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A transmembrane protein (TMEM) is a type of protein that spans biological membranes.
Many of them extend through the lipid bilayer of the plasma membrane but others are
located to the membrane of organelles. The TMEM family gathers proteins of mostly
unknown functions. Many studies showed that TMEM expression can be down- or
up-regulated in tumor tissues compared to adjacent healthy tissues. Indeed, some
TMEMs such as TMEM48 or TMEM97 are defined as potential prognostic biomarkers
for lung cancer. Furthermore, experimental evidence suggests that TMEM proteins can
be described as tumor suppressors or oncogenes. TMEMs, such as TMEM45A and
TMEM205, have also been implicated in tumor progression and invasion but also in
chemoresistance. Thus, a better characterization of these proteins could help to better
understand their implication in cancer and to allow the development of improved therapy
strategies in the future. This review gives an overview of the implication of TMEM proteins
in cancer.
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INTRODUCTION

A TMEM is a type of protein that spans the entire width of the lipid bilayer and to which it is
permanently anchored. Many TMEMs function as channels to permit the transport of specific
substances across the biological membranes. But the biological functions of many of them remain
unknown mainly due to difficulties in the extraction and purification of these proteins. There are
two ways to classify the TMEMs. The first one is according to their structure. Indeed there are
two basic types of TMEMs, alpha-helical proteins and the beta-barrel proteins (Vinothkumar and
Henderson, 2010). The second classification is according to their topology, this classification refers
to the position of the N- and C-terminal domains (von Heijne, 2006).

Among TMEMs is the TMEM family. The proteins of this family are predicted to
be components of various cell membranes, such as mitochondrial, endoplasmic reticulum,
lysosome, and Golgi membranes. TMEMs are present in many cell types and fulfill important
physiological functions such as epidermal keratinization (TMEM45A) (Hayez et al., 2014),
autophagy, smooth muscle contraction (TMEM16) (Thomas-Gatewood et al., 2011), protein
glycosylation (TMEM165) (Foulquier et al., 2012) and development and differentiation of the
liver (TMEM97) (Malhotra et al., 1999). Among them, some members play a primordial

Abbreviations: BRCA1, breast cancer type 1 susceptibility protein; CDK, cyclin-dependent kinase; DVL1, disheveled 1;
EMT, epithelial–mesenchymal transition; ERK, extracellular signal-regulated kinase; GSKβ, glycogen synthase kinase 3β;
HDAC, histone deacetylase; HNSCC, head and neck squamous cell carcinoma; HPDE, normal pancreatic ductal epithelium;
ICAM, intercellular adhesion molecule 1; IFN, interferon; IL, interleukin; MAC30, meningioma-associated protein; MEK,
mitogen-activated protein kinase kinase; MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; NDC1,
transmembrane Nucleoporin; NSCLC, non-small cell lung cancer; PCNA, proliferating cell nuclear antigen; RAB8, Ras-
related protein; SQCLC, squamous cell lung carcinoma; STXR6, syntaxin 6; TLR, toll-like receptor; TGF-β, transforming
growth factor-β; TNF, tumor necrosis factor; TMEM, transmembrane protein; UTR, untranslated region; VCAM, vascular
cell adhesion molecule 1; ZO-1, zona occludens 1.
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role in immune response (TMEM9B) (Dodeller et al., 2008).
Indeed, TMEM9B is a key component of inflammatory signaling
pathways through the enhancement of the production of pro-
inflammatory cytokines induced by TNF, IL1β, and TLR ligands.

In many cancers, differential regulation of the expression of
TMEMs has been observed, such as in lymphomas (TMEM176)
(Cuajungco et al., 2012), colorectal cancer (TMEM25) (Hrasovec
et al., 2013), hepatic cancer (TMEM7) (Zhou et al., 2007), and
lung cancer (TMEM48) (Qiao et al., 2016). Some of them are
used as prognostic biomarkers. For example, in renal cancers,
many TMEMs with predicted ER localization have been shown
to be potential classifiers of cancer grade (e.g., TMEM45A,
TMEM116, TMEM207, TMEM213. . .) (Wrzesinski et al., 2015).
A large number of TMEMs have also been implicated in cancer
development and in drug resistance, suggesting that the TMEM
family is a prominent group for cancer research. Furthermore,
some of these proteins act as tumor suppressors (e.g., TMEM25,
TMEM7) (Zhou et al., 2007; Doolan et al., 2009) while others
act as pro-oncogenes (e.g., TMEM158, TMEM14A. . .) (Cheng
et al., 2015; Zhang et al., 2016). This review aims to describe the
implication of the TMEM proteins in cancer.

PART 1: TMEMs AS TUMOR
SUPPRESSORS

Some TMEMs have been described in the literature to act as
tumor suppressors. A downregulation of their expression is
generally observed in tumor tissue compared to adjacent healthy
tissue. It is for example the case for TMEM25. This protein is
a member of the immunoglobulin super-family and is involved
in immune response, growth factor signaling and cell adhesion
(Katoh and Katoh, 2004). The expression of this protein has
been studied in fresh tumor samples collected during surgical
colectomy from patients who had been diagnosed with primary
colorectal adenocarcinoma. TMEM25 mRNA expression was
significantly decreased in 68% of tumor tissues in comparison
to corresponding normal tissues. This downregulation has been
correlated with the hypermethylation of a specific CpG site in
the 5′ UTR region of TMEM25 gene in a high proportion of
tumor samples (Hrasovec et al., 2013). Another study revealed
that TMEM25 expression in the tumor tissues was lower than
the one in normal healthy tissues in 50% of tumor samples
in human breast tumor biopsies. The expression of TMEM25
was correlated with a better overall survival and associated
with a longer survival time for patients who received adjuvant
chemotherapy. Furthermore, in triple-negative breast tumors,
TMEM25 was generally not expressed (Doolan et al., 2009). All
together these findings suggest that TMEM25 may be used as a
tumor biomarker of favorable prognosis.

Another example is TMEM7. This protein of 232 amino
acids has a single transmembrane domain and is expressed
in the liver. The gene coding for TMEM7 is localized in the
short arm of chromosome 3, which is commonly deleted in
cancer cells (Huebner, 2001). Chromosomal regions that are
deleted in cancer are generally the loci of tumor suppressor
genes, suggesting that TMEM7 is a candidate suppressor gene.

This protein has been studied in 18 hepatocellular carcinoma
cell lines but also in primary tumors obtained from surgical
resection of hepatocellular carcinoma from 17 patients. Each
tumor sample was matched with its corresponding healthy liver
tissue. In the absence of homozygous deletion, TMEM7 is down
regulated in 33% of the cell lines and 85% of the tumor samples
compared to healthy tissue. Tumor suppressor genes located at
chromosomal regions deleted in some cancer cells are found to be
silenced by promoter methylation in other cell lines. In two lines
of the latter that displayed TMEM7 downregulation, 5-aza-2′-
deoxycytidine, a DNA methylation inhibitor and trichostatin A,
a HDAC inhibitor, increased TMEM7 expression suggesting that
aberrant methylation and histone deacetylation are responsible
for the transcriptional silencing of this gene. The study of
this protein also showed that INF-α induced TMEM7 mRNA
expression and the restoration of its expression by overexpression
or by induction with IFN-α decreased the proliferation and the
invasion of hepatocellular carcinoma cell lines (SNU398 and
PLC/PRF/5 or HLF and MHCC97 respectively). These data have
also been validated in vivo. Indeed, ectopic expression of TMEM7
in two TMEM7 deficient hepatocarcinoma cell lines decreased
tumor growth in nude mice (Zhou et al., 2007). All these data
highlight the tumor suppressor role of TMEM7 in hepatocellular
carcinoma.

Two recent studies also showed that TMEM176A could
act as tumor suppressor. The first one was performed in
esophageal squamous cell carcinoma. Wang et al. analyzed
the methylation profile of TMEM176A promoter in 13 cell
lines (BIC1, TE1, TE3, TE13, KYSE140, KYSE180, KYSE410,
KYSE450, KYSE520, Segl, KYSE150, YES2, and COLO680N) and
267 primary esophageal squamous cell carcinoma. The results
showed the loss of TMEM176 expression in 12 cell lines (TE1,
TE3, TE13, KYSE140, KYSE180, KYSE410, KYSE450, KYSE520,
Segl, KYSE150, YES2, and COLO680N) in association with a
complete methylation of its promoter. It also revealed that 66%
of primary tumors presented TMEM176A promoter methylation.
This methylation and TMEM176A decreased expression were
correlated with poor overall survival. The restoration in two
cell lines, KYSE410 and KYSE150, of TMEM176A expression
with 5′-aza-2′-deoxycytidine treatment and the downregulation
of TMEM176A in BIC1 cells showed that TMEM176A inhibited
cell invasion and migration and induced apoptosis. Furthermore,
TMEM176A inhibited cell growth both in vitro and in vivo
with a decrease in tumor volume when TMEM176A was re-
expressed (Wang et al., 2017). A very similar study has been
performed in colorectal cancer. It revealed that 50% of the
primary tumors presented methylation of TMEM176 promoter.
The results also showed a normal expression of TMEM176A
in LS180 and SW620 cell lines, a decreased expression in
HT29 and SW480 cell lines and a total loss of expression
in LOVO, HCT116, RKO, and DLD1 cell lines respectively
associated with no methylation, partial methylation and total
methylation of TMEM176A promoter. In colorectal cancer as
well as in esophageal squamous cell carcinoma, TMEM176A
overexpression inhibited cell migration and invasion, induced
apoptosis and inhibited cell growth both in vitro and in vivo (Gao
et al., 2017). These two studies together presented TMEM176A
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as tumor suppressor of esophageal squamous cell carcinoma and
colorectal cancer.

The last protein described in this part is TMEM97. This
protein, also named MAC30, is a member of the insulin-like
growth factor binding proteins (Murphy et al., 1993). TMEM97
mRNA is expressed in the fetal liver but not in adult liver
suggesting a role in development and differentiation of the
liver (Malhotra et al., 1999). In 2001 and 2002, two studies
showed that the expression of TMEM97 can be induced by
other genes like BRCA1 but also be downregulated by others
like p53 suggesting that the expression of this gene can be
deregulated in cancers (Kannan et al., 2001; Atalay et al., 2002).
Indeed, the expression of TMEM97 is increased in several types
of cancer as described later in this review, except in pancreatic
and renal cancers that both display a low expression level of
TMEM97 protein and mRNA. In 2004, 30 pancreatic cancer
tissues obtained from patients after tumor resection and 19
non-cancerous pancreatic tissues obtained through an organ
donor program have been used to analyze the expression level
of TMEM97 in pancreatic cancer both at the mRNA level by
RT-qPCR and at the protein level by histochemistry. 50% of
pancreatic cancer biopsies displayed a lower TMEM97 mRNA
expression compared to normal pancreatic tissue, 20% displayed
no change and 30% presented higher TMEM97 mRNA levels.
These results highlighted a high variability regarding TMEM97
expression levels in pancreatic cancer. A high variation in mRNA
level expression was also observed in different pancreatic cancer
cell lines (Aspc-1, BxPc-3, Capan-1, Colo-357, T3M4, Mia-PaCa-
2 and Panc-1 cells). The protein expression and localization of
TMEM97 were also analyzed: TMEM97 protein was strongly
expression in the cytoplasm of islet cells and moderately in acinar
cells. Cancer cells in pancreatic cancer tissues displayed weak or
no expression of this protein in more than 75% of cases. But at low
levels in pancreatic cancer cells (Aspc-1, BxPc-3, Capan-1, Colo-
357, T3M4, Mia-PaCa-2 and Panc-1 cells). Knowing that tubular
complexes are considered as potential pre-neoplastic lesions, The
observed reduction of TMEM97 expression in pancreatic cancer
suggests that this gene might act as a tumor suppressor in this
disease (Kayed et al., 2004). This hypothesis may also be true for
prostate cancer since miR-152-3p downregulation and promoter
methylation were found to be prevalent in primary prostate
cancers. TMEM97, which is overexpressed in this type of cancer,
is a target of miR-152-3p (Ramalho-Carvalho et al., 2018).

PART 2: TMEMs AS ONCOGENES

Many TMEMs are up regulated in cancer. Some of them are
implicated in tumor progression, invasion and in the formation
of metastasis while others are associated with poor prognosis and
can be used as prognostic biomarker. The studies behind these
conclusions are summarized here under.

TMEMs as Prognostic Biomarkers
TMEM48, also named NDC1 is localized to the nuclear
pore complexes. This nucleoporin has six membrane-spanning
segments and is crucial for nuclear pore complexes and nuclear

envelope assembly (Stavru et al., 2006). The integrity of the
nuclear envelope and a correct nucleocytoplasmic transport
are important for many cellular processes such as genome
stability, DNA replication, or DNA repair (D’Angelo and Hetzer,
2008). Nucleoporin deregulation has been implicated in several
malignancies such as breast cancers (Agudo et al., 2004; Kau
et al., 2004) in multiple tumors including melanoma, pancreatic,
colon, gastric, prostate, esophageal, lung cancer, and lymphomas
(Mahipal and Malafa, 2016). A study based on 60 patients
with NSCLC showed that TMEM48 expression was significantly
higher in cancer tissues compared to healthy tissues. This
overexpression was associated with poor prognosis, lymph node
metastasis, increased tumor size and short survival (Qiao et al.,
2016). All together these results suggest that, since TMEM48
mRNA expression is increased in non-small lung carcinoma
in association with advanced tumor stage, TMEM48 may be a
potential prognostic factor for NSCLC.

TMEM45A is a TMEM of 275 amino acids, predicted to have
five to seven transmembrane domains and localized in the trans
Golgi apparatus. Very little is known about this protein except
that TMEM45A is highly expressed in the skin and is associated
with epiderm keratinization (Hayez et al., 2014). This protein
is overexpressed in many cancers: breast cancer, liver cancer,
renal cancer, glioma, head and neck cancer, ductal cancer, and
ovarian cancer (Flamant et al., 2012; Lee et al., 2012; Guo et al.,
2015; Sun et al., 2015; Wrzesinski et al., 2015; Manawapat-Klopfer
et al., 2016). In the cases of breast cancer and cervical lesions, a
higher expression level of TMEM45A has been correlated with
a lower patient overall survival suggesting that TMEM45A is
a potential biomarker for aggressiveness of breast cancer and
cervical lesions (Flamant et al., 2012; Manawapat-Klopfer et al.,
2016).

Despite the putative tumor suppressor role of TMEM97 in
pancreatic and prostate cancers, this protein is overexpressed in
different types of cancer and associated with tumor progression,
recurrence and poor survival. It is the case in breast, gastric,
colon, epithelial ovarian, oral squamous, and NSCLC. Indeed,
the expression of TMEM97 has been analyzed in 20 cases of
NSCLC compared to adjacent healthy tissue: 65% of patients
showed a higher expression level of TMEM97 in tumor tissue
compared to healthy tissue. Furthermore, the expression of this
protein has been correlated with poor tumor differentiation and
a shorter patient survival (Han et al., 2013). A similar study
performed in human SQCLC showed TMEM97 overexpression
in 26 of the 32 tumor samples in comparison to corresponding
non-tumor tissues. TMEM97 overexpression was associated with
poor tumor differentiation and shorter overall patient survival
(Ding et al., 2016). Another study in breast cancer revealed
that 59.7% of tumor samples displayed a higher expression
level of TMEM97 compared to healthy tissue and that this
overexpression correlated with larger tumor size and tumor
recurrences. One study on ovarian cancer showed that high
expression of TMEM97 was correlated with high histological
grade and tumor recurrence (Xiao et al., 2013; Yang et al., 2013).
All these studies demonstrated that TMEM97 expression could
affect the prognosis of NSCLC, SQCLC, ovarian and breast cancer
patients.
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Another important TMEM protein is TMEM16A.
TMEM16A, also known as anoctamin-1, is expressed in
cerebral artery smooth muscle cells and is predicted to have eight
transmembrane domains. This protein is a TMEM that functions
as a calcium-activated Cl- channel (Thomas-Gatewood et al.,
2011). TMEM16A has recently been shown to be upregulated
in several cancers including HNSCC, esophageal, breast and
gastric cancers. In HNSCC, the expression of TMEM16A
has been studied by fluorescence in situ hybridization and
immunohistochemistry on several primary tumors. The results
demonstrated that TMEM16A was highly expressed in 4–19%
of the samples and that higher TMEM16A expression strongly
correlated with poor prognosis of HNSCC patients (Ruiz et al.,
2012). In another study in HNSCC, TMEM16A has been
shown to be overexpressed in 84% of tumor samples (Carles
et al., 2006). In the context of gastric cancer, the expression of
TMEM16A has been evidenced to be higher in tumor tissue than
in adjacent non-tumor tissue. Furthermore, the expression of this
protein has been correlated with the tumor stage and negatively
correlated with patient survival in this cancer type (Liu et al.,
2015). TMEM16A is thus proposed to be a negative prognostic
factor.

Two other TMEMs have been described as prognosis
biomarker. In glioma, TMEM140 expression has been analyzed
in 47 of the 70 glioma samples by immunohistochemistry. The
results showed a higher expression in tumor tissue than in the
control brain tissue and a correlation with poor prognosis in this
cancer (Li et al., 2015a,b). In lung cancer, TMEM45B expression
has been analyzed in 110 tumor tissue samples and 35 non-tumor
tissue samples. TMEM45B was shown to be upregulated in lung
cancer and its expression was negatively correlated with overall
survival (Hu et al., 2016).

TMEMs Involved in Tumor Growth
Besides the evidence for a correlation between TMEM expression
and patient survival, some of these proteins have been shown
to be directly involved in tumor growth but the mechanisms by
which they act are not always known.

With an Identified Pathway
The first protein described in this part is TMEM158, also called
Ras-induced senescence 1 protein (RIS1). The gene coding for
this protein is known to be upregulated during Ras-induced
senescence in human diploid fibroblasts infected with rasV12-
containing retrovirus (Barradas et al., 2002). TMEM158 is
overexpressed in Wilms tumors (also known as nephroblastoma)
with somatic mutations in catenin beta-1 gene suggesting a
relationship between the Ras and Wnt signaling pathways (Zirn
et al., 2006). TMEM158 is also overexpressed in ovarian cancer
in 84% of the 25 tumor samples which were analyzed. The
involvement of TMEM158 in tumor growth has been studied
in two ovarian cancer cell lines, HO-8910 and A2780. This
protein was evidenced to regulate cell proliferation, adhesion, and
invasion. Furthermore, TMEM158 knockdown inhibited tumor
growth of HO-8910 cell line in nude mice highlighting the role
of this protein in tumorigenicity. TMEM158 silencing led to the
deregulation of the expression of different genes, including a

downregulation of ICAM1 and VCAM1 expression. These two
proteins are involved in cell adhesion. TMEM158 silencing also
impaired the TGF-β signaling pathway (Cheng et al., 2015). All
these results showed that TMEM158 may work as an oncogene in
ovarian cancer.

The implication of TMEM48 in NSCLC progression has been
studied in two cell lines that overexpressed this protein, A549
and H1299. The results suggested a role of TMEM48 in cell
proliferation, migration and invasion. Indeed, the silencing of
this gene impaired cell proliferation, induced cell cycle arrest
and decreased the migration and invasive ability of NSCLC cells.
The downregulation of TMEM48 also induced cell apoptosis
in association with a decrease or an increase in anti- or pro-
apoptotic gene expression respectively. One of these two cell
lines (A549) was also used to study the involvement of TMEM48
in tumorigenicity in vivo and the data revealed that TMEM48
is involved in tumor formation from A549 cells in nude mice.
A marked decrease in tumor weight (50%) was evidenced when
TMEM48 was silenced. All these evidences showed a role of
TMEM48 in lung cancer progression (Qiao et al., 2016). A recent
study demonstrated that TMEM48 suppression by miR-421
increased the expression of the apoptotic and tumor suppressor
proteins caspase 3, PTEN and p53 in A549 cells (Akkafa
et al., 2018). These results suggest that TMEM48 modulates the
apoptotic pathway.

TMEM14A is a TMEM with three transmembrane domains,
localized in mitochondria. This protein is deregulated in different
types of cancer such as ovarian cancer, colon cancer and
hepatocellular carcinoma (Hodo et al., 2010; Smith et al., 2010;
Zhang et al., 2016). In the context of ovarian cancer, TMEM14A
is involved in cell proliferation as shown by a cell cycle arrest
when TMEM14A was invalidated in two ovarian cancer cell lines,
A2780 and HO-8910. TMEM14A up regulation also increased
the cell invasive ability of ovarian cancer cells highlighting a
potential role of this protein to promote metastasis. Further
investigations showed that TMEM14A knockdown may down-
regulate the protein expression of PCNA, cyclins and MMPs.
It may also downregulate TGF-β signaling (Zhang et al., 2016).
These results could explain the decrease in cell proliferation and
invasiveness in ovarian cancer cell lines when TMEM14A was
invalidated.

TMEM97 is found deregulated in several types of cancer
but this protein has been particularly involved in the tumor
growth of two cancers: glioma and gastric cancer. Indeed, the
silencing of TMEM97 expression in glioma U373 and U87 cells
inhibited cell proliferation and cell cycle progression associated
with a decrease in cyclin B1, E, CDK2 and CDK4 expression,
but also in cell invasiveness. TMEM97 silencing also induced the
deregulation of the expression of EMT markers like β-catenin,
Twist and E-cadherin (Qiu et al., 2015). The downregulation
of TMEM97 in gastric cancer BGC-823 and AGS cell lines
inhibited the cell proliferation and mobility with a decrease in
Akt phosphorylation, hence suggesting that Akt may mediate the
TMEM97-induced inhibition of proliferation (Xu et al., 2014).
The invalidation of TMEM97 also induced an inhibition of cell
migration and invasion by reducing the expression of cyclin
B1 and WAVE2. These data showed that TMEM97 plays an
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important role in tumor growth and aggressiveness in glioma and
gastric cancer.

Another TMEM protein involved in tumor growth is
TMEM16A. In human colorectal cancer cells, the mRNA and
protein expression of TMEM16A has been reported in several
cell lines like SW620, HCT116 and LS174T but not in HCT8
and SW480. TMEM16A knockdown in SW620 cell line inhibited
cell proliferation, migration and invasion. These effects were
mediated through a decrease in the expression of cyclin D1
and in the phosphorylation of MEK and ERK1/2. Furthermore,
invalidation of TMEM16A expression led to a delay in cell cycle
progression (Sui et al., 2014). TMEM16A expression is also
regulated epigenetically. Indeed, inhibition of HDAC class I and
II by siRNA or pharmacological agents decreased the expression
of TMEM16A. HDAC3 seems to be the most important one
in this regard. Hence, the inhibition of HDAC3 may exert
suppressive effect on cancer cell viability via the downregulation
of TMEM16A in prostate or breast cancer (Matsuba et al.,
2014). TMEM16A has also been well-studied in gastric cancer.
Knockdown in AGS and BGC-823 gastric cancer cell lines
inhibited cell migration and invasion via a downregulation of
E-cadherin expression (EMT marker) probably via a decrease
in TGF-β secretion since the supplementation of exogenous
TGF-β restored E-cadherin expression and cell migration
and invasion (Liu et al., 2015). TMEM16A silencing was
also shown to induce apoptosis in human prostate cancer
PC3 cells by upregulating TGF-β signaling (Song et al.,
2018). In pancreatic ductal adenocarcinoma, TMEM16A is
overexpressed in several cancer cell lines (Mia PaCa-2, Panc-
1, BxPC-3, and AsPC-1) in comparison to HPDE-derived
cells. The invalidation of TMEM16A expression in these cell
lines using siRNA showed an implication of this protein in
cell migration but not in the proliferation illustrating that
TMEM16A modulates the metastatic potential of pancreatic
cancer cells. Contrary to colorectal cancer, the molecular
mechanism underlying this effect is still unknown (Sauter et al.,
2015).

The last TMEM described in this part is a very peculiar TMEM
protein, TMEM88. This protein is a potential 2-transmembrane
type protein that interacts with an important component of
Wnt signaling pathway: DVL1 (Lee et al., 2010). According
to the localization of its partner DVL1, TMEM88 may be
localized in the cytoplasm or to the plasma membrane. This
protein is overexpressed in cancer tissue compared to non-
cancerous tissue in different types of cancer such as in lung,
colon, gastric, breast cancer (Yu et al., 2015; Zhang et al., 2015)
and can be involved in the tumor initiation and progression
through Wnt signaling pathway (Ge et al., 2018). For the
majority of these cancer types, immunohistochemistry analysis
demonstrated a cytosolic localization. But in the context of
NSCLC, two different subcellular localizations for TMEM88 have
been reported, suggesting different roles in tumor development
depending on its localization. Indeed, an in vitro analysis
on nine lung cancer cell lines (A549, H1299, H460, H292,
SPC-A-1, LTEP-A-2, LK2, PG-BE1, and PG-LH7) showed that
the overexpression of membrane-associated TMEM88 led to
the inhibition of the canonical Wnt pathway through the

downregulation of the expression of effectors like cyclin D1,
MMP-7, and c-Myc. The increase in membrane-associated
TMEM88 expression also led to a decrease of proliferation,
colony formation, migration and invasion and to a decrease in
tumor growth in vivo highlighting the tumor suppressor role
of TMEM88 when it is localized to the membrane of the cell.
Furthermore, TMEM88 promoter methylation is associated with
unfavorable prognosis in NSCLC (Ma et al., 2017). On the
contrary, its cytosolic localization is correlated with a low level
of differentiation of the tumor and poor prognosis of patients
with NSCLC. Furthermore in vitro analysis demonstrated
that the overexpression or downregulation of this protein
respectively enhanced or suppressed NSCLC cell migration and
invasion through a deregulation of the EMT signaling pathway.
Indeed, the TMEM88-DVL complex increased p38 and GSK3β

phosphorylation leading to a stabilization of the protein SNAIL
and hence to a decreased occludin and zonula occludens-
1 (ZO-1) expression. Moreover, in vivo analysis showed that
the number of lung metastatic nodules increased in the mice
transplanted with cell lines expressing cytosolic TMEM88 (Zhang
et al., 2015). Very similar results have also been observed
in triple-negative breast cancer (Yu et al., 2015). These data
confirmed that, in NSCLC and breast cancer, the cytosolic
localization of TMEM88 conferred an oncogenic role to the
protein.

Depending of cancer stage, TGF-β signaling can have
different impact on tumor growth. Indeed, in early stage
TGF-β plays a tumor suppressor role whereas in advanced
stage, cancer cells benefit from TGF-β to initiate proliferation,
invasion, and metastasis dissemination. It seems that several
TMEM proteins are involved in tumor growth through TGF-β
pathway modulation in order to facilitate malignant progression
(Figure 1). Indeed, TMEM16A, TMEM158, TMEM14A,
TMEM97, TMEM88 and probably TMEM45A interacts with
several components of the TGF-β-induced signal transduction.

Through an Unknown Pathway
Other TMEMs have also an impact on tumor growth but the
mechanisms by which they act are still unknown. Such an
example is TMEM140 that is up regulated in cancer tissue
compared to healthy tissue. TMEM140 has been involved in
the regulation of the growth of glioma in vitro and in vivo.
Indeed, when TMEM140 is silenced in two glioma cell lines
in vitro, U87 and U373, the proliferation decreased with a
higher proportion of cells in G1 phase and the cell viability
decreased due to the activation of the apoptotic pathway.
Furthermore, the knockdown of TMEM140 led to a decreased cell
adhesion, migration and invasion. It has also been shown that the
invalidation of this protein inhibited tumor growth in vivo with
a decrease in the size and the weight of tumors in the invalidated
group compared to the control group (Li et al., 2015a,b). These
findings demonstrate that TMEM140 can be used as a prognosis
biomarker but also as a therapeutic target.

Two other TMEM proteins have been involved in tumor
progression, TMEM45A and TMEM45B, already described
above. TMEM45A is implicated in cell proliferation, migration,
and invasion of different cancers like glioma (U251 and U373
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FIGURE 1 | Schematic representation of the involvement of several TMEMs in tumor growth through the TGF-β signaling pathway. The activation of TGF-β signaling
pathway has been implicated in many cellular processes and in tumor growth. This activation is induced by its ligand which then activates the phosphorylation of
serine/threonine residues and triggers phosphorylation of the intracellular effectors, SMADs (blue). TGF-β receptors can also activate Smad-independent pathways
(pink). In early stage TGF-β plays a tumor suppressor role whereas, in advanced stage, cancer cells benefit from TGF-β to initiate proliferation, invasion and
metastasis dissemination. It seems that several TMEM proteins are involved in tumor growth through TGF-β activation in order to facilitate malignant progression and
EMT progression. The stars represent the effectors deregulated by TMEMs.

cells) and ovarian cancer (HO-8910 and A2780 cells) (Guo
et al., 2015; Sun et al., 2015). In the context of ovarian cancer,
TMEM45A protein expression has been positively correlated
to TGF-β signaling pathway and this data could explain the
impact of TMEM45A invalidation in this cancer (Guo et al.,
2015). On the other hand, TMEM45B is up-regulated in human
lung cancer and promotes tumorigenicity in vivo. Invalidation of
TMEM45B in A549 and NCI-H1975 cells led to the inhibition
of cell proliferation, migration, and invasion highlighting its
role in tumor growth in lung cancer (Hu et al., 2016). In the
case of pancreatic cancer, TMEM45B had also been involved
in proliferation, invasion, and migration since its silencing
in SW1990 and PANC-1 cell lines induced an inhibition of
cell proliferation associated with cell cycle arrest. It also led
to a decrease in cell mobility and invasiveness. Conversely,
the overexpression of TMEM45B in CFPAC-1 cells promoted
cell proliferation, invasion and migration (Zhao et al., 2016).
TMEM45B is also upregulated in osteosarcoma cell lines. Its
knockdown suppressed the prolifreation, migration, and invasion
of U2OS cells in vitro as well as tumor growth in nude mice.
These effects were associated with a decrease in the expression
of β-catenin, cyclin D1 and c-Myc (Li et al., 2017). Similar
results were obtained in gastric cancer cells, in which TMEM45B
silencing was associated with a decrease in the abundance of
p-STAT3 and p-JAK2 (Shen et al., 2018). These two proteins can

be described as potential prognosis markers but also as regulators
of tumor growth in several types of cancer.

PART 3: TMEMs INVOLVED IN
CHEMORESISTANCE

Although mutagenic alterations have long been associated with
cancer development or drug resistance, epigenetic modifications
and tumor microenvironment have also been linked to
chemoresistance. Both epigenetic modifications and the tumor
microenvironment can impact the expression or the localization
of several TMEMs leading to a deregulation of treatment
responses. The first example is hypoxia, one component of
the tumor microenvironment. Indeed, in hypoxic condition
(<1% of O2), hepatocellular carcinoma cells (HepG2) (Sermeus
et al., 2008) and breast cancer cells (MDA-MB-231) (Flamant
et al., 2010) were protected against cell death normally induced
by chemotherapeutic drugs. In this condition, TMEM45A was
shown to be upregulated and its silencing led to a decrease in this
protective effect conferred by hypoxia against cell death induced
by chemotherapeutic agents. These results suggest that, in
hypoxic condition, TMEM45A is involved in the chemoresistance
of breast and liver cancers. However, the mechanism underlying
this protection is still unknown (Flamant et al., 2012).
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The second example is related to epigenetic modifications,
in particular DNA methylation. Indeed, in ovarian cancer, it
has been shown in vivo, that the methylation profile of some
promoters was different in xenografts resistant to cisplatin
compared to control ones. This observation has been associated
with a differential expression profile of the genes whose
expression is regulated by these promoters. It is the case for
TMEM88, which is a DNA methylation-regulated gene. The
hypomethylation of TMEM88 promoter observed in ovarian
cancer led to an increased expression of the protein and
to platinum resistance. Indeed, knowing that TMEM88 was
involved in Wnt signaling pathway, De Leon et al investigated
the possible association of Wnt pathway and the observed
phenotype. First of all, TMEM88 downregulation led to an
increase in Wnt target gene expression such as β-catenin
or Jun, validating the interaction between TMEM88 and
Wnt pathway in ovarian cancer. Then, they studied the link
between this interaction and the observed chemoresistance.
TMEM88 overexpression in resistant cells inhibited the Wnt
signaling pathway associated with a decrease in target gene
expression while the activation of the Wnt pathway in resistant
cells increased the chemosensitivity of the cells to cisplatin.
Furthermore, the invalidation of TMEM88 in cisplatin resistant
cells increased the sensitivity of the cells to the chemotherapeutic
drug. This increase in chemosensitivity was associated to

a decrease in cell proliferation allowing the escape of the
cells from the genotoxic effects of cisplatin (de Leon et al.,
2016).

Another TMEM involved in chemoresistance is TMEM205,
also known as MBC3205. This protein of 21 kDa has four
transmembrane domains and belongs to the group of secreted
proteins (Clark et al., 2003). In 2011, a study revealed that
TMEM205 is highly expressed in the pancreas, adrenal gland,
liver, mammary gland and kidney (Shen et al., 2010). This study
also showed that, in epidermoid carcinoma, this protein had the
particularity to translocate in the presence of cisplatin. Indeed,
TMEM205 is located at the cell surface but in the presence
of the chemotherapeutic drug, the protein is translocated in
an intracellular compartment at the periphery of the nucleus.
Furthermore, its expression is increased in a cell line resistant
to cisplatin and TMEM205 overexpression conferred resistance
to cisplatin (Shen et al., 2010). Another study demonstrated
that TMEM205 colocalized with RAB8, a marker of recycling
endosomes. Interestingly, TMEM205 also colocalized with
syntaxin 6 (STXR6), a regulator of protein trafficking, which is
translocated at the same subcellular localization that TMEM205
in the presence of cisplatin. Then, the translocation of TMEM205
may allow the exocytosis of platinum containing vesicles, which
thus results in the accumulation of the drug outside the cell (Shen
and Gottesman, 2012).

FIGURE 2 | Schematic representation of the chemoresistance mechanisms conferred by TMEM proteins. The chemoresistance can be due to an adaptation of the
cancer cells themselves (mutations, DNA methylation, proteins, translocation. . .) but can also be provided from the interactions with the microenvironment. Some of
these chemoresistance mechanisms involve TMEM proteins. (1) Hypoxia leads to HIF-1α stabilization and to the expression of several target genes such as
TMEM45A. (2) Methylation or acetylation of promoters leads to the transcriptional regulation of genes such as TMEM88. (3) The increase in TMEM205 expression
and its translocation modify its partners. (4) The immune system induces the expression of several genes such as TMEM98.
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In the tumor microenvironment, the immune system
plays a crucial role that modulates tumor growth.
Furthermore, cancer-associated inflammation also plays a
role in chemoresistance (Chen et al., 2007). In this context,
TMEM98, which has immune-related properties, mainly
regarding the differentiation of T helper (Th) 1 cells, may
be proposed as a novel chemoresistance-conferring gene (Fu
et al., 2015). There are two RNA splicing forms of TMEM98
reported in the NCBI database, TMEM98-v1 and TMEM98-
v2 respectively. Although there is a slight difference between
them in the 5′ UTR sequence, their coding products are
almost the same, which consists of 226 amino acids and
a molecular weight of 24.6 kDa. In lung cancer, TMEM98
mRNA expression is higher in cancer tissues compared to
healthy tissues. Furthermore, in two lung cancer cell lines,
A549 and H460, the silencing of TMEM98 inhibited cell
proliferation and suppressed the invasion and the migration
of cancer cells meaning that this protein can have an impact
in tumor growth (Mao et al., 2015). Knowing that tumor
progression and chemoresistance can be accompanied with
inflammation injuries and the link between TMEM98 and
inflammation, this protein is a very interesting target for further
investigations on anti-cancer drug resistance. In the case of
hepatocellular carcinoma, TMEM98 has been identified as
a chemoresistance-associated gene. Indeed, its expression is
increased in two chemoresistant cell lines, MHCC97L/CisR
and MHCC97L/DoxR resistant to cisplatin and doxorubicin
respectively. Furthermore, the level of the upregulation increased
with the degree of chemoresistance. This study also showed
that TMEM98 mRNA expression was higher in tumor tissue
of patients who received a transarterial chemoembolization
treatment. Moreover, the patients who did not respond
well to the treatment had higher TMEM98 expression level.
These data demonstrated that this protein is involved in
chemoresistance of hepatocellular carcinoma. In order to
identify the mechanism of TMEM88 in chemoresistance,
further investigation had been performed. In the absence of
TMEM88 in resistant cell lines, a repression of activation
of AKT in association with a repression of its downstream
targets had been observed. Furthermore, the silencing of
TMEM88 restored p53 phosphorylation and activation under
cisplatin or doxorubicin treatment. These data showed that
the chemoresistance induced by TMEM88 is associated with
AKT activation and the repression of p53 activation (Ng et al.,
2014).

The platinum-based chemotherapy is used for the
treatment of several cancers such as lung cancer. In this
model, the high expression level of TMEM97 has been
correlated with the resistance of cancer to platinum-based
treatment but also with poor patient survival (Chen et al.,
2016; Ding et al., 2017). Indeed, Chen et al. (2016),
showed that only 4% of patients with elevated expression
of TMEM97 showed responses to therapy while 65% of
patients with low expression of TMEM97 responded to the
treatment. This study proposed TMEM97 as a biomarker of
prognosis but also of the responses of NSCLC patients to
chemotherapies.

Two other TMEMs could have an impact in chemoresistance
via the immune system, TMEM176A and TMEM176B. These
two proteins can physically interact one with the other and are
both localized in the plasma membrane and vesicular intracellular
compartments (Cuajungco et al., 2012). The expression of these
two proteins is increased in lymphoma, which may allow
the cancer cells to evade the immune system or negatively
impact their detection by immune system (Cuajungco et al.,
2012).

Knowing that many chemotherapeutic drugs induced
cancer cell death, several TMEMs could also have an impact
in chemoresistance by exerting an anti-apoptotic function.
TMEM48 is such an example for lung cancer (Qiao et al.,
2016), TMEM14A for ovarian cancer (Zhang et al., 2016) and
TMEM45B for lung and pancreatic cancers (Hu et al., 2016; Zhao
et al., 2016).

The resistance to chemotherapy is not only due to the
adaptation of cancer cells themselves but can involve tumor
microenvironment. Furthermore, the mechanisms underlying
the resistance to treatment can differ according to the
cancer type and to the chemotherapeutic drug. The studies
reported in this review showed that some TMEM proteins
are involved in resistance to treatment and so can be used
as new therapeutic targets (Figure 2). Finally, since TGF-
β-induced quiescence renders cancer cells resistant to some
anticancer agents (Brown et al., 2017; Tamai et al., 2017)
and since many TMEM proteins interfer with TGF-β-induced
intracellular signaling, TGF-β pathway is probably one of the
key mechanisms through which TMEM proteins exert their
effects.

CONCLUSION

Despite the different role and localization of TMEM proteins,
many of them are implicated in cancer (Table 1). Some
of them can be correlated with stages and patient survival
and so be used as biomarkers and/or classifiers. Others have
a role in carcinogenesis and tumor progression, but for
most of them, the mechanism involved is still unknown.
A better characterization of these proteins could help to
better understand their implication in cancer. A few of
them are even involved in chemoresistance and could be
used as new therapeutic targets to enhance the efficiency of
chemotherapies.
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