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Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of

inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy

system under acute stress. The literature supports that overactivation of TLR9 under

the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-

associated fibrosis. Research has focused on the core contributions of the parenchymal

and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated

by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating

levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic

dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is

supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in

metabolism and energy regulation may have an underappreciated contribution in the

pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis

could be an effective therapeutic strategy to target both the inflammatory and metabolic

components of such a complex disease.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide (1).

NAFLD is a progressive condition most closely associated with overnutrition. Obesity is an

overwhelming condition for normal biological processes. The simplest distillation is that when

lipid input exceeds the body’s ability for lipid disposal, a number of physiological stresses are put on

the organs under metabolic overload: including the liver, the adipose compartment, and the gut.
How the physiological stresses manifest disease is acknowledged as complex, and recently the term

metabolic dysfunction-associated fatty liver disease (MAFLD) was recommended instead of

NAFLD as a more appropriate overarching term for a disease that is a multifaceted confluence of

metabolic and inflammatory processes (2, 3).

Non-alcoholic steatohepatitis (NASH) is the more progressive form of the disease that includes

hepatocellular injury in addition to hepatic steatosis and mild inflammation. NASHmay progress to
hepatic fibrosis, which is, by far, the most critical determinant outcome for a course of disease at risk

of progression to cirrhosis and hepatocellular cancer. NASH is an unmet medical need still lacking

any approved therapeutics (4–6).
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Toll-Like Receptor 9 (TLR9) is a pattern recognition receptor,

so-called because this family of receptors is activated by

recognizing common structures or motifs across biological

molecules (7). There are at least ten TLRs present in mammals

responsible for cell-extrinsic and -intrinsic activities (8, 9).

Characterization of the common motifs and their physiological
association have spawned several names and their associated

acronyms, such as pathogen-associated molecular patterns

(PAMPs), associated with microorganisms; damage-associated

molecular patterns (DAMPs), associated with endogenous

molecules released from damaged cells; and metabolism-

associated molecular patters (MAMPS), associated with danger
molecules resulting from metabolic overload (10, 11).

TLR9 detects the “CpG” motif, unmethylated cytosine-

phosphate-guanine (CpG) dinucleotides. CpG is a common

motif in bacterial and viral DNA, but uncommon in the

vertebrate genome. However, mitochondria, the energy center

of every vertebrate cell, is an organelle of bacterial origin and has
its own mitochondrial DNA (mtDNA). Mitochondria are the

source for endogenous molecules that activate TLR9 (12). Upon

cell stress or damage, mtDNA is ejected from the mitochondria

and into the cell’s surrounding environment to activate TLR9 as

paracrine or endocrine signals for danger or stress.

DISCOVERY OF TLR9 AND THE

TRAJECTORY OF SUBSEQUENT

RESEARCH

The breadcrumbs that led to the discovery of TLR function, and

eventually TLR9, are relevant because they are important in the
evaluation of TLR9 in NASH. O’Neill et al. have conducted

comprehensive work in summarizing the research history of

TLRs (13), of which a small slice will be focused on here to

uncover the core biological functions of TLR9.

The discovery of the interleukin-1 (IL-1) family of molecules,

called necrosin by Menkin in his original characterization in 1943
because of the observed inflammatory tissue injury (14), opened

the door to the signaling of the innate immune system. By 1975,

the connection between innate immunity and metabolism had

been made with the molecular players still needing to be

identified (15). Infection of rabbits with various bacterial

pathogens caused marked changes in lipid levels (16), and

carbohydrate-regulating hormones triggered by the host
response were associated with biochemical and ultrastructural

changes in the liver (17).

The soluble signaling molecules of the IL-1 family were

characterized in seminal work at Harvard Medical School by

Dayer, Krane and Robinson et al. and Mizel and Mergenhagen at

the National Institutes of Health in the last years of the 1970s (18,
19). The receptor for those signaling molecules, IL-1R, was

cloned in 1988 by Sims et al. while at Immunex, a private

biotechnology company eventually acquired by Amgen. In that

1988 report, the authors write, “How the cytoplasmic domain

functions in signal transduction is unknown. Computer searches

of the 1987 edition of Genbank [and other databases] have no

revealed significant similarity to any currently available

sequences” (20). Research on the role of IL-1 signaling in

inflammation continued concurrently with investigations into

the effects on energy balance. Particularly prescient was a report

by Kitade et al. in 1996 that IL-1b regulates metabolism in
hepatocytes (21).

The discovery that launched the dissection of TLR signaling

in mammals was catalyzed by a short communication in Nature

in 1991 from the Department of Biochemistry at the University

of Cambridge that the cytoplasmic domain of IL-1R was

homologous to the cytoplasmic domain of the D. melanogaster
Toll protein, which was only studied at the time in the

development of dorsoventral polarity in fruit flies (22, 23). The

shared domain came to be known as the Toll/interleukin-1

receptor (TIR) domain.

In 1996, when it was discovered that Drosophila does use Toll

for immunity, a kind of parallax was created that moved Toll’s
involvement in immunity to the forefront of research (24).

Discovery of the human TLR homologs starting in 1997

occurred on this backdrop, and although no function was yet

ascribed to the mammalian TLR, immunity seemed the most

likely function (25). Recentered efforts by researchers on innate

immunity minimized research efforts devoted to TLR’s potential

involvement in energy balance. Relative to functioning in
immune processes, TLR’s role as a mediator of metabolism

became largely overlooked. TLR4 was identified as the

signaling receptor for LPS in 1998 (26). TLR9, including its

sub-family members TLR7 and TLR8, were cloned in 2000 with

CpG-DNA identified as a ligand for TLR9 in the same year (27–

30). The next decade of research swiftly confirmed the TLR
family’s undoubted importance in immunity, inflammation, and

involvement in autoimmune diseases.

It was not until 2009 that the connection was made in

Drosophila that Toll pathway activation in the insect

compartment analogous to the human liver leads to inhibition

of insulin signaling that results in decreased triglyceride storage

(31). In the human system, only a handful of publications in the
intervening years have focused on the relationship between

TLR9’s signaling, metabolism, and energy expenditure.

In the mid-2000s, IL-1b and TLR9 adaptor protein MyD88

were implicated in weight loss-associated activation of the innate

immune receptors independent from the inflammatory cascade

and associated inflammatory pathology, however the mechanism
was unknown (32). A seminal paper on TLR9 signaling was

published in 2010 that reported the bifurcation of TLR9’s

signaling pathway into pro-inflammatory and non-

inflammatory pathways (33). Three years later, TLR9 was

directly implicated in modulating energy metabolism

independent of its proinflammatory function (34). It was not

until 2020 that TLR9 was found upstream of a master regulator
of energy homeostasis, AMPK activation (35), a topic to which

this review will later return. The observations of TLR9’s

importance in regulating metabolism are consistent with the

discoveries that the signature signaling domain of TLR9, TIR, is a

primordial metabolic regulatory enzyme (36, 37).
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The role of TLRs as the gateway to the innate immune

system is certain, and many articles summarize the history of

this research in detail (13, 24, 38, 39). The slice of history

presented here illustrates that TLR9’s role in metabolism is a

relatively recent discovery, and perhaps underappreciated. The

majority of research on TLR9 has investigated its function as an
immune receptor (Figure 1). In the next section, we will find

that TLR9 is an ancient protein. There is only one other

primordial function as important as immunity, and that

is metabolism.

TLR9 IS AN ANCIENT RECEPTOR

THAT IS PART OF A SYSTEM OF

TIERED DNA SENSING

TLR9 is one component of a tiered system of DNA pattern

sensing by the cell (40). Emming and Schroder do an excellent

job of offering a unifying hypothesis of the tiered structure that

includes the endosomal TLR9, cytosolic or nuclear cGAS-

STING, and cytosolic AIM2, all of which transduce
inflammatory signals according to the level of threat. TLR9

FIGURE 1 | Historical developments in the TLR9 field. IL-1R’s role in immunity was known during the same period as Toll’s role in Drosophila development. The

homology of their common signaling domain, TIR, was discovered in 1991. In 1996, a role for hepatocyte metabolic regulation for IL-1R and Toll’s role for immunity

was discovered in Drosophila. TLR9 was cloned and identified as the immunological pattern recognition sensor for CpG oligonucleotides in 2000. It was not until

2009 that Toll and TLR9 were found to have direct roles in metabolism and energy homeostasis. Adapted from a figure by Beutler (38). Immun, Immunity; Dev,

Development; Metab, Metabolism.
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functions as the canary—the leading signaling component for

what is happening in the environment outside the cell. This

system, or at least components of the system, appears throughout

the tree of life (41). It is suspected that non-TLR9 elements

evolved the ability to sense DNA relatively recently (42). The

metabolic effects of DNA sensing are also a common feature even
by extracellular sensing of DNA in protozoa and insects (43).

TLR9 has the lowest genetic drift of any of the components of

the nucleic acid-sensing system and any TLR in mammals (41,

44–47). It is speculated that more intense selective pressures on

other pattern recognition receptors may have left TLR9

intact (48).
All of this is to say that the extracellular sensing of DNA by

TLR9 is a primordial program in response to danger. The group

that initially characterized TLR9 as a sensor of bacterial DNA

hypothesized that its specific action was to distinguish bacterial

DNA from self-DNA (27). Polly Matzinger at the NIH urged the

research community to change their point of view: she
hypothesized that the primary driving force of the immune

system is not to discriminate between self and non-self, but

rather to protect and detect against danger (49). That TLR9

expression and upregulation are reported in nonimmune cells,

including cardiomyocytes, neurons, hepatocytes, adipocytes,

endothelial and epithelial, is suggestive of a critical role beyond

immunity (50–55).
One of the foremost dangers of the 21st century to population

health is overnutrition that disturbs metabolic homeostasis. The

clinical manifestation is the epidemic of obesity and the

metabolic syndrome. On the physiological level, it is the insult

of chronic positive energy balance that stresses those metabolic

organs most involved in nutrient handling: the liver, adipose
tissue, and gut. Connor et al. describe the blurred line in obesity

between pathological and protective mechanisms in the cell (56).

It has been known that diets enriched with lard prime the

immune system (including TLRs) for response (57).

In TLR9’s role as a metabolic regulator, and more generally as

a sensor of danger, surely overnutrition was not a selection

pressure in its evolution in man. The remaining content of this
article will review the investigation into TLR9 in MAFLD

and NASH.

TLR9 EXPRESSION

TLR9 is expressed in a broad range of immune cells with varying

ability across tissues in the normal physiological state to respond

to CpG nucleotides (58, 59). There is some evidence of

differential expression of TLR9 isoforms across healthy

immune-cell rich tissues and peripheral blood cell types with

limited data that the isoforms may differ in cellular localization
(60). The classical pro-inflammatory role of TLR9 is through the

activation of NF-kB. Results from clinical survey studies and

more focused basic research investigations suggest that TLR9

drives expansion of resident and patrolling monocytes and

monocyte-derived dendritic cells in inflammatory diseases.

TLR9 expression in non-immune cell types is curious. Non-

immune cells, such as hepatocytes and adipocytes, can produce

inflammatory molecules, but not at similar levels to immune cells

(61, 62). Similarly, the tissue cell-type-specific responses to TLR9

agonists is also conserved in non-immune cells. For example, in a

rodent model of renal-ischemia reperfusion that produces
mtDNA release from stressed cells, TLR9 on hepatocytes

respond to the CpG mtDNA, while proximal tubular epithelial

cells do not—despite both having increased TLR9 expression

(52). These cell and tissue regulatory systems make sense, as it

could result in a catastrophic inflammatory response if tubular

epithelial cells responded to stress and danger signals the same as
immune cells. TLR expression in non-immune cells could be

serving another purpose—TLR activation in adipose tissue and

liver in inflammatory states leads to the downregulation of

metabolism-related genes (63).

TLR9 is normally expressed in organs of the alimentary tract,

including the liver and intestines. Expression is higher in the
small and large intestine than in the liver, a pattern that exists

across normal human, conventional CD-1 mice, and C57BL/6

germ-free mice (64). There is a degree of tolerance in TLR9

signaling in the intestinal epithelium, which one would anticipate

given the organ’s constant exposure to bacterial products. The

tolerance is maintained through differential apical and

basolateral signaling of TLR9 (65, 66). When intestinal
epithelial cells are exposed to pathogenic DNA in vitro, TLR9

mRNA is upregulated and increases in surface localization (67).

The resulting transient increase in TLR9 signaling until the

danger has passed likely maintains cellular and physiological

homeostasis. For example, that intestinal FXR is modulated by

TLR9 should not be a surprise, but more studies are needed to
resolve regulation in normal physiological conditions versus

TLR9-mediated FXR downregulation in chronic inflammation

(68, 69).

TLR9 is also expressed in two less obvious compartments

important to the innate immune system: adipose tissue and the

liver. Several observations were made in the early 2000s about the

involvement of macrophages in adipose tissue [a good summary
of the studies from this period is contained in the introduction in

Cinti et al. (70)]. In lean populations of both rodents and

humans, adipose tissue macrophages are M2-polarized (71,

72). It was a surprise in 2007 when TLR9 was also detected on

cultured adipocytes (55), though at the time it was already

known to be a functional immunological organ, secreting a
variety of proinflammatory cytokines and modulating

monocyte and macrophage function through adipokines (73).

The liver is a metabolic organ, and also the first line of defense

against infection (74–76). Not only does one need to consider the

functional cells of the liver, hepatocytes, but also the supporting

architecture (sinusoidal endothelial cells) and the mix of resident

immune cells (Kupffer, the resident macrophage of the liver;
dendritic, and stellate cells). Hepatocytes have low TLR9 protein

expression levels compared with the other resident immune cells

of the liver (52). Functional TLR9 is undoubtedly expressed in

the nonparenchymal cells of the liver, which comprise around

40% of the organ’s cells (77–80). TLR9 expression is similar in
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the livers of conventional (CD-1) mice and humans, with germ-

free (C57BL/6 strain) mice having lower levels of expression (64).

Interesting is the significantly greater expression of TLR7, a

TLR9 family member that is both an RNA and CpG DNA

pattern recognition sensor, in the mouse liver compared with

humans. The minimal sequence requirement for activation of
mouse-TLR9 and human-TLR9 is also slightly different, but the

physiological consequence, if any, is unclear (81). Such species-

specific differences are important in translating TLR-focused

biology to humans.

TLR9 protein expression is dynamic. In resting cells, TLR9 is

localized to the endoplasmic reticulum, and the shuttling to
initiate signal transduction is complex (82). In cells stimulated

with bacterial DNA, TLR9 mRNA expression increases and

endosomal TLR9 protein is shuttled toward the surface (67).

The upregulation in TLR9 gene expression also occurs with cell

exposure to LPS (83).

TLR9 upregulation in organs with relatively low basal levels is
also observed in systems stressed with chronic obesity. TLR9 is

significantly increased in visceral compared to subcutaneous

adipose tissue in non-diabetic obese patients (84). It should be

noted that most of the expression comes from the stroma-

vascular cell fractions of the compartment (e.g., adipose tissue

macrophages), not the adipocytes. In liver, Geoffrey Farrell’s lab

at the Australian National University found that TLR9
expression is significantly upregulated in patients with biopsy-

verified NASH, but not in liver with bland steatosis (85). This

result was similar to the upregulation of TLR9 in two other

mouse models of NASH: atherogenic-diet fed and foz/foz mice.

TLR9 expression was observed primarily in aggregates of

inflammatory cells, but expression was also observed in
binucleate cells that were most likely hepatocytes.

In the severely obese, the chaperone protein UNC93B,

required for successful TLR9 trafficking, is also upregulated

(86, 87). The upregulation of TLR9 and its chaperones in

concert in obesity suggests an organized effort by the cell for

increased TLR9 signaling.

SIGNAL 0 IN NASH

Charles Janeway coined the term “Signal 0” in 1989 to describe

non-antigen stimuli outside the sequence of steps (“Signals 1, 2,

and 3”) that lead to adaptive immunity (88). Sterile

inflammation, which occurs when DAMPs are released into

the microenvironment, is a Signal 0 and prototypically

underlies NASH.
Circulating mitochondrial DNA (mtDNA) is the principal

suspect for sterile inflammation in NASH, allowing these danger

signals to reach remote organs through the circulation. Various

biological features contribute to normal basal fluctuations of

circulating cell-free DNA in humans (89). While acute trauma,

liver injury, or even strenuous exercise can significantly raise

levels of circulating mtDNA temporarily (89–94), significant
chronically elevated levels of circulating mtDNA exist in

patients with obesity and T2DM (95, 96).

mtDNA copy numbers in subjects with metabolic

dysfunction are also significantly increased in adipose tissue

compared with patients with normal BMIs (97). Bariatric

surgery significantly reduced elevated urinary mtDNA copy

number in patients with obesity (96). The elevated levels of

circulating mtDNA in patients with metabolic dysfunction is
biologically meaningful. Elevated mtDNA levels were associated

with IL-1b levels in patients with T2DM in two different studies

(98, 99). Plasma concentration of cell-free DNA was significantly

higher in patients with visceral adiposity and positively

correlated with visceral fat area and insulin resistance (100).

Obese patients with liver dysfunction or patients with biopsy-
confirmed NASH have elevated levels of circulating mtDNA. The

observation of elevated circulating levels of mtDNA in obese

patients who also had elevated ALT as a marker of chronic liver

injury was first made by Wajahat Mehal’s group at Yale in 2016

(101) with preliminary data reported at the meeting of the

American Association for the Study of Liver Diseases two years
earlier (102). They reported that obese patients with ALT

elevations had a greater percentage of mitochondria inside

microparticles than lean subjects, and the fraction of

microparticles containing mitochondria was also larger in

obese subjects with ALT elevations. They determined that the

microparticles were of hepatocyte origin.

Mehal’s group linked their observations with a previous
finding that oxidized DNA increases the CpG motif-dependent

response of TLR9 (103). They found a significantly larger

fraction of oxidized DNA in the microparticles from plasma of

obese subjects with ALT elevations. In circulating mitochondria

not contained in microparticles, a fraction with an origin that

could not be traced, they did not see similarly elevated levels of
oxidized DNA. The group noted that the hepatocyte origin of the

fraction of plasma microparticles containing mitochondria with

increased oxidation is consistent with the observation of

increased oxidation of hepatocyte DNA in NASH (104).

Indeed, the microparticles could activate TLR9 in a reporter

cell line.

In a different study, it was also demonstrated that in vitro
treatment of hepatocytes with palmitic acid, to model lipotoxic

overload, causes the release of mtDNA into the cytosol (105).

Incubating the cultured hepatocytes with a superoxide scavenger

prevented the release of mtDNA. Lipotoxic overload in

hepatocytes is also known to impair autophagy, which may

function in the progression from bland steatosis to NASH
(106). shRNA-mediated knockdown of a master regulator of

autophagy, BECN1, enhanced release of mtDNA into hepatocyte

cytosol. Similarly, rapamycin, an inducer of autophagy,

attenuated mtDNA release. Bafilomycin A1, an inhibitor of

autophagy, enhanced mtDNA release. Therefore, mtDNA is

intimately connected to hepatocyte fate.

The presence of elevated circulating mtDNA levels in NASH
was validated in a later study by Yury Popov’s group at Harvard

in 2020, who reported preliminary results at the meeting of the

American Association for the Study of Liver Diseases three years

earlier (107, 108). Rather than the relative fold-induction qPCR

technique Mehal previously used to determine elevated levels of
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circulating mtDNA in cases of presumptive NASH, Popov

determined absolute circulating mtDNA copy number in

patients with biopsy-proven NASH and NASH-fibrosis. In

separate pilot and validation cohorts, the group demonstrated

that patients with biopsy-confirmed NASH had significantly

elevated circulating mtDNA levels compared with healthy
control patients. In the larger validation cohort of 114 samples,

the group reported statistically significant elevations in mtDNA

copy number in patients with NAS of 4 or greater compared with

patients with NAS of less than 4 (p = 0.0334). With respect to

fibrosis stage, patients with F2-4 had significantly elevated

mtDNA compared with F0-1 patients (p = 0.0003). Based on
the means and standard deviations from Popov’s source data,

only about 20% of NASH patients (patients with NAS of 4 or

higher) have levels of circulating mtDNA that are less than the

99th percentile of circulating mtDNA in healthy patients.

Mehal and Popov’s results were further validated in a report

from China, also in 2020 (105). This report is a valuable
addition to the literature, as it has been shown that Chinese

individuals have higher body fat percentages than Caucasians

controls for any given BMI, with attendant increased visceral

adiposity. Compared with other ethnic backgrounds, Chinese

patients are affected by NAFLD at a lower BMI (109, 110). If

chronic mtDNA elevation is a product of adipose tissue stress

from overnutrition, one should see elevated circulating mtDNA
levels in this population at lower BMIs. Indeed, Gao et al.

observed elevated plasma levels of mtDNA in patients with

BMIs in the lower 20s, consistent with healthcare professionals

adopting a lower BMI threshold for clinical assessment and

referral of NAFLD/NASH in these patients (111). In this

relatively small report of 61 patients, divided into healthy
control, NAFL, borderline-NASH (not defined in the paper,

but generally defined as patients with an NAS of 3 (112)), and

NASH, Chinese patients with borderline-NASH and NASH

had significantly higher levels of mtDNA compared to healthy

controls and non-NASH subjects.

Other diseases associated with elevated circulating mtDNA

and NASH, independent from obesity, are intriguing.
Sarcopenia, a muscle-wasting disorder associated with

myocyte-specific mitochondrial dysfunction and circulating

mtDNA, is associated with NAFLD independently of obesity

and insulin resistance (113–116). The skeletal muscle

compartment’s putative involvement in NASH disease

deserves further exploration, as the inflammatory paracrine
loop involving TLR9 in the sarcopenic muscle compartment

may have analogs in other metabolic compartments (117–119).

A similar pattern of NASH without metabolic risk factors exists

in patients with HIV infection independent of combination

antiretroviral therapy that causes liver damage (120, 121).

Elevated adipose mtDNA levels are observed in HIV patients

not on antiretroviral therapy, and elevated circulating mtDNA
in HIV infected patients is a common observation (122, 123).

One could hypothesize the presence of elevated circulating

mtDNA levels links sarcopenia and HIV to attendant

cases of NASH without the observation of obesity or

metabolic dysfunction.

TLR9 DRIVES NASH PATHOGENESIS

ACROSS MULTIPLE ORGAN SYSTEMS

Gut
The gut supplies the liver with the majority of its blood, which is

likely a source for TLR9-activating molecules into the portal

circulation. Richard Flavell’s laboratory tested the hypothesis

that gut microbiota has a central role in the pathogenesis of

NASH (124). They demonstrated that TLR9 is necessary for mice
to be susceptible to NASH when they are co-housed with mice

that harbor transmissible colitogenic gut microbiota. In contrast,

TLR5, a receptor for bacterial flagellin, did not have an effect in

mediating disease severity. In the same rodent model, they found

that TLR9 agonist influx into the portal circulation increased the

severity of NASH. Finally, they demonstrated that microbiota-
dependent, subclinical inflammation of the colon caused by the

induction and secretion of CCL5 by the colonic epithelium was

significantly associated with the influx of TLR9 agonist into the

portal circulation.

In contrast, there was no difference in the amount of TLR2

agonists, which encompass a wide range of microbial cell wall
components from Gram-positive and Gram-negative bacteria, in

the portal circulation of mice with colonic inflammation. That

TLR9 agonists are elevated, but not TLR2 agonists, is consistent

with the immune system killing and disintegrating microbes with

the release of microbial nucleic acids (125–129). The data

indicate that bacterial products derived from the intestine,

most likely microbial cell-free DNA, enter the hepatic portal
circulation and trigger TLR9 activation.

Translocation of bacterial contents from the gut may only be

relevant in a subset of NASH patients. A meta-analysis of 128

NAFLD patients across five single-center studies employing the

same intestinal permeability assay found that 39.1% of NAFLD

patients had evidence of increased intestinal permeability
compared with 6.8% of healthy controls (130). In the same

meta-analysis, it was found that 49.2% of patients with NASH

had increased intestinal permeability. The data in total suggest

that alterations in intestinal permeability in at least a significant

subset of NAFLD and NASH patients may contribute to liver

injury via TLR9 activation.

Liver
In a collaboration between Akita University and UCSD with

Bernd Schnabl, Jerrold Olefsky, David Brenner, and Ekihiro Seki,

Miura et al. first published on NASH in TLR9 knockouts (KOs)

motivated by their interest in the TLR-MyD88 pathway in 2010

(131). They reported that TLR9-/- mice showed less
steatohepatitis and liver fibrosis than wild-type (WT) mice

when both were fed a choline-deficient, L-amino acid-defined

(CDAA) diet. Later studies revealed that mice on a CDAA diet

display a significantly different metabolic profile from human

NASH, and therefore this diet model is not suitable as the

surrogate for human disease (132). Nonetheless, the severity of
the inflammatory profile produced by this diet yields intriguing

insights into the inflammation-related biology associated with

NASH pathogenesis
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The group demonstrated that Kupffer cells produced

the inflammatory cytokine IL-1b in response to CpG

oligonucleotides. IL-1b increased apoptosis and necrosis in

lipid-accumulated hepatocytes isolated from mice fed the

CDAA diet, while CpG-mediated TLR9 signaling had little

effect on cell death in either normal or lipid-accumulated
hepatocytes. They next examined IL-1b’s effect on the

fibrogenic response of hepatic stellate cells (HSC). While

numerical increases in the levels of molecular markers of

fibrogenic activation when HSC were treated with CpG DNA

were observed, IL-1b increased the same markers by a

significantly larger fraction. Employing experiments with
conditioned media from Kupffer cells, their conclusion was

TLR9-mediated IL-1b release from Kupffer cells was essential

for HSC activation. They also found that a knockout of MyD88,

the adaptor molecule shared by TLR9 and the IL-1b receptor IL-

1R, is crucial for signaling that promotes NASH and fibrosis.

TLR9 knockout mice on the CDAA diet, unlike the IL-1R and
My88 knockout mice on the same diet, had a significant

reduction on HOMA-IR.

Therefore, Miura et al.’s model involves the TLR9-dependent

activation of Kupffer cells through endogenous TLR9 ligands,

which in turn stimulates IL-1b release that acts on both

hepatocytes and stellate cells. The model is consistent with

observation of increased IL-1b in patients with NASH and
fibrosis (133, 134); increased number of IL-1b positive liver

cells in mice fed a high fat and cholesterol diet (135); that the

lack of IL-1b inhibits the transformation of steatosis to

steatohepatitis (136); and that deficiency of hepatic- rather

than bone marrow-derived IL-1b protected mice against

development of steatohepatitis and liver fibrosis on an
atherogenic diet (136). Also consistent with Miura et al.’s

model is interventional data in humans with the IL-1b

neutralizing antibody canakinumab in a population with high

cardiovascular risk who were borderline obese. Canakinumab

tempered metabolic-related inflammation, but it did not affect

plasma lipoprotein levels or new-onset diabetes (137, 138).

Therefore, while IL-1b therapy in NASH subjects has yet to be
tested, the data suggests it may not be a node that significantly

impacts both the inflammatory and dysfunctional metabolic

components of the disease.

Wajahat Mehal’s group at Yale continued the investigation

into the identities of the TLR9 ligands and NASH pathogenesis

with a report in 2016 (101). Mehal’s group used a high-fat diet
(HFD) model (45% fat), which results in a metabolic and

histological profile similar to human NASH (139). Mehal’s

work with a HFD was key to bridging previous work to

produce results considered more translationally relevant in

humans. The group’s experiments that led them to focus on

hepatocyte mtDNA as the critical TLR9 ligand in this system was

described in the Section titled Signal 0 in NASH. The
determination of whether TLR9 is signaling to NF-kB or IRF-7

dependent type 1 IFN is key to determining TLR9’s role in the

pathogenesis of NASH. While the paths are not mutually

exclusive, the NF-kB pathway results in the production of

proinflammatory cytokines, while the IRF-7 pathway can

upregulate the anti-inflammatory IL-1 receptor antagonist (IL-

1RA). mtDNA from hepatocytes fed a HFD, when cultured with

primary murine macrophages, resulted in selective upregulation

of pro-inflammatory cytokines, but not type 1 IFN. The group

confirmed hepatic macrophage (Kupffer cell) NF-kB activation

in vivo using an NF-kB reporter mouse. HFD for twelve weeks
induced the upregulation of NF-kB on cells excised from liver

tissue with macrophage markers.

The group generated mice in which TLR9 was selectively

removed from lysozyme producing cells (Lysm-Cre Tlr9fl/fl),

including neutrophils, monocytes, and tissue macrophages.

WT, Lysm-Cre Tlr9fl/fl mice, and total TLR9 knockout mice
were placed on a HFD. The three groups had no difference in

food intake as determined by paired-feeding experiment. The

wild type mice on a 12-week HFD developed hepatosteatosis,

balloon cells, and inflammation with elevated ALT, while both

the Lysm-Cre Tlr9fl/fl mice and TLR9 KO mice exhibited NASH

component histology that was significantly less severe.
Pharmacological inhibition of TLR9 with a TLR7/9

oligonucleotide antagonist was tested next by Mehal’s group

(101). Treatment with the TLR9 antagonist at 5mg/kg once

weekly prevented NASH component histology, ALT elevations,

and cytokine transcript levels when the treatment was

administered concurrently with the HFD. The TLR9 antagonist

also reversed NASH component histology, ALT elevations, and
cytokine transcript levels (pro-Il1b, Il6, Tnfa) when administered

after eight weeks of HFD once weekly for four weeks at the same

dose while the mice remained on the HFD. The treatment had no

effect on food intake.

Geoffrey Farrell’s lab in 2017 determined the effects of TLR9

deletion in NASH pathogenesis in mice fed an atherosclerotic
diet (23% fat, 0.2% cholesterol w/w) (85). This diet contained a

much lower level of cholesterol than the typical 1–1.25%

cholesterol often used in atherosclerotic diets and no cholate.

Therefore, this diet is also translationally relevant to human

NASH. TLR9 KO mice fed an atherosclerotic diet gained weight

proportionally, including visceral fat mass, to WT mice. There

were no differences in serum insulin between WT and TLR9 KO,
and fasting blood glucose in response to atherosclerotic diet

feeding was similarly elevated. Serum total cholesterol and

hepatic free cholesterol were lower than WT mice after

atherosclerotic diet feeding. Intriguingly, ALT values failed to

increase when the TLR9 knockouts were fed the atherosclerotic

diet. WT mice fed the atherosclerotic diet had a significant
decrease in serum adiponectin that was not observed in TLR9

KO mice.

The decrease in adiponectin in the diet-fed WT, but not the

TLR9 KO mice, is fascinating because it immediately draws

attention to dysfunctional TLR9 signaling in the primary

compartment from which adipokine signaling originates, the

adipose tissue. Adiponectin is an incredibly unique pleiotropic
signaling molecule that modulates insulin target tissues (140,

141). In the liver, adiponectin decreases fat accumulation,

glucose output, and inflammation; in adipose tissue, it

functions to decrease inflammation and increase insulin-

stimulated glucose uptake; and, in skeletal muscle, decreases fat
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accumulation, increases glucose uptake and energy expenditure.

Adiponectin is not secreted by fat cells alone—hepatic stellate

cells secrete adiponectin in the resting state, and activated stellate

cells produce apoptosis when treated with adiponectin (142).

Therefore, normally elevated adiponectin levels are a systemic

regulator of inflammatory and metabolic intra- and inter-organ
homeostasis (143). More on the relationship between TLR9 and

adiponectin is discussed in the Sections titled Adipose Tissue and

Cutting the Endocrine Brakes on TLR9 Signaling.

The group next looked at liver histological features of

inflammation and fibrosis. Despite exhibiting equivalent levels

of steatosis, hardly any inflammation was observed in the TLR9
KOs fed the atherosclerotic diet. Abundant inflammation was

present in the diet-fed wild-type mice, a difference that was also

supported by markers for matrix deposition and activated

hepatic stellate cells.

On the molecular level, NF-kB and JNK activation was

evident in hepatic nuclei, including hepatocyte nuclei, in WT
atherosclerotic-diet fed mice. Similar activation in the TLR9 KO

mice was absent. The observation of significantly less

inflammatory recruitment (macrophages and neutrophils) in

the diet-fed TLR9 KOs was consistent. The fatty livers of TLR9

KO mice expressed less MCP-1 and Th1 cytokines (Mcp1, Tnf,

iNos, Il-6). Markers for Th2 cytokines (Il-4, Ym1, Arg, circulating

IL-10) increased in both groups similarly, but the authors noted
that the imbalance in Th1 cytokines shifted the cytokine balance

to one of protection in the TLR9 KO mice.

Isolation of bone marrow macrophages and neutrophils from

WT and TLR9 KO mice confirmed their findings. Macrophages

from TLR9 KO mice lost the ability to generate TNF when

cultured with necrotic hepatocyte media, and neutrophils
exhibited less chemotaxis. Isolated macrophages from TLR9

KO mice did not lose the ability to respond to the M2

stimulatory IL-4.

To further investigate if TLR9 expressed on bone marrow-

derived cells was essential for NASH pathogenesis in this model,

they created chimeric WT mice with TLR9-/- myeloid cells.

When fed an atherosclerotic diet, the chimeric mice with
TLR9-/- myeloid cells had impaired levels of circulating pro-

inflammatory cytokines compared with chimeric WT mice with

WT-TLR9+/+ myeloid cells.

The group also found decreased cytochrome c in the liver

lysates of atherosclerotic diet-fed TLR9 KO mice compared with

WT mice. The explanation for the observation was unclear at the
time, but now makes sense with the discovery three years later

that an AMPK-caspase-6 regulated mechanism activates a feed-

forward loop fueled by cytochrome c release resulting in

hepatocyte death (139).

Adipose Tissue
Nishimoto first reported that genetic ablation of TLR9 improves
insulin resistance through decreased macrophage accumulation

in adipose tissue at the European Society of Cardiology in 2013

(144). In the publication that followed, the group demonstrated

in C57BL/6 mice on a HFD that obesity-related adipocyte

degeneration causes the release of cell-free DNA (cfDNA) in

the visceral adipocyte compartment (100). The release of cfDNA

was associated with increased visceral adipose tissue (VAT)

weight, but not liver weight. Compared with lean mice, the

HFD enhanced adipocyte degeneration. Concurrently, TLR9

transcript by RT-PCR increased in the VAT and was dominant

in the macrophage population of the VAT. Using transwell co-
culture experiments, the group established that TLR9 activation

by cfDNA released from degenerated adipocytes increased

monocyte chemoattractant protein-1 (MCP-1) expression.

To determine if TLR9 promoted adipose tissue inflammation

by accelerating macrophage infiltration into the tissue, they used

WT and TLR9 KO mice. After 12 weeks of feeding, body weight,
VAT weight, and food intake were similar between the two

groups. Compared with the WT mice, the TLR9 knockouts

showed reduced macrophage infiltration and reduced

expression of MCP-1 and TNF-a. In epididymal fat tissue of

TLR9 KO mice, data suggested the macrophages were M2

polarized, while in the WT mice, the macrophages were M1
polarized. Additionally, the VAT of the TLR9 KOs showed less

NF-kB activation and better insulin sensitivity. Both adiponectin

and PPARg were significantly higher in the VAT of the TLR9 KO

mice fed a HFD than the WT counterparts. The observations on

adiponectin in this HFD model were consistent with the TLR9-

KO mice fed the atherosclerotic diet mentioned in the previous

section (85).
The creation of chimeric TLR9 knockout mice with the bone

marrow of wild-type (Tlr+/+) mice demonstrated that chimeric

mice have more macrophage infiltration into adipose tissue,

higher levels of inflammatory molecules, higher NF-kB

activation, and more insulin resistance compared with control

animals on the same diet without TLR9 expressing bone marrow.
Administration of a TLR9 inhibitory oligonucleotide at

approximately 5 mg/kg, three times a week, resulted in

reduced accumulation of macrophages in adipose tissue and

improved insulin resistance. The treatment also decreased the

level of plasma triglycerides with no difference in food intake.

A group from the Diabetes Research Group at the Toronto

General Research Institute observed that the adipocytes in the
VAT compartment may not be the only source of TLR9-

activating molecules (145). VAT macrophages were also

observed to expel extracellular traps (ETs) composed of nucleic

acids. HFD-fed mice had increased formation of ETs in VAT,

and TLR9 KOs had fewer M1 macrophages, fewer crown-like

structures, and improved glucose homeostasis and insulin
signaling during HFD feeding. Despite no difference in body

weight to WT controls, the TLR9 KO mice fed a HFD showed

decreased liver weights and decreased hepatic steatosis. Detailed

metabolic profiling demonstrated that TLR9 KO mice also had

similar food intake, oxygen consumption, CO2 output,

respiratory exchange ratio, and energy expenditure to WT

control mice.
Plasmacytoid dendritic cells (pDCs) are nearly absent in VAT

but are present in the liver, where they can lead to prolonged

inflammation and hepatocyte damage. TLR9 KOmice fed a HFD

had decreased numbers of pDCs in the liver. They identified

IFNa as a possible agent of hepatic insulin resistance and noted
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the number of IFNa-positive pDCs was consistently decreased in

TLR9 KO mice fed a HFD compared with wild type mice fed a

HFD. Exogenous introduction of TLR9 agonist in 20-week-old

NCD mice worsened glucose tolerance, increased the number of

hepatic pDCs, and decreased the number of tolerogenic pDCs.

Finally, obese mice treated for three weeks with ~3.3 mg/kg/
week TLR9 oligonucleotide antagonist had improved glucose

tolerance and a tendency for lower fasting insulin compared with

PBS-injected controls.

Unlike other reports of TLR9 KOs, Hong et al. reported that

TLR9 deficiency accelerates HFD-induced weight gain, insulin

resistance, and adipocyte dysfunction (146). The observation of
similar food intake between the control and knockout group was

the same as previous studies. It is unknown why this study is an

outlier. However, one possible reason is that it is the one report

employing TLR9 knockouts initially developed on a 129P2

background before being backcrossed to B6 [as the difference

in weight between WT and TLR9 KO employing the same
transgenic model was seemingly replicated in the recovery

phase of a study performed by a different lab (147)]. In normal

physiological conditions, TLR9 certainly has a protective role.

The results of this TLR9 KO study may be more illustrative of the

importance of TLR9’s protective function in normal physiology,

but it is difficult to know without an investigation into how the

methods differed between studies.

EXACERBATION OF TLR9 ACTIVATION

FROM OTHER SOURCES IN NASH

PATHOGENESIS

The stressed parenchyma of the liver and adipose compartments

along with possible gut leakage are not the only source for TLR9-

activating molecules. It was observed that lymphocytes (B cells, T

cells, NK cells), as well as monocytes and neutrophils, can secrete
mtDNA webs in response to CpG oligonucleotides (148).

mtDNA webs are distinct from neutrophil extracellular traps,

which are expelled genomic DNA complexed with antibacterial

proteins (149). The secretion of mtDNA webs upon stimulus

with CpG oligonucleotides was not dependent on TLR9, as

targeted TLR9 inhibition or other techniques to prevent TLR9

endosomal signaling did not impact mtDNA secretion. This
result seems to indicate the existence of at least one feed-

forward loop to increase the amount of mtDNA present in the

hepatic milieu, independent of TLR9.

A different group documented a TLR9-dependent negative

feedback loop that limited neutrophil overactivation upon

stimulation with mtDNA, which could putatively function in
the same system as the feed-forward loop (150). TLR9 activation

upregulated the main actor of the negative feedback loop, miR-

223. miR-233 knockout mice were more susceptible to activation

of inflammatory mediators and NF-kB by TLR9 agonists. The

same group later observed that miR-223 is initially elevated in

the hepatocytes of rodents on a HFD and in human NASH

samples indicative of a protective function, but that expression
levels likely deteriorate as NASH disease worsens and progresses

to cirrhosis and hepatocellular cancer (151). Therefore, NASH

disease progression could be modulated by the concurrent

downregulation of miR-233 that allows TLR9-ligand-activated

signals to increase (152–154).

Last, hepatic free cholesterol accumulation in the liver alters

normal transport of cellular cargo, including endosomal TLR9.
The association between the accumulation of hepatic free

cholesterol and NAFLD and fibrosis is well characterized (155,

156). In hepatic sinusoidal endothelial cells, free cholesterol

accumulation exacerbated TLR9 signaling in a model of

acetaminophen (APAP)-induced liver injury in obese animals

(157). APAP injury is directly tied to the release of mtDNA in
mice and humans (158). The authors observed that elevated free

cholesterol levels in endolysosomes impaired the trafficking of

TLR9 from late endosomes to lysosomes via Rab7. TLR9 escaped

degradation and accumulated, thus enhancing TLR9 signaling.

In Tlr9-/- mice, the effects of increased intake of cholesterol on

APAP injury disappeared. Treatment of mice with ~3.3 mg/kg of
oligonucleotide TLR9 antagonist 4 h after APAP treatment

significantly ameliorated cholesterol-loading induced

TLR9 signaling.

Free cholesterol accumulation in hepatocytes is also a likely

source for TLR9 activation. In free cholesterol loaded

hepatocytes, HMGB1 was released into the culture medium

(158). It had already been reported that HMGB1 is an
important modulator of TLR9 activation by CpG containing

DNA (159–161). Extracellular HMGB1 accelerates the

formation of the CpG-DNA–TLR9 complex to lower the

effective concentration of CpG DNA necessary for activating

cellular responses.

In addition to the core function of sensing danger signals in
the cell’s environment, TLR9 also senses mtDNA that originates

from its own cell. In an in vivo model of mitochondrial

dysfunction caused by deficiency of Opa1, a regulator of

mitochondrial fusion and functional compartment formation

(162), Opa-1 deficiency driven inflammation required mtDNA

and was independent of cGAS. mtDNA ejected from the

mitochondria was not present in the cytosol and was detected
by TLR9 in the endosome. Incubation of the cells with a TLR9

oligonucleotide antagonist attenuated the expression of NF-kB

genes. The exact mechanism of how TLR9 interacts with mtDNA

from its own cell needs to be clarified. The authors speculate that

the interaction could occur via mitochondrial-derived vesicles

under conditions of stress.

EVIDENCE OF TLR9 ACTIVATION

AND INTEGRAL INVOLVEMENT

IN HUMAN NASH DISEASE

The strongest data that ties TLR9 activation to NASH disease is

data from the Sanyal lab that directly associates TLR9 activation

with NASH and fibrosis disease severity in human patients. The

authors analyzed hepatic gene expression and coordinately

regulated pathways in disease and control cohorts
characterized by biopsy across the full histological spectrum of
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NASH disease (163). Incredibly valuable was the availability of

the supplementary data from this study on the Gene Set

Variation Analysis (GSVA). The GSVA analysis allowed

identifying specific pathways differentially regulated with

increasing histological severity in NASH and NASH-associated

fibrosis. In the GSVA analysis, most of the identified pathways
that appear within the first several hundred pathways that meet

the statistical threshold for discoveries by the false discovery rate

approach are too broadly described to be specifically druggable

(e.g., “Intrinsic Pathway for Apoptosis”, “Cellular Responses to

External Stimuli”). Of the handful of pathways listed that are

directly targetable, differential activation of TLR9 and TLR9
signaling and adaptor proteins are all significantly associated

with NASH disease severity, all with adjusted p-values of

<0.0001. The TLR9 cascade is also significantly associated with

NASH-fibrosis severity with an adjusted p-value of 0.01. The

GSVA analysis cannot distinguish between pathways that are

drivers of progressive disease and pathways activated as
secondary to disease severity. Therefore, the results must be

placed in the appropriate context with interventional studies. In

combination with the interventional studies described in the

previous section titled Liver the GSVA offers compelling

evidence from human biopsies that TLR9 signaling is directly

associated with the severity of NASH disease.

There are naturally occurring loss-of-function variants of
TLR9 (164). However, the variants may be too rare (< 1%) to

test the hypothesis that they are protective in NASH. As the only

known subjects of this rare variant have been detected in North-

Western Europe, it may be worthwhile to investigate further the

specific hypothesis in NASH and control databases that intersect

with that geography (165).
Instead of investigating a loss-of-function population, Alegre

et al. took the approach of identifying patients with matched

parameters of metabolic dysfunction (including BMI, HOMA-

IR, lipids), but who were diagnosed by biopsy with either simple

steatosis or NASH (166). They focused on TLR9 expression in T

cells, as intrahepatic T cells’ role in NASH progression was

confirmed in several studies. They also investigated the T cell
production of IFN-g via activation of TLR9 in cells from the

matched patient cohorts. T cell production of IFN-g is critical for

the differentiation of proinflammatory macrophages. They found

that reduced expression of TLR9 in T cells, both hepatic and

peripheral, was associated with lower liver necroinflammatory

activity and fibrosis. When they co-stimulated T-cells via TLR9,
the cells from the patients with simple steatosis produced a

limited number of IFN-g producing CD8+ T cells compared with

the T cells from patients with NASH. They concluded that

limited expression, or active downregulation, of TLR9 on T

cells is protective. In turn, this would also favor the

differentiation of anti-inflammatory (M2-polarized) Kupffer

cells. Patients with NASH may have limited endogenous
expression of TLR9 or failure of the downregulation

mechanism. The observation is strikingly similar to TLR9

expression in surgical lung biopsies differentiating rapidly from

slowly progressing forms of idiopathic pulmonary fibrosis (167).

This single study does not parse correlation versus causation

with a high enough level of evidence for generalization, but the

results are intriguing. The study certainly supports the role of

TLR9 activation on yet another type of immune cell that could be

driving NASH disease.

A UNIFIED THEORY: TLR9 IS MORE THAN

AN INNOCENT BYSTANDER IN THE

PROGRESSION OF NASH AND NASH-

FIBROSIS

Evidence suggests that two factors simultaneously contribute to

NASH progression: elevations in circulating TLR9 agonists in

response to organ stress because of overnutrition; and

upregulation of the TLR9 receptor in both immune and non-

immune cells. Most likely, the time-integrated exposure of

chronic TLR9 activation across the liver, adipose, and gut
drives progression of the disease over a period of years

(Figure 2).

A Healthy System
In normal physiology, TLR9 is expressed in both immune and

non-immune cells to varying degrees and is localized to the

endoplasmic reticulum on resting cells. In the liver, Kupffer cells
are M2 polarized, which TLR9 may even facilitate in normal

physiological states in conjunction with normal PPAR

functioning (168, 169). Hepatic dendritic cells are tolerogenic

and immature. Other surveilling immune cells, such as

neutrophils and lymphocytes (liver natural killer cells) are

ready to respond if attracted from the periphery or in the early

defense against pathogens (170).
Outside the liver, the gut is healthy and under TLR9 homeostatic

control. The visceral adipose tissue surrounding the liver is healthy

and circulating adiponectin levels act on the liver and systemically to

control the metabolism of glucose and lipids by stimulating AMPK

and PPARa (171). In hepatocytes, AMPK activity is acting to

sustain a healthy hepatic parenchyma (139).

Primed for NASH by the Stresses
of Overnutrition
In states of obesity and overnutrition, the liver is under a

considerable amount of immune stress even if hepatosteatosis

is not harmful per se. Liver fat flux is relatively fast, hepatic
steatosis is often self-limited, and hepatic energy metabolism in

patients newly diagnosed with fatty liver is not different than

controls (172, 173). However, there is evidence that the

complement system is activated in obese patients with steatosis

without NASH (174, 175). NASH may play out on the stage of

the liver by virtue of being a first-pass organ. The liver is exposed

to the highest concentration of TLR9 agonists from the portal
circulation. NAFLD, in its subclinical phase in states of obesity, is

thought to condition hepatic cells for the transition from a

normal physiological state to a disease state.

It could be that TLR9 activation in Kupffer cells and other

hepatic cells are primed by LPS leakage from the gut. In vitro, it
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was demonstrated that LPS-pretreated mouse bone marrow-

derived macrophages produced significantly more TNF and IL-

6 when stimulated with CpG DNA (176). The effects were still
evident 12 h post-LPS treatment, meaning it was not a

requirement that the LPS and CpG signals be administered at

the same time for the signal amplification to occur. The levels of

LPS used in the in vitro study were consistent with levels

observed in NASH subjects (177, 178). Recent evidence even

supports intrahepatic residence of bacteria that could also be
priming TLR9 in the liver (179).

These studies are consistent with LPS’ downregulating effects

on IL-1R8, an IL-1 receptor family member that can put the

brakes on TLR9 signaling (180). It is unclear in what subset of

patients LPS may incrementally contribute to TLR9 priming. In a

study of pediatric patients who were either obese or had biopsy-
proven NASH, endotoxin levels were increased in only 42.1% (8

of 19) in the NASH group (181). The reports on the association

of endotoxemia with NASH histological severity is mixed

(182, 183).

Gao et al. reported that mtDNA from mice fed a HFD, when

combined with LPS stimulation, caused the release of
significantly higher amounts of pro-inflammatory IL-33 from

cultured bone-marrow-derived macrophages than LPS alone

(105). The amount of IL-33 released into the media when

A B C D

FIGURE 2 | Unification of the theory of TLR9’s integral role in NASH pathogenesis. Three critical tissue compartments to NASH pathogenesis are pictured at the top

of each frame, the adipose, gut, and liver. Endocrine and paracrine signals work at the compartment level and the level of the individual cell, pictured at the bottom.

(A) The adipose, gut, and liver tissues are healthy and unstressed in a lean individual. Adiponectin levels are normally elevated. Transient elevations in mtDNA may

occur in the course of normal physiology. PPAR is functioning normally, which dampens any transient TLR9 activation. TLR9 and AMPK are coupled so the cell can

appropriately regulate energy expenditure if TLR9 is transiently activated, but in the resting state, most of the TLR9 is localized to the ER. NF-kB is not activated.

(B) The adipose, gut, and liver tissues become increasingly stressed with overnutrition. Hepatosteatosis is evident. The secretion of mtDNA as response to the stress

causes TLR9 upregulation. TLR9-dependent adipose infiltration and activation of macrophages and Kupffer cells occurs in the hepatic compartment. Gut leakage

may allow bacterial product translocation into the portal circulation, either priming or activating TLR9 in the liver. A pro-inflammatory positive feedback paracrine loop

forms between the infiltrating immune cells and the parenchyma. mtDNA levels increase in the systemic circulation. As adipocytes become more stressed, the levels

of adiponectin decrease, causing AMPK activation to also decrease. Concurrently, increased TLR9 activation dampens PPAR activity. TLR9 activates pro-

inflammatory NF-kB. (C) The various tissue compartments are even more stressed, and the TLR9-dependent pro-inflammatory positive feedback loop is robust.

There are high levels of circulating mtDNA, and adiponectin levels are low. TLR9 activation may actively be suppressing PPAR activation, and adiponectin levels are

too low to dampen TLR9 signaling. Free cholesterol present in the cell may further amplify TLR9 signaling. Stellate cells are activated in the liver, and hepatic fibrosis

begins. (D) TLR9 antagonism prevents the inflammatory paracrine loop in the tissue compartments. Fibrosis is attenuated by TLR9 antagonism of stellate cell

activation. PPAR signaling rises to dampen TLR9 activation as the system regains homeostatic function. Adiponectin works systemically to increase energy

expenditure, decrease fat accumulation, and decrease inflammation and fibrosis.
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mtDNA from mice on a chow diet was combined with LPS

stimulus was no greater than LPS stimulus alone. Production of

IL-33 was reduced by more than 50% by treatment with either a

TLR9 oligonucleotide antagonist or TLR9 knockdown

with siRNA.

By the time hepatosteatosis is evident, the visceral adipose
tissue surrounding the liver is surely stressed and in a state of

metainflammation (184). Circulating adiponectin levels are

reduced (185). As the adipose inflammation worsens,

adipocytes exhibit necrotic-like abnormalities that trigger the

recruitment of inflammatory cells such as macrophages. mtDNA

is released by the stressed adipocytes as a damage-associated
molecule pattern (DAMP), which not only exacerbates

inflammation at the local tissue level but is released into the

circulation. TLR9 expression increases in the visceral adipose

tissue (84).

At the same time TLR9 activation priming is occurring,

subclinical conditioning during NAFLD may also be tipping
the balance towards favoring greater levels of TLR9 activation.

One of those regulatory mechanisms involves the peroxisome

proliferators-activated receptors (PPARs). The PPARs act as

fatty acid sensors and act as master regulators of metabolism,

energy homeostasis, and inflammation (186, 187). Regulation of

the various PPAR subfamilies is complex, but PPAR silencing is a

common observation in obesity (188–193). In a morbidly obese
population, a high fat meal resulted in a significant decrease of

PPARg mRNA expression (194). The ratio of a naturally

occurring dominant-negative splice isoform PPARgD5 to

PPARg in humans correlates with BMI in overweight or obese

and diabetic patients (195). PPARa transcription and

immunofluorescence staining in liver tissue were significantly
reduced in a cohort of Chinese NAFLD patients that was height-

and weight-matched to a healthy cohort (196).

The significance of normal PPAR functioning is that it inhibits

TLR9 signaling. The PPARg-activating thiazolidinedione (TZD)

troglitazone, when added to cultured peripheral blood adhering

monocytes stimulated with a TLR9 family member ligand,

prevented IL-6 release and decreased stimulatory capacity (197).
TLR9 family member-associatedMAPK signaling (p38 and p42) is

significantly blunted when treated with PPARg’s natural ligand,

15-deoxy- PGJ2. In fact, the connection between PPARs and TLRs

is well documented (198). This is also consistent with the

transrepression of TLR9 signaling by a different member of the

nuclear-receptor family, the glucocorticoid receptor (199).
NAFLD has been associated with signaling changes that reduce

glucocorticoid receptor signaling (200, 201). Indeed, impairment

of glucocorticoid receptor signaling causes steatosis, and if

restored, reverses NAFLD in mice (202, 203). That the

glucocorticoid receptor transrepresses TLR9 signaling is

consistent with a model wherein nuclear receptor families, like

PPARs, are silenced, which removes the brakes from and
augments TLR9 signaling.

TLR4, which functions through a common adaptor protein

with TLR9 and similarly activates NF-kB, inhibits PPARgmRNA

synthesis when activated via a negative feedback loop involving

NF-kB (204). It seems likely that TLR9-mediated NF-kB

activation also inhibits PPAR mRNA synthesis.

Augmented TLR9 signaling has consequences in both

immune and non-immune cells. In both the liver and adipose

compartments, TLR9 activation on immune cells causes the

release of cytokines and chemokines (205). TLR9 dependent
overactivation of the immune component, particularly the

activation of hepatic stellate cells, potentiates fibrosis (78). On

non-immune cells, such as parenchymal hepatocytes and

adipocytes, dysfunctional TLR9 signaling may be directly tied

to disturbed energy homeostasis.

TLR9 signaling is directly coupled to the master regulator of
energy homeostasis, AMPK (206). In the context of exercise and

glucose starvation under normal physiological conditions, TLR9

is required to activate AMPK via an association with beclin1 and

simultaneous TLR9 binding to endogenous mtDNA (35). They

found that TLR9 expression is also required for AMPK-regulated

effects on glucose metabolism during the stress of acute exercise.
Therefore, the data suggest that under normal physiological

conditions, transient TLR9 activation by mtDNA to activate

AMPK is part of a normal physiological process. A biological

mechanism that controls the transient activation of AMPK in

normal physiology may be important, as it was demonstrated

that a constitutively activated AMPK in mice induced obesity

and reduced beta cell function (207).
The connection between beclin1, a regulator of autophagy,

and TLR9 was the result of a screen to identify proteins that

interacted with a region of beclin1 that is sufficient to promote

autophagy when introduced exogenously (208). Beclin1 is a key

part of phosphatidylinositol 3-kinase complex (PI3KC3)

signaling in the endosome (209). The association with beclin1
led the group to find that TLR9 is also required for the

association of beclin1 and UVRAG. UVRAG is another key

component of the Class II phosphatidylinositol 3-kinase complex

(PI3KC3-C2) crucial for endosomal signaling. The conclusion

was that TLR9 regulates the assembly of PI3KC3-C2, which in

turn regulates AMPK activity.

In a separate stream of work, Nemazanyy et al. found that a
PI3KC3 complex containing UVRAG was a key node in the

negative feedback inhibition of metabolic signaling (210). The

PI3KC3 complex they investigated contained UVRAG, beclin1,

and Vps15, common core components to Class II and Class III

PI3KC3 (211). Vps15 acts as the regulatory subunit of PI3KC3.

Through experiments that interfered with the expression of
Vps15, they made the novel finding that PI3KC3 containing

UVRAG and beclin1 had a previously unappreciated role in

whole body nutrient homeostasis and control of metabolic

adaptation. In vivo¸ hepatic downregulation of Vps15

significantly improved glucose tolerance in ob/ob mice,

decreased liver steatosis, and decreased hepatic triglyceride

levels without the observation of a change in plasma
metabolite levels. The findings were consistent with reports

that established Vps15 as part of a complex thought to

integrate environmental cues through an AMPK-dependent

mechanism (212). Changing AMPK cellular localization,
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ordinarily present in both the cytoplasm and nucleus but in

periods of stress (including cellular oxidants) shifts to the

nucleus, is surely a part of this story (213). That TLR9 is a

likely component, even rate-limiting component, of the PI3KC3

complex puts the receptor front and center in metabolic

regulation through environmental cues.
One possibility is that chronic stimulation of TLR9 by

endogenous mtDNA in states of overnutrition leads to the

constitutive negative feedback of metabolic or autophagy

signals through TLR9’s regulation of PI3KC3 assembly. This is

consistent with AMPK downregulation and its role in liver

damage in NASH (139, 214, 215). The regulation of expression
of the TLR9-interacting protein beclin1 is significantly different

in lean and obese states. When HFD-fed obese and lean mice are

maintained on a 15 day 40% caloric restriction, then returned to

ad libitum feeding on their original diets, refeeding led to a

greater than 2-fold increase in beclin1 in the visceral adipose

tissue in the obese mice whereas an 80% reduction in beclin1 was
observed in the lean mice (216). Similarly, in humans, beclin

expression was significantly higher in the adipose tissue of both

non-diabetic and diabetic obese subjects than lean controls.

Following gastric bypass, a significant drop in the expression of

beclin was observed in both the obese groups. It is unknown how

Vps15 responds in states of overnutrition. However, the

discoveries that deficiency in other adaptor protein components
of the Beclin1-Vps15 complexes in the AMPK pathway leads to

lipid accumulation in the liver echoes the importance of this

regulatory system to which TLR9 belongs (217). The two-way

regulation of PI3KC3 complexes by AMPK is complex (212), and

more investigation into the role TLR9 and TLR9 stimulation in

both lean and obese states play in this pathway is needed.
Other mechanisms that modulate TLR9’s involvement between

inflammation and energy modulation in non-immune cells have

also been reported. In normal physiological systems, it was

reported that TLR9 reduces energy substrates (intracellular ATP)

in stressed cardiomyocytes by activating AMPK (34). AMPK

activation may be turned off in disease-state TLR9 activation by

the pivotal switch, Unc93b1. The shRNA-mediated knockdown of
Unc93b1 in macrophages could replicate the AMPK activation

observed in the cardiomyocytes instead of observing the more

prototypical inflammatory response. Conversely, overexpression of

Unc93b1 in cardiomyocytes reduced TLR9-induced AMPK

activation and activated inflammatory signaling. Unc93b1

overexpression also transformed the trafficking of both TLR9 and
endocytosed CpG DNA so the agonist and cognate receptor could

successfully meet in the endosome. They validated the results in a

completely different kind of non-immune neuroblastoma cell line.

Therefore, Unc93b1 may be an additional regulatory component in

the switch fromTLR9 activation of AMPK out of self-protection, to

AMPK silencing in a disease state. Indeed, in the severely obese,

UNC93B is upregulated (Lawless and Greene 2012, Clayton 2016).
While there is no reported direct interaction between UNC93B1

and regulation of the PI3KC3 complex, they have shared

involvement in TLR9 stabilization, endosomal transport, and

modulation of AMPK (218). The possible decoupling of TLR9

and AMPK through TLR9 overaction needs to be investigated.

Cutting the Endocrine Brakes
on TLR9 Signaling
Impaired AMPK activation is intimately tied to another impaired

global signaling system in NASH, the adipokine adiponectin.

Adiponectin receptor activation increases AMPK and PPARs,

resulting in increased fatty acid oxidation and glucose utilization

(219, 220). Adiponectin also has anti-inflammatory properties
targeted toward both hepatic and immune cells (221). The

hormone targets the key organs involved in metabolic

regulation, including the liver, heart, pancreatic b cells, kidney,

and skeletal muscle. Scherer’s landmark discovery in 1995 of

adiponectin marked the beginning of understanding the

hormone’s intimate ties to the metabolic syndrome (222–224).

Metabolic syndrome is strongly associated with decreased levels
of circulating adiponectin, “hypoadiponectinemia”. A number of

studies, too many for inclusive citation here, have demonstrated

the strong association between NASH and decreased levels of

circulating adiponectin in both adults and pediatrics (225–228).

NASH patients have lower circulating adiponectin levels than

patients with NAFLD (229).
Adiponectin is an inhibitor of TLR9 signaling. Yamaguchi

et al. found that pretreatment of macrophages with globular

adiponectin significantly inhibited NF-kB activation after CpG

DNA stimulation (230). The adiponectin levels that suppressed

TLR9 activation in vitro were consistent with those observed in

metabolically healthy, non-obese Caucasian subjects and also

Asian subjects without NAFLD (231, 232). Therefore,
adiponectin is yet another braking mechanism for TLR9

activation that is removed in subjects with NASH. Studies to

determine a direct association between circulating adiponectin

levels, TLR9 activation and the severity of NASH and fibrosis

should be pursued.

Convergence to NASH and
NASH-Associated Fibrosis
By this moment in time, the totality of the literature suggests a

robust positive feedback loop exists between the liver, gut, and

adipose compartments involving circulating mtDNA triggering

TLR9-dependent inflammatory activation in immune cells and
upregulation of TLR9 in non-immune cells. The putative

decoupling of TLR9 from AMPK may further dysregulate

macrophage polarization in adipose tissue, further amplifying

the paracrine loop between adipocytes and infiltrating

macrophages (233, 234). Outside the liver-VAT-gut axis, TLR9

overactivation may induce podocyte apoptosis, accelerating
insulin resistance and leading to the metabolic syndrome

(235, 236).

Concurrent with the upregulation of TLR9 across various

tissues, the molecular brakes tempering TLR9 activation have

been removed, such as PPAR signaling, which forms a feed-

forward loop with aberrant TLR9 trafficking to result in TLR9

signal amplification. The inflammatory milieu attracts
neutrophils into the liver, and subsequent neutrophil

overaction leads to the secretion of mtDNA webs.

The positive feedback loop continues to exacerbate

hepatocyte cell degeneration with aberrant AMPK signaling
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leading to hepatocyte cell death (237, 238). Apoptotic hepatocyte

DNA provides both a stop signal and stationary phenotype‐

associated up‐regulation of collagen, both dependent on TLR9,

in stellate cells (239). Gabele demonstrated that CpG stimulation

of both human and murine hepatic stellate cells increases levels

of the profibrogenic chemokine monocyte chemotactic protein 1
(MCP-1) and that TLR9-/- rodents had significantly less MCP-1

and a1(I) collagen mRNA expression, and less fibrosis by

histology when challenged with bile duct ligation (78).

Hypoadiponectinemia makes stellate cells more susceptible to

activation (240).

Evidence supports that mtDNA from degenerated, injured, or
apoptotic hepatocytes leads to hepatic fibrosis. Ballooned

hepatocyte cells are independently associated with both

sinusoidal fibrosis and perivenular fibrosis in NASH patients

(241). Popov demonstrated that the failure to clear dead

hepatocytes by persistent macrophage infiltrates (impaired

efferocytosis) led to fibrosis in a thioacetamide (TAA)-induced
model offibrosis in mice (107). In the TAAmodel, they observed a

3-fold elevation of circulating mtDNA in serum levels post-TAA

treatment in a mouse strain that was particularly susceptible to

fibrosis because of impaired efferocytosis. The same elevation in

circulating mtDNA post-treatment was not observed in a mouse

strain resistant to TAA-induced fibrosis that also had functioning

efferocytosis. The group could recapitulate the severity of fibrosis
of the susceptible mice in the resistant mice by injecting the

resistant mice with mtDNA post-TAA treatment. The injection of

mtDNA in the resistant mice mimicked the prolonged exposure

by susceptible mice to circulating mtDNA. The “resistant” mice

developed significant liver fibrosis.

When Popov isolated hepatic stellate cells in vitro and treated
them with increasing doses of purified mtDNA from

hepatocytes, dose-dependent changes were observed in

morphology characteristic of activation, increased proliferation,

and profibrogenic gene expression. Therefore, stellate cell

fibrogenesis seems directly linked to circulating mtDNA. TLR9

on stellate cells may be the primary receptor for detecting the

prolonged elevations in circulating mtDNA in progressive
NASH, and hepatic fibrogenesis advances.

THERAPEUTIC PERSPECTIVE

The cumulative data supports that TLR9 antagonism is a
promising therapeutic approach to treating NASH. TLR9’s

place at the intersection of metabolism and inflammation is an

important node for promising therapeutic intervention. Any

therapy developed for this indication needs to be safe and well-

tolerated across a broad population of people, and the safety

database for TLR9 antagonism is supportive (242).

The most promising cornerstone strategies for NASH are
likely those with comprehensive biological activity that match

the multifactorial pathogenesis of NASH disease. Advances in

FGF21 and GLP-1 analogs with clinical action on body weight,

lipids, and adipokines are particularly interesting (243, 244).

Both strategies fall under the category of metabolic agonists.

Other late-stage pipeline candidates address narrower biology

and disease nodes less proximal to positive energy balance, such

as inflammation and cellular stress (ASK1 and CCR2/5

antagonists), lipid metabolism (thyroid hormone analogs),

and de novo lipogenesis (FXR agonists) (245). The landscape

covers the various therapeutic hypotheses of the main
pathogenic mechanisms of NASH and NASH-associated

fibrosis. The question remains what level of information exists

to indicate that a patient will have a superior benefit-risk to a

prescribed therapy.

The multi-factorial nature of NASH pathogenesis has made

the afflicted population difficult to subset. The clinical interest in
finding subsets of a disease population is in selecting patients

more likely to respond to a therapeutic strategy, one component

of precision medicine (246). That patients more likely to respond

to TLR9 antagonism may be identified by measurement of

circulating levels of TLR9 agonist or by observation of TLR9

(over)-expression in hepatic or adipose tissue, or by a
combination of both, could allow for a degree of precision

medicine in such a complex disease.

However, the data supports that circulating mtDNA levels are

significantly elevated in the vast majority of NASH and NASH-

fibrosis patients who are obese, and TLR9 activation is

significantly associated with disease severity in unenriched

cohorts of NASH and NASH-fibrosis patients. There may not
be a bright line separating minimal and maximal responders—it

may bemore of a “ragged edge,” as Fleck calls it (247). The existing

data suggest that TLR9 antagonism would benefit the broad

majority of patients with NASH and NASH-fibrosis. The

hypothesis merits clinical testing.

One of the primary advantages of TLR9 antagonism in NASH
may be in the therapeutic index. Upon reviewing the research, we

see that many of the molecular players coupled to TLR9 signaling

are therapeutic targets in the current pipeline for NASH and

NASH-fibrosis (248, 249). PPAR and AMPK signaling are

compelling targets. While targeting those pathways with

molecular agonists have shown effectiveness, they come with

questionable safety profiles for use in broad populations (250,
251). Further, these molecular agonists are small molecules with

systemic bioavailability, and therefore have pharmacologic (and

potentially toxicologic) effects on critical organs not fundamental

to NASH and NASH-fibrosis pathogenesis. The TLR9

antagonists used most often in the studies described here are

oligonucleotide antagonists. The liver-gut-adipose-centric
bioavailability of this mode of delivering TLR9 antagonism

would seem to have an advantage in keeping the highest free

drug concentrations limited to those organs most involved in the

pathogenesis of NASH disease (252).

While adiponectin is a tempting target, there is no current

strategy that allows for the direct drugging for adiponectin

elevation (253). Adiponectin elevations secondary to other
drug targets have proven clinically impactful. Observations of

adiponectin elevations upon pharmacological PPARg activation

go back to 2002 (254). Merck Research Laboratories was quick to

use adiponectin elevations as an example of a “putative

biomarker” for PPARg activity even in the nascent stage of

Shepard TLR9 in NASH

Frontiers in Endocrinology | www.frontiersin.org January 2021 | Volume 11 | Article 61363914

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


biomarker application to drug development (255). Later, Cusi

and colleagues demonstrated in clinical trials of the PPARg

activator pioglitazone that adiponectin elevation is the best

predictor of histologic response in NASH and fibrosis (256,

257). Clinically relevant adiponectin elevations secondary to

TLR9 antagonism would be a significant therapeutic advance.
Finally, TLR9 antagonism is compelling as a therapeutic

strategy in NASH because it targets a positive feedback loop

dependent on a chronic disease-specific signal, circulating

mtDNA. Allowing the system to reset by pharmacologically

returning to a more homeostatic state of inflammation and

metabolism, one without chronic activation of TLR9 by
mtDNA, is a plausible strategy for efficacious therapy.

Antagonizing a disease-specific signal limits the safety liabilities

associated with metabolic agonists.

CONCLUSION

The critical mass of research supporting TLR9’s importance in

the pathogenesis of NASH and NASH-associated fibrosis
includes an integral role in the inflammatory process that fuels

NASH, as well as a metabolic one. Elevated levels of circulating

mtDNA in patients with NASH and NASH-associated fibrosis,

along with the association between TLR9 pathway activation and

NASH disease severity, is strongly suggestive when combined

with the mechanistic animal models of disease. TLR9’s role in

hypoadiponectinemia has implications for insulin sensitive
tissues throughout the body. The evidence suggests that TLR9

functions as a critical node that modulates at least three master

regulators of NASH pathogenesis: AMPK, PPAR, and NF-kB.

Much more is known about TLR9’s role in the inflammatory

process than in dysregulated metabolism. There are undoubtedly

unexplored research areas in how TLR9 coordinates the PI3KC

complex that could prove valuable in elucidating new therapeutic

targets or strategies to target TLR9 signaling. The evidence

supports that TLR9 is an important node in the inflammatory

and dysfunctional metabolic components of NASH and NASH-

associated fibrosis. Targeting TLR9 in NASH may prove an
efficacious clinical strategy for a disease that is still an unmet

medical need for a large fraction of the population.
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