
TMD-MPI: AN MPI IMPLEMENTATION FOR MULTIPLE PROCESSORS ACROSS
MULTIPLE FPGAS

Manuel Saldaña and Paul Chow

Department of Electrical and Computer Engineering
University of Toronto

Toronto, ON, Canada M5S 3G4
email: {msaldana,pc}@eecg.toronto.edu

ABSTRACT

With current FPGAs, designers can now instantiate several
embedded processors, memory units, and a wide variety of
IP blocks to build a single-chip, high-performance multipro-
cessor embedded system. Furthermore, Multi-FPGA sys-
tems can be built to provide massive parallelism given an
efficient programming model. In this paper, we present a
lightweight subset implementation of the standard message-
passing interface, MPI, that is suitable for embedded proces-
sors. It does not require an operating system and uses a small
memory footprint. With our MPI implementation (TMD-
MPI), we provide a programming model capable of using
multiple-FPGAs that hides hardware complexities from the
programmer, facilitates the development of parallel code and
promotes code portability. To enable intra-FPGA and inter-
FPGA communications, a simple Network-on-Chip is also
developed using a low overhead network packet protocol.
Together, TMD-MPI and the network provide a homoge-
neous view of a cluster of embedded processors to the pro-
grammer. Performance parameters such as link latency, link
bandwidth, and synchronization cost are measured by exe-
cuting a set of microbenchmarks.

1. INTRODUCTION

In the high-performance computing (HPC) community, pro-
gramming standards have been developed to make it pos-
sible to port applications between different multiprocessor
systems. Most notable are MPI [11] for message-passing
systems and OpenMP [13] for shared memory systems. For
a System-on-Chip (SoC), the call for a standard has also
been made [20, 18, 10], including the proposal of using
MPI [8, 24] in Multiprocessor System-on-Chip (MPSoC).

The development of large-scale, reconfigurable comput-
ing systems implemented on FPGAs will also require a pro-
gramming model and borrowing from the HPC community

We acknowledge the CMC/SOCRN, Xilinx for hardware and tools,
and CONACYT in Mexico provided funding to Manuel Saldaña. Thanks
to Chris Madill for his help with the tests, and Amirix Systems for help
with their boards.

is an approach that will make it easier to bring HPC appli-
cations into the reconfigurable computing domain. For the
TMD project [15], MPI has been chosen as the model be-
cause it works well for a distributed-memory system. A key
difference is that in the HPC world, all computations are
done using high-end microprocessors, whereas in an FPGA,
computations could be done in software on an embedded
processor or with a hardware engine. For a hardware en-
gine, a hardware MPI protocol engine is required.

In this paper, the focus is only on the functionality of a
software implementation of MPI targeted at embedded pro-
cessors. This implementation sets a reference model for the
future development of a hardware MPI engine.

We show a proof-of-concept platform that gives the pro-
grammer a unified view of the system, hides hardware com-
plexities and provides portability to application codes. To
test the functionality of the communication system we de-
velop a set of microbenchmarks to measure the link latency,
link bandwidth and synchronization cost.

The rest of the paper is organized as follows. Section 2
contrasts existing research with our approach. Section 3 de-
scribes the hardware testbed. Section 4 explains the MPI
software implementation. Section 5 presents the current
functionality of the library. Section 6 shows the TMD-MPI
performance tests results. Finally in Section 7 we conclude.

2. RELATED WORK

Message passing has proven to be a successful paradigm
for distributed memory machines, such as the grid infras-
tructure, supercomputers, clusters of workstations, and now
it is promising for MPSoC. At the on-chip level, research
has been done to provide message-passing software and
hardware, but some of the proposals rely on the existence
of an underlying operating system [21], which is an over-
head for memory and performance to each soft-processor.
Other approaches use a CORBA-like interface and DCOM
object model [16] to implement message passing. In Po-
letti [3] another message passing implementation is pre-
sented, but it does not use a standard application program
interface, so the application code is not portable. There

are other message-passing implementations, but they are de-
signed for real-time embedded systems [12] adding quality
of service, but still relying on an operating system. Fur-
thermore, some approaches are partial middleware imple-
mentations that assume other layers of software, such as a
hardware access layer on top of which the message-passing
library is built [9].

One way of providing MPI functionality to embedded
systems is to port a well-known implementation of MPI,
such as MPICH [5], but that requires resources that may not
be available on an on-chip embedded system. A commercial
MPI implementation for high-end embedded systems with
large memories is MPI/PRO [19]. A similiar approach to
ours, can be found in Williams [22], but it is limited to only
eight processors implemented on a signle FPGA.

In this work, we develop a new implementation of MPI
targeted at embedded systems tailored to a particular archi-
tecture, but easy to port to other systems. TMD-MPI does
not require an operating system, has a small memory foot-
print (8.7KB) and is designed to be used across multiple FP-
GAs to enable massive parallelism.

3. TESTBED SYSTEM

TMD-MPI has been developed as a result of the need for
a programming model for the TMD machine being devel-
oped at the University of Toronto [15]. The TMD machine
is a scalable Multi-FPGA configurable system designed to
accelerate computing intensive applications, such as Molec-
ular Dynamics.

Figure 1 shows the testbed hardware system used to de-
velop TMD-MPI. We use three Amirix AP1000 develop-
ment boards [1]. Each board has one Xilinx Virtex2-Pro
FPGA (XC2VP100) [23], two 32MB DDR-SDRAMs and
two 2MB SRAM. Each processor (µB) is a Xilinx MicroB-
laze soft-processor with an internal 64KB RAM memory
(BRAM) connected to the Local Memory Bus (LMB) that
stores the TMD-MPI and application code. The external
RAM is used to store only data and is accessed by each
MicroBlaze through an external memory controller that is
attached to the On-chip Peripheral Bus (not shown in Fig-
ure 1).

Our multi-FPGA testbed system has two networks, one
for intra-FPGA communications and one for inter-FPGA
communications. We achieve this by developing a switch, a
bridge, and an off-chip communications controller (OCCC)
hardware block as shown in Figure 1.

The on-chip switch hardware block is a simple network
interface that routes the ongoing packets according to the
destination field (DEST in Figure 2). On the receiving side,
the switch is a multiplexer controlled by channel priority
logic. The switch is attached to the MicroBlaze using point-
to-point communication channels implemented with Fast
Simplex Links (FSL), which are essentially asynchronous
FIFOs. Each MicroBlaze is attached to its own switch and
the switches are fully interconnected as we want every node

BRIDGE

OCCC

FPGA

BRIDGE

OCCC

µBBRAM

µBBRAM

µBBRAM

DDR
RAM

SRAM
 RAM

DDR
RAM

BRIDGE

OCCC

FPGA

BRIDGE

OCCC

µBBRAM

µBBRAM

µBBRAM

DDR
RAM

SRAM
 RAM

DDR
RAM

BRIDGE

OCCC

FPGA

BRIDGE

OCCC

µB BRAM

µB BRAM

µB BRAM

DDR
RAM

SRAM
 RAM

DDR
RAM

µBSwitch

FIFO

MicroBlaze soft-processor

BRAM Internal RAM

MGT Links

Fig. 1. Testbed hardware system used to develop TMD-MPI

to communicate to all nodes on-chip.
The OCCC [2] is a hardware block that provides an

interface between internal FSLs and the high speed serial
links called the MultiGigabit Transceivers [23] (MGTs) in
the Xilinx FPGAs. The OCCC provides a reliable commu-
nication link between FPGAs by checking CRC errors and
handling packet retransmissions if necessary. The OCCC is
seen as another network node and it has its own switch.

The internal network is more reliable than the external
network because all data is interchanged within the chip, as
opposed to the external network, which is exposed to sig-
nal interference and transmission errors. Therefore, the in-
ternal packet and external packet formats are different, and
a bridge block is required to perform packet translation and
enable the communication between processors across differ-
ent FPGAs. The external packet format used by the OCCC
includes the internal network packet as part of the payload.
The internal network packet will be recovered as it passes
through the receiving bridge. Both packet formats are shown
in Figure 2. The external packet network format is not im-
portant to this work and is described in detail in Comis [2].

For the internal packet, the SRC and DEST fields are
8-bit values that identify the sender and the receiver respec-
tively. In the current implementation only 256 processors
are addressable, but this will be increased in future ver-
sions by expanding the width of the source and destination
fields. NDW is a 16-bit value that indicates the message
size in words (Number of Data Words); each word is four
bytes wide. Consequently the maximum message size is
216 × 4 = 256 KBytes. The TAG field is the MPI message
tag value that is used to identify a message.

The system has two clock domains, one clock at
125MHz for the OCCC, and a clock of 40 MHZ for the rest
of the system. Since the focus of this work is on function-
ality, we chose such frequencies to not complicate the place
and route process. Additionally, each MicroBlaze requires
an interrupt controller and a timer used for profiling pur-
poses (not shown in the Figure 1). The resources required
to implement each FPGA in Figure 1 are 26% of the total
number of slices and 26% of the total BRAM available on
the chip.

SRC DEST NDW

TAG

DATA . . .

SOP Packet Size Sequence #
Source Addr Dest Addr.

Almost EOP

EOP/CRC Filter

DATA . . .

Internal Network Packet External Network Packet

Fig. 2. Packet Formats

4. TMD-MPI IMPLEMENTATION

Currently, TMD-MPI is software-based, as it is easier to
learn, develop, test and modify. Eventually, much of the
functionality in TMD-MPI can be transferred to hardware
to have a more efficient communication mechanism and de-
crease the overhead of the software implementation. The
software-only version can be used where performance is not
critical or where adding more hardware is not desired.

Elements that typically conform to an MPI implemen-
tation, such as communication protocols, pending message
queues, packetizing and depacketizing large messages are
design decisions discussed in this section.

4.1. A Layered approach

From the development perspective, an MPI layered imple-
mentation approach, such as used by MPICH, is convenient
because it provides portability for the library. To port the
MPI implementation to a new platform, or to adapt it to a
change in the hardware architecture, it is required to change
only the lower layers; the top layer and application code
remain intact. Figure 3 shows the layered scheme imple-
mented in TMD-MPI.

MPI Application Interface
Point-to-Point MPI

Send/Recv Implementation
FSL Hardware Interface

Application

Hardware

{TMD-MPI

Layer 1
Layer 2
Layer 3
Layer 4

Fig. 3. Implementation Layers

Layer 1 refers to the API function prototypes and
datatypes available to the application. This layer is con-
tained in a C header file. In layer 2, collective operations
such as MPI Barrier, MPI Gather and MPI Bcast, are ex-
pressed in terms of simple point-to-point MPI function calls
(MPI Send and MPI Recv). Layer 3 is the implementation
of the MPI Send and MPI Recv functions that deals with
the protocol processing, performs packetizing and depacke-
tizing of large messages, and manages the unexpected mes-
sages. Layers 2 and 3 are both implemented in C code.

Layer 4 consists of four assembly-language macros that pro-
vide access to the MicroBlaze FSL interface. To port TMD-
MPI to a PowerPC, a new Layer 4 would be required and
some modifications to Layer 3 might be required, but Lay-
ers 1 and 2 would remain the same.

4.2. Rendezvous vs Eager Protocol

An important choice to make is between the Rendezvous and
Eager message-passing protocols, which translates into the
synchronous and buffer communication modes [11] in MPI,
respectively. The eager protocol is asynchronous because it
allows a send operation to complete without the correspond-
ing receive operation being executed. It assumes enough
memory at the receiver to store the entire expected or unex-
pected messages, which could be on the order of KBytes
or even MBytes depending on the message’s size, other-
wise buffer overflows will occur. If substantial memory for
buffering is allocated then it may lead to wasted memory
in cases where the buffer is underutilized. In an embedded
system, with limited resources this protocol may not scale
well.

The rendezvous protocol is synchronous and the pro-
ducer will first send a request to the receiver. This request
is called the message envelope and it includes the details of
the message to be transmitted. When the receiver is ready,
it will reply with a clear-to-send message to the producer.
Once the producer receives the clear-to-send message, the
actual transfer of data will begin. This protocol incurs a
higher message overhead than the eager protocol because of
the synchronization process. However, it is less demanding
of memory space and it is more difficult to incur buffer over-
flows because it only has to store message envelopes, which
are eight bytes long, in the event of unexpected messages.

We decided to use the rendezvous protocol in TMD-MPI
because of the smaller memory requirements. A mix of
both protocols would be desirable because an eager protocol
would be better for short messages reserving the rendezvous
protocol for large messages. This is an improvement sched-
uled for future versions of TMD-MPI.

4.3. Message queues

In typical MPI implementations, there are two different
queues: one for unexpected messages and one for ongoing
or pending receives. In TMD-MPI, we only use one queue
that stores the pending message requests at the receiver side.
When a process wants to send a message to the receiver, it
first sends a message envelope with the message informa-
tion. At the receiver, the receive function will try to match
the expected message with the envelope that has arrived. If
there is a match, then the receiver replies to the sender with
a clear-to-send message; otherwise the envelope would be
from an unexpected message, and it would be stored in the
pending messages queue for a possible future receive func-
tion call that does match the envelope. The receive function
calls will always look into the pending message queue for a

message envelope that might match the receive parameters
before starting to poll the FSL for the expected incoming
envelope. The current search algorithm within the queue is
linear for simplicity, but more efficient algorithms can be
implemented to reduce the search time if needed.

4.4. Packetizing and depacketizing

The OCCC supports a variable packet size between 8 and
2048 bytes. Each word has four bytes, therefore the packet
size is 512 words maximum, including the control words.
This restriction does not exist for the internal network be-
cause the MGTs are not used for on-chip communication.
However, for simplicity of implementing the MPI Send and
MPI Recv functions, the maximum packet size for the in-
ternal network was chosen to be the same as the packet
size for the external network. A packetizing process di-
vides large messages into packets no shorter than two words
and no longer that 512 words. Similarly, the inverse pro-
cess of joining the packets is called depacketizing and is
performed by the MPI Recv function every time a message
is received. Since there is only one path for every packet to
travel through the network from one point to another, each
packet is always received in order and there is no need to
keep track of a packet number in the depacketizing process.

5. FUNCTIONS IMPLEMENTED

The MPI standard was originally developed for supercom-
puters with plenty of resources, and it was designed as a
generic library making it unsuitable for embedded systems.
TMD-MPI is a small subset of MPI. Only 11 functions are
implemented and some of them have restrictions, but these
functions are sufficient to execute a wide variety of applica-
tions. TMD-MPI functionality can be gradually increased as
required for a particular application based on the functional-
ity of lower layers.

Table 1 shows a list of the MPI functions implemented
in TMD-MPI at this time.

Table 1. Functionality of TMD-MPI
MPI Init Initializes TMD-MPI environment
MPI Finalize Terminates TMD-MPI environment
MPI Comm rank Get rank of calling process in a group
MPI Comm size Get number of processes in a group
MPI Wtime Returns number of seconds elapsed since

application initialization
MPI Send Sends a message to a destination process
MPI Recv Receives a message from a source pro-

cess
MPI Barrier Synchronizes all the processes in the

group
MPI Bcast Broadcasts message from root process to

all other processes in the group
MPI Reduce Reduces values from all processes in the

group to a single value in root process
MPI Gather Gathers values from a group of processes

A workstation-based MPI implementation would rely on
the operating system to create, schedule, and assign an ID
to the processes. This ID is used by the MPI implementa-
tion to assign a rank to processors. A rank is a unique and
consecutive number within the MPI execution environment
that identifies a process. In TMD-MPI, since we do not rely
on an operating system, we assign a single process to each
processor at compile time, and the rank is defined for each
process by using the -D option, which is used to define con-
stants for the C compiler. The constant defined is used by
the MPI Comm rank function to return the process rank.

6. TESTING TMD-MPI

There exist benchmarks [4, 14, 7, 17] to measure the per-
formance of an MPI implementation. However, they are
not designed for embedded systems and they assume the
existence of an operating system, which we do not use.
ParkBench [14] has a Multiprocessor Low-level section that
measures some basic communication properties. Unfortu-
nately, this testbench is written in Fortran and there is no
Fortran compiler for the MicroBlaze. Therefore, we have
developed our own set of C-language benchmarks adapted
for embedded processors called TMD-MPIbench. The same
testbench code was executed on the testbed system shown
in Figure 1 on a network of Pentium-III Linux workstations
(P3-NOW) running at 1 GHz using a 100 Mbit/s Ethernet
network, and on a 3GHz Pentium 4 Linux Cluster using
a Gigabit Ethernet Network (P4-Cluster). This proves the
portability that MPI provides to parallel C programs. The
P3-NOW and P4-Cluster are using MPICH versions 1.2, and
our multiple MicroBlaze system is using TMD-MPI. These
tests are meant to demonstrate TMD-MPI functionality and
to obtain an initial performance measurement of the current
TMD-MPI implementation, and the network components.
A more detailed performance analysis and benchmarking is
scheduled for future work.

6.1. Latency and Bandwidth

The objectives of the first test are to measure the link la-
tency and link bandwidth under no-load conditions, i.e., no
network traffic. We do this by sending round trip messages
between two processors. The variables are the message size,
the type of memory in which data is stored (internal BRAM
or external DDR memory) and the scope of the communica-
tion (on-chip or off-chip). The results are shown in Figure 4.

By using internal BRAM, the tests are limited to short
messages because in a single BRAM (64KB) there is also
code and data. This limitation is not present when us-
ing DDR memory. However, for large messages, the sys-
tems with BRAM achieve 1.6x the measured bandwidth than
those with DDR memory because of the overhead of access-
ing off-chip DDR memory.

For short messages, the multiple MicroBlaze system
achieves higher link bandwidths than the P3-NOW and P4-

Cluster because our ad-hoc network has lower latency than
the Ethernet network. It also has a lower overhead compared
to the TCP/IP protocol. Note that, in this case, latency af-
fects bandwidth because we are measuring round trip times,
and for short messages this overhead is more evident. But
as the message size increases, the frequency at which the
system is running becomes the dominant factor in transfer-
ring the payload data. The P3-NOW and the P4-Cluster
achieve 1.8x and 12.38x respectively, more bandwidth than
the multiple MicroBlaze system with external DDR mem-
ory at 200KB message size, but the testbed is running only
at 40MHz. For clarity in Figure 4, not all the results from
the P4-Cluster are shown as they would compress the other
plots.

Similarly, from Figure 4, we can see that on-chip com-
munication is faster than off-chip communication because
of the extra cycles required for the bridge to perform the
network-packet format translation and the OCCC delay,
which increases the latency and impacts short messages. For
larger messages the bandwidth tends to be equal because
the internal-link and external-link tests are both running at
the same system frequency reaching the MicroBlaze’s max-
imum throughput.

By using the internal BRAM and on-chip communica-
tions only, we achieved the highest link bandwidth, but still
less than the Ethernet P3-NOW and the P4-Cluster. By
doubling the frequency of the multiple MicroBlaze system
we believe we could achieve higher link bandwidth than
the P3-NOW. Moreover, even higher bandwidths would be
achieved if faster hardware blocks are used as producers be-
cause the MicroBlaze throughput rate is less than the inter-
nal network throughput rate and the MGT throughput rate.

The zero-length message latency provides a measure of
the overhead of the TMD-MPI library and the rendezvous
synchronization overhead. Since there is no actual data
transfer, this latency is practically independent of the type
of memory. For on-chip, off-chip, P3-NOW and P4-Cluster
communications, the latencies are 17µs, 22µs, 75µs and
92µs, respectively. These measurements are taken using the
MPI Wtime function and subtracting its timing overhead,
which is 96µs for the MicroBlaze, 3µs for the P3-NOW and
2µs for the P4-Cluster.

6.2. Measured Bandwidth With Contention

A different situation happens when there is congestion on
the network. The test consists of half of the processors send-
ing messages of varying size to the other half of the pro-
cessors. Whereas in the P3-NOW and P4-Cluster the worst
case link-bandwidth remained almost the same, in our net-
work the worst case link-bandwidth dropped almost by half
of the bandwidth previously reported under no-load condi-
tions. We believe this is caused by the simple linear-priority
channel selection logic in the switch block and the synchro-
nization nature of the rendezvous protocol. That makes an
unfair scheduling for short messages because a request-to-

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000 10000 100000 1e+06

M
ea

su
re

d
Ba

nd
w

id
th

 [M
bi

t/
s]

Message size [Bytes]

DDR-Internal_link
DDR-External_link

BRAM-Internal_link
BRAM-External_link

P3-NOW
P4-Cluster

Fig. 4. Measured link bandwidth under no-traffic conditions

send message or a clear-to-send message from a channel
lower in priority would have to wait for a long data mes-
sage from a different channel with higher priority to finish.
This would prevent the receiving MicroBlaze from overlap-
ping communication and computation. The P3-NOW and
P4-Cluster is using a buffered communication mode, which
takes advantage of the absence of synchronization, and the
Ethernet switch has a more advanced scheduling algorithm.

6.3. Synchronization performance

In parallel programs, barrier synchronization is a common
operation and it is important to guarantee correctness. For
example, the BlueGene Supercomputer [6] has an indepen-
dent barrier network for synchronization purposes. To mea-
sure the synchronization overhead, 100 MPI Barrier func-
tion calls were executed; the variable is the number of pro-
cessors in the system. The results are shown in Figure 5.
It shows the number of barriers per second achieved as the
number of processors is increased. Our testbed system and
TMD-MPI provide low latency and low overhead, and since
the synchronization is more dependent on latency than on
frequency, our testbed system performs better than the P3-
NOW, but not better than the P4-Cluster. As the number
of processes is greater than the number of processors-per-
FPGA, the off-chip communication channels are used and
this means an increase in latency and more synchronization
overhead. The barrier algorithm is another performance fac-
tor because as the number of nodes increases, a simple lin-
ear algorithm, such as the one used in TMD-MPI, becomes
inefficient. A tree-like communication algorithm would be
more scalable. Moreover, if the eager protocol is used in-
stead of the rendezvous protocol, an increase of almost twice
the number of barriers per second would be expected. Also
we can see from Figure 5, the plot is smooth for the testbed,
but not for the P3-NOW and the P4-Cluster. This happens
because the testbed hardware is completely dedicated to run
the testbench. For the P3-NOW and the P4-Cluster, the load
of other users on the nodes may cause sudden changes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 3 4 5 6 7 8 9

Ba
rri

er
s/

se
c.

Processors

TMD-MPI
P3-NOW

P4-Cluster

Fig. 5. Barrier Synchronization Overhead

7. CONCLUSIONS

This paper describes a lightweight subset MPI standard im-
plementation called TMD-MPI to execute parallel C pro-
grams for a multiple processor System-on-Chip across mul-
tiple FPGAs. A simple NoC was developed to enable com-
munications within and across FPGAs, on top of which
TMD-MPI can send and receive messages. By executing
the same C code in a Pentium Linux network of worksta-
tions and in our system, we showed the potential for MPI to
provide code portability between multiprocessor computers
and multiprocessor embedded systems.

Our experiments show that, for short messages, commu-
nications between multiple processors with an ad-hoc low-
latency network and a simple packet protocol perform better
than the network of Pentium 3 machines using a 100Mb/s
Ethernet network and a Pentium 4 Cluster using a Giga-
bit Ethernet. For the current implementation, minimal la-
tencies of 22µS and maximum measured link bandwidths
of 75Mbit/s are achieved with a clock frequency of only
40MHz.

TMD-MPI, does not depend on the existence of an op-
erating system for the functions implemented. TMD-MPI is
small enough that can work with internal RAM in an FPGA.
Currently the library is 8.7 KB, which makes it suitable for
embedded systems.

The tests show that the library works and provide some
initial performance measurements. Future work will focus
on tuning the library and developing a hardware block that
performs the TMD-MPI tasks to enable more efficient com-
munications and to be able to use specialized hardware en-
gines instead of processors.

8. REFERENCES

[1] Amirix Systems, Inc. http://www.amirix.com/.

[2] C. Comis. A high-speed inter-process communication archi-
tecture for FPGA-based hardware acceleration of molecular
dynamics. Master’s thesis, University of Toronto, 2005.

[3] P. Francesco, P. Antonio, and P. Marchal. Flexible hard-
ware/software support for message passing on a distributed
shared memory architecture. In DATE ’05: Proceedings of
the conference on Design, Automation and Test in Europe,

pages 736–741, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[4] W. Gropp and E. Lusk. Reproducible Measurements of MPI
Performance Characteristics. In Proceedings of Recent Ad-
vances in Parallel Virtual Machine and Message Passing
Interface: 6th European PVM/MPI Users’ Group Meeting,
Barcelona, Spain, 1999.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, sep 1996.

[6] IBM. BlueGene. http://www.research.ibm.com/bluegene/.

[7] Intel, Inc. MPI Benchmark 2.3. http://www.intel.com/.

[8] R. S. Janka and L. M. Wills. A novel codesign methodology
for real-time embedded cots multiprocessor-based signal pro-
cessing systems. In CODES ’00: Proceedings of the 8th in-
ternational workshop on Hardware/software codesign, pages
157–161, New York, NY, USA, 2000. ACM Press.

[9] T. P. McMahon and A. Skjellum. eMPI/eMPICH: Embedding
MPI. In MPIDC ’96: Proceedings of the Second MPI Devel-
opers Conference, page 180, Washington, DC, USA, 1996.
IEEE Computer Society.

[10] Mobile Industry Processor Interface. http://www.mipi.org.

[11] MPI. http://www-unix.mcs.anl.gov/mpi/.

[12] MPI/RT Forum. http://www.mpirt.org/.

[13] OpenMP Project. http://www.openmp.org.

[14] ParkBench Project. http://www.netlib.org/parkbench/.

[15] A. Patel, M. Saldaña, C. Comis, P. Chow, C. Madill, and
R. Pomès. A Scalable FPGA-based Multiprocessor. In
Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, California,
USA, 2006.

[16] P. G. Paulin et al. Parallel programming models for a
multi-processor SoC platform applied to high-speed traf-
fic management. In CODES+ISSS ’04: Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 48–53,
New York, NY, USA, 2004. ACM Press.

[17] SKaMPI Project. http://liinwww.ira.uka.de/ skampi/.

[18] Uniform Driver Interface. http://www.projectudi.org.

[19] Verari Systems, Inc. http://www.mpi-softtech.com/.

[20] VSI Alliance. http://www.vsia.org/.

[21] J. A. Williams, N. W. Bergmann, and R. F. Hodson. A
Linux-based Software Platform for the Reconfigurable Scal-
able Computing Project. In MAPLD International Confer-
ence, Washington, D.C., USA, 2005.

[22] J. A. Williams, I. Syed, J. Wu, and N. W. Bergmann. A Re-
configurable Clsuter-on-Chip Architecture with MPI Com-
munication Layer. In Proceedings of the 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM’06), California, USA, 2006.

[23] Xilinx, Inc. http://www.xilinx.com.

[24] M.-W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. A.
Jerraya. Debugging hw/sw interface for mpsoc: video en-
coder system design case study. In DAC ’04: Proceedings
of the 41st annual conference on Design automation, pages
908–913, New York, NY, USA, 2004. ACM Press.

