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ABSTRACT: 

 

Remote sensing techniques are an important tool in fluvial transport monitoring, since they allow for effective evaluation of the volume 

of transported material. Nevertheless, there is no methodology for automatic calculation of movement parameters of individual rocks. 

These parameters can be determined by point cloud registration. Hence, the goal of this study is to develop a robust algorithm for 

terrestrial laser scanning point cloud registration. The registration is based on Iterative Closest Point algorithm, which requires well 

established initial parameters of transformation. Thus, we propose to calculate the initial parameters based on key points representing 

the maximum of Gaussian curvature. For each key point the set of geometrical features is calculated. The key points are then matched 

between two point clouds as a nearest neighbor in feature domain. Different combinations of neighborhood sizes, feature subsets, 

metrics and number of nearest neighbors were tested to obtain the highest ratio between properly and improperly matched key points. 

Finally, RANSAC algorithm was used to calculate the initial transformation parameters between the point clouds and the ICP algorithm 

was used for calculation of final transformation parameters. The investigations carried out on sample point clouds representing rocks 

enabled the adjustment of parameters of the algorithm and showed that the Gaussian curvature can be used as a 3-dimentional key 

point detector for such objects. The proposed algorithm enabled to register point clouds with the mean distance between point clouds 

equal to 3 mm. 

 

1. INTRODUCTION 

One of the tasks undertaken as a part of hydrological and 

geomorphological research is fluvial transport monitoring. The 

knowledge of the movement of different rock fractions in the 

river bed enables to predict future changes in surface relief 

formation, and to determine the river bed parameters. 

 

Because of its complicated nature, fluvial transport investigation 

requires high quality sedimentary measurements. Traditionally, 

this measurements are performed using sediment traps (e.g. 

Garcia et al., 2000; Bergman et al., 2007) or tracers (e. g. Olinde 

& Johnson, 2015; Ancey & Heyman, 2014). Nowadays, to 

support these methods and to avoid toilsome field work, various 

remote sensing techniques are being introduced to this research 

field. 

 

Many researchers (e.g. Picco et al., 2013; Kuo et al., 2015; 

Barnhart et al., 2013; Bertin et al., 2015) demonstrated that the 

remote sensing techniques allow for an effective and fast 

estimation of the volume of dislocated rock material. However, 

determining movement parameters of individual rocks is still a 

challenging task, because a rock can be not only displaced but 

also rotated in 3D space causing that different part of stone 

surface is scanned during different data acquisition campaigns. 

The research conducted by Jóźków et al. (2016) and Lotsari et al. 
(2015) showed that the horizontal movement of individual rocks 

can be investigated by means of laser scanning point cloud data 

analysis, but in both cases the detection of individual stone 

movements was performed manually. Therefore, an algorithm for 
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an automatic calculation of individual rock movement 

parameters is needed. 

 

The overall goal of this research is to automatically determine the 

movement of individual rocks, based on multi-temporal point 

clouds. The specific goal of this study is to develop a robust 

algorithm for two-epoch point cloud registration. The approach 

is built on three assumptions. Firstly, two point clouds were 

acquired during different epochs. As a result, the shape of objects 

may be slightly changed between the scans. Secondly, objects 

represented by the point clouds have oblong, rounded shape. 

Finally, one of point clouds represents a wider scene than the 

other. An example of such case is shown in Figure 1. 

 

 
Figure 1. Example of terrestrial laser scanning point clouds 

under registration; reference point cloud – point cloud 1; 

aligned point cloud – point cloud 2. 
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2. TEST SITE AND DATA ACQUISITION 

The study area is located in south-western Poland in Giant 

Mountains, the highest part of Sudeten. Łomniczka river was 

chosen as the research object based on its two features: the river 

bed contains a lot of large-size rocks and during the autumn the 

water level is low, what enables measurements of lower parts of 

stones. 

 

The measurements were carried out annually in years  

2011-2017. The data was collected by means of terrestrial laser 

scanner – Leica ScanStation C10 and Leica ScanStation P20. The 

measurements were performed from two scanner positions. The 

resulting point clouds were co-registered and georeferenced 

based on three evenly distributed targets, which coordinates were 

determined with centimeter-level accuracy.  

 

The measurements resulted in creation of 7 point clouds – one for 

each year. For the purposes of this research, the selected parts of 

point clouds acquired in years 2011 and 2013 were used.  The 

density of the point clouds is approximately 119 000 points/m2. 

 

3. METHODOLOGY 

3.1 ICP algorithm 

To register point clouds, the Iterative Closest Point (ICP) 

algorithm was chosen. The ICP algorithm is a method to co-

register two or more point clouds by iterative minimization of the 

distance between corresponding points from two point clouds. 

The algorithm finds corresponding points in point clouds based 

on closest point assumption. The algorithm can be divided into 

five steps (Glira et al., 2015): 

1) Selecting a subset of points lying in the overlap area of two 

point clouds. 

2) Finding correspondences of selected points in the second 

point cloud. 

3) Rejecting false correspondences. 

4) Calculating the transformation parameters between the point 

clouds. 

5) Transformation of the point cloud 2 based on calculated 

parameters. 

To register the point clouds, the ICP algorithm implemented in 

OPALS (Glira et al., 2015) software was chosen. However, the 

ICP algorithm requires initial parameters of transformation, 

especially when the significant rotation occurs. To solve this 

problem, we suggest to find and match key points in the point 

clouds. 

 

3.2 Key points detection 

The identification of key points was performed based only on 

geometrical information. Firstly, the data was smoothed to avoid 

false key point detection. To do this, the Moving Least Squares 

algorithm implemented in Point Cloud Library was used (Rusu 

& Cousins, 2011). Then the Gaussian curvature was calculated 

based on local neighborhood. The choice of Gaussian curvature 

as a geometrical feature describing key points was caused by the 

specific, oblong shape of rocks. Because of this shape,  proper 

identification of key points by standard algorithms, which base 

only on geometry information (e.g. Intrinsic Shape Signatures - 

Zhong Y., 2009) was impossible due to the lack of detected key 

points. 

 

In the next step, the local maxima of Gaussian curvature were 

found using the algorithm shown in Figure 2. At the beginning, 

the point cloud is loaded. Each point has the following attributes: 

x, y planar coordinates, h – height, and c – Gaussian curvature. 

All points in the point cloud are marked as 'not visited'. Next, the 

KDTree is built for fast neighboring points selection. Then the 

first point k marked as ‘not visited’ is selected. After that, for this 
point, a spherical neighborhood of the radius r is investigated. 

Then, the maximum value of Gaussian curvature in this 

neighborhood is found. If the maximum value belongs to the 

point k, all points in the neighborhood are marked as 'visited', 

point k is marked as local maximum, and the next point marked 

as 'not visited' is selected as the new point k. Otherwise, all points 

in the neighborhood having Gaussian curvature lower than points 

k curvature are marked as 'visited' and the next point marked as 

'not visited' is selected as the new point k. After that, all steps are 

repeated until all points in the point cloud are marked as 'visited'.  

As a result, a set of points representing local maxima and 

consequently key points is constructed. 

 

 
Figure 2. Local maxima detection algorithm 

 

3.3 Key points matching 

The key point matching was based only on geometrical 

information. For each key point the set of local descriptors was 

calculated based on spherical neighborhood of these points. The 

following features were calculated: 

 

 Sphericity 𝑆𝜆 = 𝜆3𝜆1 (1) 

 Linearity 𝐿𝜆 = 𝜆1 − 𝜆2𝜆1  (2) 

 Planarity 𝑃𝜆 = 𝜆2 − 𝜆3𝜆1  (3) 

 Anisotropy 𝐴𝜆 = 𝜆1 − 𝜆3𝜆3  (4) 

 Omnivariance 𝑂𝜆 = √∏ 𝜆𝑖3
𝑖=1

3
 (5) 
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 Eigentropy 𝐸𝜆 =  − ∑ 𝜆𝑖ln (𝜆𝑖)3
𝑖=1  (6) 

 Local surface variance 𝐶𝜆 = 𝜆3∑ 𝜆𝑖3𝑖=1  (7) 

 Sum of eigenvalues Σ𝜆 = ∑ 𝜆𝑖3
𝑖=1  (8) 

 Number of points in the local neighborhood 

 Gaussian curvature 

Where 𝜆𝑖  , 𝑖 = 1, 2, 3 are singular values of the covariance matrix 

calculated for coordinates of neighboring points. 

 

Based on calculated local descriptors, matching key points were 

selected for the point cloud representing a single stone. The 

matching points were indicated as n nearest neighbors in the 

feature domain. The nearest neighbors were selected based on 

one of three metrics: Manhattan (Equation 9), Euclidean 

(Equation 10), and Maximum (Equation 11). Different 

combinations of neighborhood sizes, feature subsets, metrics, 

and number of nearest neighbors were tested on a rock sample to 

obtain the highest rate (Equation 12) between the number of 

properly and improperly identified key point pairs. 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 =  |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| +  |𝑧1 − 𝑧2|  (9) 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 (10) 𝑑𝑀𝑎𝑥 = max(|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧 − 𝑧2|) (11) 

 

where: 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 – distance between two 3D-points in Manhattan            

metric 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 – distance between two 3D-points in Euclidean metric 𝑑𝑀𝑎𝑥 – distance between two 3D-points in Maximum metric 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 – coordinates of point belonging to i-th point cloud  

 𝑅 =  number of properly identified key point pairs number of improperly identified key point pairs  (12) 

 

 

3.4 Initial parameters calculation 

As a result of the further processing, the list of best matching 

point pairs between the point clouds has been created. Wherein, 

to each key point in the point cloud representing stone, the n 

points in the larger point cloud are assigned. As a result, both 

correct and incorrect assignments have been included in the 

created list. Because of that, the Random Sample Consensus 

(RANSAC) algorithm was used for robust calculation of initial 

parameters for the ICP algorithm. 

 

RANSAC algorithm is an iteration-based method designed for 

robust fitting model to experimental data. In each step of the 

processing, RANSAC algorithm randomly selects required 

number of points from each dataset and, based on these points, 

calculates the parameters of the model. After that, number of 

points compatible with the model is counted. The algorithm 

terminates when one of the following conditions is met: 

1) When the specified number of points is found compatible, 

the transformation parameters calculated in this iteration are 

chosen as final model parameters. 

2) When the specified number of iterations is finished, the 

transformation parameters with the biggest number of 

points compatible with the model are chosen as the final 

model parameters. 

 

Therefore, the RANSAC algorithm needs three parameters to be 

specified: the number of subsets to try, the number of compatible 

points that imply that the correct model parameters have been 

found, and the threshold to decide if the point is compatible with 

the model (Fischler and Bolles, 1981). 

 

For the purposes of this research, the possible combinations of 

points in both point clouds were limited to the matching points 

found in previous step. As a result, in each iteration of RANSAC 

algorithm 3 pairs of matching points were selected. Then, the 

rigid transformation parameters were calculated based on these 

pairs. Next, the key points detected in aligned (point cloud 2) 

point cloud were transformed using calculated parameters and the 

distance between matching key points was calculated. The initial 

parameters with the biggest number of compatible points were 

chosen. 

 

During the experiments, different combinations of threshold 

values, and number of iterations were tested. The number of 

compatible points that imply that the correct model parameters 

were found has been defined as the number of key points in point 

cloud representing stone. 

 

4. RESULTS 

4.1 Key points detection 

Before Gaussian curvature calculation, each point cloud was 

smoothed using Moving Least Squares algorithm implemented in 

Point Cloud Library with the following parameters: 

 search radius – 5 cm 

 polynomial order – 2. 

The results of smoothing performed on example point cloud are 

shown in Figure 3. 

 

 
Figure 3. Smoothing results 

 

Then the Gaussian curvature was calculated and local maxima 

were detected. Due to the specificity of the algorithm used for 

local maxima detection, the size of the neighborhood is the most 

important factor for the quality and the number of key points. 

Therefore, different sizes of the neighborhood were tested on 

three randomly chosen rock samples of different sizes. Five 

different diameters of the neighborhood were examined – from 2 

to 6 cm every 1 cm. The results were visually interpreted and the 

neighborhood size of 3 cm was chosen as a compromise between 

the processing time, number of key points, and key point location 

with respect to Gaussian curvature value. The results of key point 

detection in point clouds acquired in years 2011 and 2013 are 

shown in Figure 4. 
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Figure 4. Key point detection results for the neighborhood size 

of 3 cm. Blue, white, red – Gaussian curvature, green – key 

points 

 

4.2 Key point matching 

Before feature calculation and key point matching five 

parameters have to be defined: 

 radius for feature calculation, 

 feature vector length, 

 feature combination, 

 metric used for finding nearest neighbors, 

 number of nearest neighbors. 

 

To obtain optimal result, different combinations of parameters 

were tested. The experiments included: 

 4 radius sizes – 0.03 m, 0.05 m, 0.1 m, 0.2 m, 0.3 m; 

 9 lengths of feature vector; 

 511 different combinations of features; 

 3 metrics – Manhattan, Euclidean, and maximum; 

 10 numbers of nearest neighbors – from 1 to 10. 

 

The achieved results are shown in the Figures 5-7. The points 

indicate test cases. The color is marked with the value of rate 

between the number of properly and improperly identified key 

point pairs (Equation 9). The maximum value of the R rate (0.42) 

was achieved for one of the test cases. As a result the following 

combination of parameters was chosen: 

 radius size – 0.1 m; 

 length of feature vector – 6; 

 combination of features – Gaussian curvature, sphericity, 

linearity, anisotropy, local surface variance, sum of 

eigenvalues; 

 metric – Manhattan; 

 number of nearest neighbors – 1. 

 

 
Figure 5. Results of the experiments for Manhattan metric 

 

 
Figure 6. Results of the experiments for Euclidean metric 

 

 
Figure 7. Results of the experiments for maximum metric 

 

4.3 Registration 

The registration was divided into two steps. Firstly, the RANSAC 

algorithm based on matched key point pairs was used to calculate 

the initial transformation parameters. In this step, the experiments 

were focused on choosing the best parameters for RANSAC 

algorithm. The threshold values of 3 cm, 5 cm, 10 cm, 15 cm, and 

20 cm and iteration numbers of 10, 50, 100, 500, and 1000. Each 

parameter combination was tested 100 times. The results were 

evaluated based on value of mean distance between point clouds 

transformed manually and automatically. The results of the 

experiments are shown in the Figure 8. The smallest error was 

achieved for 5 cm threshold value and 1000 iterations. Therefore, 

these parameters were chosen as the optimal ones. Secondly, the 

ICP algorithm implemented in OPALS software was applied to 

calculate final transformation parameters. The proposed 

algorithm enabled to register the point clouds and to achieve 

0.003 m mean distance between point clouds. 

 

 
Figure 8 Results of the experiments with RANSAC parameters 
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After the parameters adjustment, the algorithm was launched on 

two validation sets representing different rocks located in the 

Łomniczka river bed. The proposed algorithm enabled to register 

the point clouds and to achieve less than 0.003 m mean distance 

between point clouds. An example result of the proposed 

algorithm is shown in Figure 9 -11. 

 

 
Figure 9 Initial position of point clouds; red – aligned point 

cloud 

 

 
Figure 10 Position of point clouds after initial transformation, 

red – aligned point cloud 

 

 
Figure 11 Position of point clouds after ICP registration – 

aligned point cloud 
 

5. CONCLUSIONS 

In this study, a robust method for point clouds registration based 

on ICP algorithm has been proposed. The tests were conducted 

on terrestrial laser scanning point clouds representing river bed 

covered by rocks of different sizes. The proposed method 

involved key point detection and matching to obtain initial 

parameters of the transformation required by ICP algorithm. Due 

to the rounded, oblong shape of rocks, the key point detection 

was based on Gaussian curvature maxima detection.  

 

The experiments showed, that the proposed algorithm allows for 

the registration of two point clouds even in the case of extremely 

adverse initial conditions such as: 

 different acquisition campaign of the point clouds, which 

leads to object shape changes; 

 oblong, rounded shape of the objects under registration; 

 one of the point clouds represents wider scene than the other. 

 

The investigations carried out on sample point clouds 

representing rocks enabled the adjustment of the parameters of 

the algorithm and showed that the Gaussian curvature can be used 

as a 3-dimentional key point detector for such objects. The 

proposed algorithm enabled to register point clouds with the 

mean distance between point clouds equal to 3 mm in both test 

and validation sets. 

 

The proposed method is a vital part of the algorithm for 

monitoring the rock movement in the mountain river bed since it 

enables calculation of the rock movement parameters (translation 

and rotation) between two measurement epochs. 
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