 109 per mL. Mice were treated 
by oral gavage with a bacterial A. muciniphila suspension 
in BHI twice a week for 3 weeks. BHI broth was used as a 
vehicle control. After A. muciniphila or BHI supplemen-
tation, the mice were administered DSS 1 week after the 
final gavage.
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Bacterial fluorescence in situ hybridization (FISH)
FISH rRNA in situ hybridization was performed on fro-
zen slices according to the FISH kit instructions (Bersin-
Bio, Cat. No. QD355). Cryosections were overlaid with 
100 μL hybridization buffer [0.9 M NaCl, 0.02 M Tris-
HCl (pH 8.0), 0.01% sodium dodecyl sulphate] containing 
an oligonucleotide mixture (5 ng/μL) consisting of the A. 
muciniphila Cy3-labelled MUC-1437 (5′-CCT​TGC​GGT​
TGG​CTT​CAG​AT-3′) and total bacterial FITC-labelled 
EUB-338 (5′-GCT​GCC​TCC​CGT​AGG​AGT​-3′) probes 
[25, 26]. Hybridization was conducted at 50 °C for 16 h 
in a humidified chamber. After hybridization, the tissue 
sections were washed with a washing buffer (0.02 M Tris-
HCl, pH 8, 0.9 M NaCl) for 10 min at 50 °C. Counter-
staining was carried out with DAPI, and the slides were 
visualized with a Leica TCS SP5 confocal microscope 
equipped with appropriate filter sets.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 
7.0 software (GraphPad Software Inc., San Diego, USA). 
Significance between two groups was determined using 
the unpaired, two-tailed Student’s t-test, and significance 
between multiple groups was determined by two-way 
analysis of variance (ANOVA) with Fisher’s LSD test. The 
results are shown as the mean ± SEM; statistical signifi-
cance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 
0.001, and NS means no significance.
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