
ARTICLE

tmem33 is essential for VEGF-mediated endothelial
calcium oscillations and angiogenesis
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Angiogenesis requires co-ordination of multiple signalling inputs to regulate the behaviour of

endothelial cells (ECs) as they form vascular networks. Vascular endothelial growth factor

(VEGF) is essential for angiogenesis and induces downstream signalling pathways including

increased cytosolic calcium levels. Here we show that transmembrane protein 33 (tmem33),

which has no known function in multicellular organisms, is essential to mediate effects of

VEGF in both zebrafish and human ECs. We find that tmem33 localises to the endoplasmic

reticulum in zebrafish ECs and is required for cytosolic calcium oscillations in response to

Vegfa. tmem33-mediated endothelial calcium oscillations are critical for formation of endo-

thelial tip cell filopodia and EC migration. Global or endothelial-cell-specific knockdown of

tmem33 impairs multiple downstream effects of VEGF including ERK phosphorylation, Notch

signalling and embryonic vascular development. These studies reveal a hitherto unsuspected

role for tmem33 and calcium oscillations in the regulation of vascular development.
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T
he formation of a complex vascular network is an essential
process during embryonic development, which is vital for
growth of tissues and is frequently dysregulated during

disease in the adult. Endothelial cells (ECs) line the inner lumen
of blood vessels and their organisation into complex branching
networks requires co-ordination of molecular outputs coupled to
specific cellular behaviours via a process primarily orchestrated by
signalling from vascular endothelial growth factor (VEGF)1.

VEGF is a morphogen that signals via different ligands to
induce motile and invasive behaviour, which drives blood vessel
sprouting. VEGFA primarily controls angiogenesis from arteries
via its cognate receptor VEGFR2/KDR, whereas VEGFC pro-
motes sprouting from veins via VEGFR3/FLT42. Migrating ECs
extend filopodia to sense VEGF signals via Kdr (VEGFR2), as
they form a new sprouting vessel3. Leading angiogenic ECs are
termed tip cells, which upregulate dll4 transcription, inducing
Notch signalling in neighbouring cells, and this acts to limit
excessive angiogenic sprouting4. Neighbouring Notch-expressing
cells join the sprout as stalk cells, which in zebrafish tend to
exhibit reduced proliferative capacity compared with tip cells4,5.

VEGFA has been shown to promote proliferation of ECs
in vitro via VEGFR2-mediated activation of the RAS/RAF/ERK
pathway without affecting migration6. Others, however, have
shown that inhibition of ERK phosphorylation in vivo inhibits EC
migration but not proliferation during angiogenesis7. ERK acti-
vation is induced via PLCG1 phosphorylation in vitro8, which
generates inositol 1,4,5-trisphosphate (IP3). IP3 subsequently
activates inositol triphosphate receptor (IP3R) Ca2+ channels
within the endoplasmic reticulum (ER) to increase cytosolic Ca2+

concentrations and activate protein kinase C to phosphorylate
ERK9. ERK activation is required to promote angiogenesis and
has been shown to promote expression of tip cell markers
including dll47,10 and flt47. VEGF and Notch therefore balance
formation of tip and stalk cells within developing blood vessels
and modulate the relative migration and proliferation of ECs
during angiogenesis11. Ca2+ is a universal secondary messenger,
which achieves specificity using complex signalling modalities.
These include encoding information to activate cellular responses
within cytosolic Ca2+ oscillations12. How EC Ca2+ oscillations
integrate complex molecular outputs to precisely control discrete
cellular behaviours in a developing vascular network remains
unknown.

ECs are generally thought to be non-excitable and as such
utilise store-operated calcium entry (SOCE) as their primary
means to maintain Ca2+ levels in the ER after influx13,14. The
principal trigger for SOCE activation occurs when intracellular
calcium stores with the ER are depleted and these are refilled via
interaction of TRPC1 and ORAI1 on the plasma membrane with
ER-resident STIM1, which form the calcium-release activated
channel15–18. SOCE relies on modulation of the actin cytoskele-
ton, which requires Ca2+-dependent proteins for ER motility19.

We have identified transmembrane protein 33 (TMEM33) as a
component of the ER Ca2+ signalling machinery required for
angiogenesis. TMEM33 is a three-pass transmembrane domain
protein conserved throughout evolution with two paralogues in
the budding yeast Saccharomyces cerevisiae, Pom33 and Per33,
showing enrichment in the nuclear pore and ER, respectively20,21.
In the fission yeast Schizosaccharomyces pombe, the TMEM33
orthologue Tts1p contributes to maintenance of the cortical ER
network22. Human TMEM33 has been shown to localise to the
nuclear envelope and ER in vitro, where it has been suggested to
regulate the tubular structure of the ER by suppressing the
membrane-shaping activity of reticulons23,24. However, its func-
tion within the ER in multicellular organisms remains unknown.

Here we describe the first characterisation of tmem33 in a
multicellular organism and show that tmem33 is required in an

EC-specific manner for Vegfa-mediated Ca2+ oscillations, to
promote angiogenesis in zebrafish embryos. The requirement for
tmem33 during the response to VEGF is conserved from zebrafish
to humans. Furthermore, tmem33-mediated endothelial Ca2+

oscillations are critical for formation of endothelial filopodia and
contribute to activation of ERK and induction of Notch signalling
to co-ordinate vascular morphogenesis.

Results
tmem33 knockdown impairs vascular and pronephric devel-
opment. We find tmem33 is expressed ubiquitously during zeb-
rafish segmentation (Fig. 1a–c) and by 26 h post fertilisation (hpf)
is enriched in the trunk vasculature and pronephros (Fig. 1d).
TMEM33 expression has been previously identified within the
nuclear envelope and ER in human cells23,24. We expressed a full-
length C-terminal tmem33-EGFP fusion messenger RNA in
developing zebrafish embryos and found Tmem33-EGFP fusion
protein to localise to structures indicative of nuclear envelope
(Fig. 1e–g, blue arrowheads) and ER (Fig. 1e–g, white arrow-
heads) of ECs within the caudal artery.

To knock down tmem33 expression and establish its function
during embryonic development, we next used two splice blocking
morpholinos targeting exon 3, (Supplementary Fig. 1a, b,
Supplementary Tables 1 and 2). All experiments were conducted
using co-injection of both morpholinos. tmem33 morphants
exhibited reduced segmental artery (SeA) length compared with
controls (Fig. 1h-k, white arrowheads, p). By 30 hpf, SeAs in
control morphants had reached the dorsal roof of the neural tube
and begun to sprout laterally to form the dorsal longitudinal
anastomotic vessel (DLAV) (Fig. 1h, i yellow arrowhead), whereas
tmem33 morphants often displayed abnormal spade-shaped tip
cell morphology (Fig. 1k, white arrowhead) and were observed to
stall at the level of the horizontal myoseptum. Consistent with
this, tmem33 morphants displayed reduced SeA migration rate
(Supplementary Fig. 2a–d, yellow arrowheads, Supplementary
Fig. 2e). Expression of an arterial marker Tg(0.8flt1:RFP)25 in
tmem33 morphants was indistinguishable from controls and
restricted to the dorsal aorta (DA) and SeAs from day 1,
suggesting the DA was correctly specified in tmem33 morphants
(Fig. 1l, n). Onset of circulation and blood flow was normal in
tmem33 morphants (Supplementary Fig. 3 and Supplementary
Movies 1–3). Despite this early delay in sprouting angiogenesis,
by 48 hpf, most SeAs in tmem33 morphants had completed their
dorsal migration, but many failed to migrate laterally, resulting in
a primitive and discontinuous DLAV (Fig. 1l–o, yellow arrow-
heads, q). In addition, tmem33 morphants displayed absent
parachordal lymphangioblasts (Fig. 1l, n, red arrowheads). The
thoracic duct (TD) is the first major lymphatic vessel to develop
in zebrafish26 and forms by ventral migration of parachordal
lymphangioblasts. In keeping with the absence of parachordal
lymphangioblasts, the TD was absent in tmem33 morphants
(Fig. 1r, s, asterisks).

tmem33 knockdown reduces EC Ca2+ oscillations and filopo-
dia. VEGF signalling is essential for SeA formation in zebra-
fish7,27–31 and lymphatic development26,32–36. Although
TMEM33 has never been implicated in angiogenesis or VEGF
signalling, the similarity of the phenotype of embryos with loss-
of-function of tmem33 or VEGF signalling led us to hypothesise
that tmem33 may regulate VEGF signalling in ECs. Furthermore,
as VEGF increases EC intracellular Ca2+ 37, which is dependent
upon the interaction of plasma membrane proteins with ER-
resident proteins via SOCE16,38, we also postulated that tmem33
may regulate VEGF-induced EC Ca2+ signalling, given its indi-
cative expression in the ER (Fig. 1e–g).
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To determine the effect of tmem33 knockdown on EC calcium
signalling in vivo, we generated an endothelial Ca2+ reporter line
Tg(fli1a:gal4FFubs3;uas-gCaMP7ash392), hereafter referred to as
fli1a:gal4FFubs3;uas-GCaMP7a. Recently, a similar transgenic has
been employed as an indirect readout of VEGF signalling activity
in zebrafish ECs39. To first establish whether fli1a:gal4FFubs3;uas-
GCaMP7a embryos reliably reported fluctuations in endothelial
Ca2+ signalling, we treated embryos with Thapsigargin to inhibit

the sarcoplasmic or ER Ca-ATPase (SERCA) family of Ca2+

pumps40 and thereby raise endothelial Ca2+ levels. Indeed,
Thapsigargin treatment significantly increased GCaMP7a fluor-
escence in tip cells (Supplementary Fig. 4a,b,d) and reduced
cytosolic Ca2+ oscillations in tip cells (Supplementary Fig. 4e).
Conversely, as VEGF-mediated elevations in cytosolic Ca2+ are
dependent upon IP3R function37, we treated embryos with an
IP3R antagonist 2-APB, to reduce cytosolic Ca2+ (Supplementary
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Fig. 1 tmem33 knockdown inhibits angiogenesis and localises to the ER in ECs. a–d tmem33 is expressed ubiquitously during segmentation, but displays

enrichment in the pronephros (black arrowheads) and somite boundaries, which is more pronounced from 24 hpf. Pronephric expression is evident in 26

hpf transverse sections (black arrows). e–g Tmem33-EGFP protein localises to the nuclear envelope (blue arrowheads) and ER (white arrowheads) within

the caudal artery in fli1a:DsRedEx2 embryos (Scale bars 1 µm). h–k tmem33 morphants injected with 0.4 ng morpholinos display delayed migration of Tg

(fli1a:egfp) positive SeAs, which stall at the horizontal myoseptum (j, k, white arrowheads), compared with control Tg(fli1a:egfp) positive morphants (h, i),

which begin to anastomose by 30 hpf (yellow arrowheads) (scale bars 50 µm). l–o By 48 hpf, Tg(fli1a:EGFP;−0.8flt1:RFP) tmem33 morphant SeAs complete

dorsal migration, but display incomplete DLAV formation (n, o, yellow arrowheads) and lack lymphatic vasculature (red arrowheads). At 48 hpf Tg(fli1a:

EGFP; −0.8flt1:RFP) control morphants display secondary angiogenesis (l, m, yellow arrowheads) and parachordal lymphangioblasts (red arrowhead) (scale

bars 50 µm). p tmem33 morphants injected with 0.4 ng morpholinos display reduced SeA length at 30 hpf (t-test ****p= < 0.0001; t= 4.075; DF= 24.

n= 3 repeats, 10 embryos per group). q tmem33 morphants injected with 0.4 ng morpholinos display incomplete formation of DLAV (t-test ****p= <

0.0001; t= 5.618; DF= 28. n= 3 repeats, 9 or 10 embryos per group). r, s Thoracic duct formation is impaired in tmem33 morphants injected with 0.4 ng

morpholinos (white asterisks), compared with control morphants (white arrowheads) (scale bars 50 µm). DA, dorsal aorta; PCV, posterior cardinal vein.

Source data are provided as a Source Data file
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Fig. 4a,c). fli1a:GCaMP7a embryos treated with 2-APB displayed
reduced EC GCaMP7a fluorescence and reduced frequency of
Ca2+ oscillations in tip cells (Supplementary Fig. 4a,c,d,e).

Having established fli1a:gal4FFubs3;uas-GCaMP7a as a reporter
of EC cytosolic Ca2+ levels in vivo, we examined the effect of
tmem33 knockdown on EC Ca2+ oscillations. tmem33 knock-
down in fli1a:gal4FFubs3;uas-GCaMP7a embryos significantly
reduced the frequency of Ca2+ oscillations and GCaMP7a
fluorescence intensity in EC tip cells (Fig. 2a–e and Supplemen-
tary Movies 4,5). Furthermore, treatment of fli1a:gal4FFubs3;
uas-GCaMP7a embryos with the VEGFR inhibitor Tivozanib/
AV951 reduced Ca2+ oscillations in a similar manner to
tmem33 knockdown (Supplementary Fig. 5a–d,i). In contrast,
N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl
ester (DAPT)-mediated inhibition of Notch signalling, which
negatively regulates VEGF signalling41, significantly increased
cytosolic Ca2+ oscillations within EC tip cells (Supplementary

Fig. 5e,f,i). These data indicate tmem33 knockdown reduced
endothelial
Ca2+ activity to a similar level as VEGF inhibition and are
consistent with studies that demonstrate EC calcium signalling
mediates the response to VEGF in vivo39.

The delayed SeA sprouting, abnormal tip cell morphology and
aberrant DLAV anastomosis following tmem33 knockdown
(Fig. 1h–o) are similar to phenotypes observed following
inhibition of filopodia formation in endothelial tip cells42.
Knockdown of tmem33 in Tg(fli1a:lifeACT-mClover)sh467, which
labels filamentous actin in ECs, substantially reduced the number
and length of filopodia present on EC tip cells (Fig. 2f-i),
suggesting defective filopodia formation may contribute to
impaired angiogenesis in tmem33 morphants. As filopodia are
known to express VEGF receptors and transduce the migratory
signal upon VEGF ligand binding3,43, we examined whether loss
of filopodia could account for the reduction in EC Ca2+
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oscillations observed in tmem33 morphants (Fig. 2a–e, Supple-
mentary Movies 4,5). Tg(fli1a:lifeACT-mClover) embryos treated
with the actin depolymerising agent Latrunculin B did not form
filopodia (Supplementary Fig. 6a–c, black arrowheads), instead
forming rapidly depolymerising F-actin foci in keeping with
previous reports42. Treatment of fli1a:gal4FFubs3;uas-GCaMP7a
embryos with Latrunculin B had no significant effect on
frequency of endothelial Ca2+ oscillations in tip cells in
comparison with controls (Supplementary Fig. 6d–f, white
arrowheads). This suggests loss of EC filopodia in tmem33
morphants is not responsible for reduced EC Ca2+ oscillations.

tmem33 mutant zebrafish embryos display genetic compensa-
tion. As morpholino knockdown is transient and may induce off-
target effects, we next generated zebrafish tmem33 mutants using
transcription activator-like effector nucleases (TALENs)44. We
identified a mutant allele (hereafter referred to as sh443) with a 2
bp deletion in exon 3, which induces a premature stop codon
within exon 4 encoding the second conserved transmembrane
helix (Supplementary Fig. 7a,b). tmem33sh443 mutants display
substantially reduced expression of tmem33 mRNA (Supple-
mentary Fig. 7c–e) likely via nonsense-mediated decay, indicating
this mutation represents a severe loss-of-function or null allele.
However, in contrast to tmem33 morphants, vascular (Supple-
mentary Fig. 7f,g) and pronephric development was normal in
tmem33sh443 mutants and homozygous tmem33 mutant adults
were viable. Recent studies describe mechanisms by which the
zebrafish genome can compensate for genetic mutations but not
morpholino knockdown45. Consistent with such compensation,
homozygous tmem33sh443 mutants injected with tmem33 mor-
pholinos titrated to a level, which did not significantly induce p53
expression (Supplementary Fig. 7h), displayed significantly longer
SeAs compared with heterozygote or wild-type embryos (Sup-
plementary Fig. 7i–l, arrowheads). In addition to the described
effect on vascular and lymphatic development, tmem33 mor-
phants exhibited increased glomerular size (Supplementary
Fig. 7m–o, arrows) and homozygous tmem33sh443 mutants were
protected against the effect of the tmem33 morpholino on glo-
merular size (Supplementary Fig. 7m–o, arrows). These data
suggest tmem33sh443 mutants exhibit genetic compensation or
transcriptional adaptation46.

tmem33 crispant embryos phenocopy tmem33 morphant
embryos. As tmem33 mutants appeared to display genetic com-
pensation, and in order to confirm the morpholino-induced
phenotype, we next knocked down tmem33 using Clustered
Regularly Interspaced Short Palindromic Repeats interference
(CRISPRi). This acts via steric inhibition of transcription47 and
has been previously successful in zebrafish embryos45. In com-
parison with co-injection of mRNA encoding a catalytically
inactive Cas9 nuclease (dCas9)47 and control single-guide RNAs
(sgRNAs) lacking the dCas9 binding motif (Supplemen-
tary Table 2), co-injection of sgRNAs flanking the start codon of
tmem33 with dCas9 mRNA into zebrafish embryos (hereafter
referred to as crispants) reduced tmem33 expression by in situ
hybridisation (Supplementary Fig. 8a,b, arrowhead) and quanti-
tative reverse-transcriptase PCR (qRT-PCR) (Supplementary
Fig. 8c). tmem33 CRISPRi significantly reduced Ca2+ oscillations
in tip cells (Supplementary Fig. 8d–h) and endothelial filopodia
number and length (Supplementary Fig. 8i–l, arrowheads). We
were able to rescue the angiogenic defects in tmem33 morphants
and crispants by co-injection of full-length tmem33 mRNA
(Supplementary Fig. 9) confirming that these were due to reduced
expression of tmem33. Interestingly, at minimal phenotypic
doses, induction of p53 expression was substantially reduced in

tmem33 crispants in comparison with tmem33 morphants injec-
ted with 4 ng morpholino (Supplementary Fig. 8m), suggesting
CRISPRi may be less subject to nonspecific effects than mor-
pholinos. Taken together, these data demonstrate that tran-
scriptional inhibition of tmem33 via CRISPRi induces endothelial
defects highly similar to those generated by morpholino-mediated
translational inhibition of tmem33 (Fig. 2). These data indicate
tmem33 is required for endothelial cytosolic Ca2+ oscillations,
endothelial filopodia formation and normal angiogenesis.

tmem33 promotes angiogenesis in an EC-specific manner. The
morphant and crispant phenotypes described above were induced
by global translational/transcriptional inhibition and tmem33 is
expressed in tissue other than ECs and the developing kidney. We
therefore sought to examine the effect of EC- and pronephros-
specific inhibition of tmem33. As CRISPRi employs a genetically
encoded catalytically inactive Cas9 nuclease (dCas9)47, we pos-
tulated that co-expressing dCas9 under the control of a tissue-
specific promoter and gene targeting sgRNAs may facilitate
tissue-specific knockdown of tmem33. We therefore generated
fli1a:dCas9, cryaa:cfp and enpep:dCas9, cryaa:cfp constructs
(Supplementary Fig. 10a,b) that drive transient dCas9 expression
under control of either EC or pronephros-specific promoters,
respectively. These constructs were injected alongside Tol2
mRNA and gene-targeting sgRNAs to elicit tissue-specific gene
knockdown.

In comparison with co-injection of dCas9 mRNA and control
sgRNAs lacking the dCas9-binding motif (Supplementary
Fig. 10c, arrowheads, g arrows, k, l), co-injection of sgRNAs
targeting tmem33 and dCas9mRNA into progeny of an intercross
between Tg(fli1a:AC-TagRFP)sh511/+ and Tg(wt1b:egfp)/+ fish
induced both abnormal vascular and pronephric development
(Supplementary Fig. 10d, arrowheads h, arrows k, l,) as previously
demonstrated. In contrast, embryos injected with tmem33
sgRNAs and fli1a:dCas9, cryaa:cfp construct displayed signifi-
cantly reduced DLAV continuity but normal kidney development
(Supplementary Fig. 10e, arrowheads i, arrows k, l), whereas
embryos injected with tmem33 sgRNAs and enpep:dCas9, cryaa:
cfp construct, restricting CRISPRi knockdown to the kidney,
developed distended glomeruli, whereas the vasculature was
normal (Supplementary Fig. 10f, arrowheads j, arrows k, l). We
next generated a stable transgenic line expressing dCas9 in EC Tg
(fli1a:dCas9, cryaa-cerulean)sh512, hereafter referred to as Tg(fli1a:
dCas9). To avoid the potential for reduced of knockdown
efficiency by fluorescent tagging, we employed untagged dCas945.
We screened for embryos expressing dCas9 in ECs by in situ
hybridisation (Fig. 3a–c) and validated EC-restricted expression
of dCas9 using immunohistochemistry (Fig. 3d–g). As co-
injection of dCas9 mRNA and control sgRNAs were consistent
with normal vascular and pronephric development (Supplemen-
tary Fig. 8, S10), to test efficacy of EC gene knockdown in stable
dCas9 expressing transgenics, we first injected progeny of
outcrosses from Tg(fli1a:dCas9)/+ × Tg(fli1a:EGFP)/+ with an
sgRNA targeting dll4 (Fig. 3h–j). Injection of sgRNA therefore
served as an internal control in Cerulean Fluorescent Protein
(CFP)-negative embryos. CFP-positive embryos displayed sig-
nificantly increased DLAV diameter in comparison with CFP-
negative embryos (Fig. 3h,i, arrowheads, j), consistent with
previously observed ectopic DLAV sprouting in dll4 morphants
and mutants48. Injection of tmem33 sgRNAs into Tg(fli1a:dCas9)
embryos delayed SeA sprouting (Fig. 3k–m, compare white
arrowheads with yellow arrowheads) and induced discontinuous
DLAV formation (Fig. 3n–p, yellow arrowheads) only in CFP-
positive embryos, similar to tmem33 morphants (Fig. 1h–o) and
crispants (Supplementary Fig. 10d,e, arrowheads, k).
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Fig. 3 Injection of sgRNAs targeting tmem33 into stable Tg(fli1a:dCas9;cryaa:CFP)sh512 embryos recapitulates knockdown of tmem33. a dCas9 is expressed

within the developing vasculature (red arrowhead) including SeAs (black arrowheads) in ~50% of progeny from a Tg(fli1a:dCas9;cryaa:Cerulean)sh512/+

outcross at 26 hpf. At this stage the dominant cryaa:Ceruleanmarker is not expressed. b dCas9 is not expressed within the developing vasculature in CFP- Tg

(fli1a:dCas9;cryaa:Cerulean)sh512 transgenic embryos at 50 hpf. Probe trapping in notochord is highlighted (blue arrowhead). c dCas9 is expressed within the

dorsal aorta (red arrowhead) and SeAs (black arrowheads) in CFP+ Tg(fli1a:dCas9;cryaa:Cerulean)sh512 transgenic embryos at 50 hpf. Probe trapping in

notochord is highlighted (blue arrowhead). d–g Colocalisation of dCas9 and GFP in 72 hpf fli1a:dCas9; fli1a:EGFP embryo indicates EC restricted expression

of dCas9 (white arrowheads) Scale bars 20 μm. h, i Tg(fli1a:dCas9;cryaa:Cerulean) embryos injected with sgRNA targeting dll4 phenocopies ectopic vascular

looping within the DLAV previously observed in dll4 morphants and mutants at 3 dpf (white arrowheads). j Tg(fli1a:dCas9;cryaa:Cerulean)-positive embryos

injected with sgRNAs targeting dll4 display increased DLAV diameter (unpaired t-test ***p= < 0.001; t= 4.203 DF= 35; 2 repeats; n= 9 embryos per

group). Scale bars 50 µm. k-m Tg(fli1a:dCas9;cryaa:Cerulean) embryos injected with sgRNAs targeting tmem33 display reduced SeA length (yellow

arrowheads highlight normal SeAs, white arrowheads highlight delayed SeAs) at 30 hpf (unpaired t-test ***p= < 0.0001; t= 6.716 DF= 62; 3 repeats; n=

9–12 embryos per group). Scale bars 50 µm. n–p Tg(fli1a:dCas9;cryaa:Cerulean) embryos injected with sgRNAs targeting tmem33 display absent parachordal

lymphangioblasts (red arrowhead) and reduced DLAV continuity (yellow arrowheads) (unpaired t-test ***p= < 0.0001; t= 6.399 DF= 56; 3 repeats; n=

9–11 embryos per group). Scale bars 50 µm. q–s Tg(fli1a:dCas9;cryaa:Cerulean) embryos injected with sgRNAs targeting tmem33 display no significant

difference in glomerular area, compared with Tg(fli1a:dCas9;cryaa:Cerulean)-negative siblings embryos (unpaired t-test, ns= not significant; t= 0.4048;

DF= 74; 3 repeats; n= 12–13 embryos per group). Scale bars 200 µm. Source data are provided as a Source Data file
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Furthermore, Tg(fli1a:dCas9) embryos injected with tmem33
sgRNA displayed absent parachordal lymphangioblasts (Fig. 3n,
o, red arrowheads) only in CFP-positive embryos, similar to
tmem33 morphants (Fig. 1l–o, red arrowheads). By contrast, Tg
(fli1a:dCas9) embryos injected with tmem33 sgRNA displayed no
significant difference in glomerular area between CFP-positive
and -negative embryos (Fig. 3q–s, arrows). Collectively, these data
demonstrate tissue-specific CRISPRi-mediated uncoupling of
tmem33 functions within the endothelium and pronephros, and
indicate EC-specific and pronephros-specific functions of tmem33
during angiogenesis and pronephric development, respectively, in
zebrafish. Importantly, all approaches to knockdown tmem33
function were compatible with normal gross embryonic mor-
phology at phenotypic doses (Supplementary Fig. 11).

tmem33 functions downstream of VEGF during angiogenesis.
Elevations in cytosolic Ca2+ are induced when EC tip cells respond
to extracellular Vegfa via the Kdrl receptor39 and EC
Ca2+ oscillations are reduced in tip cells following tmem33
knockdown (Fig. 2a–e, Supplementary Movies 4, 5 and Supple-
mentary Fig. 8d-h). We therefore sought to establish epistasis
between VEGF signalling and tmem33. We overexpressed vegfa165
mRNA, which increases EC Ca2+ signalling (Supplementary
Fig. 5g, h, j) and examined the effect on EC Ca2+ activity in the
presence or absence of tmem33 CRISPRi knockdown (Fig. 4a–e and
Supplementary Movies 6–9). As expected, vegfa165 overexpression
increased the frequency of cytosolic Ca2+ oscillations in endothelial
tip cells (Fig. 4a, b, arrowheads, e) but this was significantly reduced
by simultaneous tmem33 knockdown by CRISPRi (Fig. 4d,e) similar
to knockdown of tmem33 alone without vegfa165 overexpression
(Fig. 4c-e). Thus, tmem33 is required for Vegfa-induced Ca2+

oscillations in endothelial tip cells.
In addition, Vegfa promotes proliferation of intersegmental

vessel (ISV) ECs via a process normally limited by Notch

signalling4. We therefore asked whether tmem33 knockdown
suppresses EC number in ISVs. Vessels are referred to as ISVs
where the transgene employed did not allow distinction between
SeAs and SeVs. Knockdown of tmem33 reduced EC number
within ISVs (Fig. 4f-h), similar to previous studies following
VEGF inhibition5. Furthermore, VEGF receptor expression was
unaffected in tmem33 crispants (Fig. 4i). Taken together, these
data demonstrate that tmem33 mediates the effects of VEGF
during angiogenesis and is required for VEGF-mediated cytosolic
Ca2+ signalling within endothelial tip cells. Furthermore, these
data suggest tmem33 knockdown inhibits EC proliferation in
response to VEGF.

TMEM33 is required for VEGFA-mediated angiogenesis in
HUVECs. As tmem33 mediates the effects of Vegfa in zebrafish,
we next sought to establish whether this was conserved in
humans. We used RNA interference to knock down TMEM33 in
human umbilical vein ECs (HUVECs) (Fig. 5a) and examined the
effect on EC migration and tube formation in response to VEGFA
(Fig. 5b). Consistent with our findings in zebrafish, TMEM33-
deficient HUVECs migrated less than controls (Fig. 5b). In
addition, HUVEC tubular morphogenesis induced by VEGFA
was significantly reduced by TMEM33 knockdown (Fig. 5c),
indicating the requirement for TMEM33 during the response to
VEGFA is conserved in humans.

tmem33 knockdown reduces EC Notch and ERK signalling.
VEGF signalling via VEGF receptor 2 (kdr), and VEGFR4 (kdrl)
in zebrafish, induces transcription of dll4 in endothelial tip cells
via the MEK-ERK signalling pathway. Upregulation of Dll4 in
endothelial tip cells induces Notch signalling in neighbouring
stalk cells, which balance tip and stalk cell identity via regulation
of VEGFR expression7,41. As tmem33 mediates the response to
VEGF, we examined whether Dll4/Notch signalling was
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perturbed by tmem33 knockdown. Using a transgenic Notch
reporter Tg(csl:venus)49, which reliably reports endothelial Notch
signalling (Supplementary Fig. 12a–f), we observed no significant
differences in reporter expression at 26 hpf (Fig. 6a, b red
arrowhead, c), but by 48 hpf, Notch reporter expression was
significantly reduced in the DA (Fig. 6d, e, red arrowheads, f) and
SeAs displayed reduced Venus fluorescence in tmem33 mor-
phants (Fig. 6d, e, white arrowheads). In keeping with this,
expression of dll4, notch1b and the Notch targets hey2/gridlock
and her12 were reduced by tmem33 knockdown using global
CRISPRi at 48 hpf but not 26 hpf (Fig. 6g, h and Supplementary
Table 3). In situ hybridisation confirmed reduced arterial
expression of all genes assayed by qPCR at 48 hpf (Fig. 6i–p,
arrowheads). Phosphorylation of the serine/threonine kinase ERK
preferentially occurs in angiogenic ECs7. In keeping with this
requirement downstream of VEGF signalling during angiogen-
esis, tmem33 knockdown reduced phosphorylated ERK (pERK)
in sprouting SeAs (Fig. 6q–t, white arrowheads, u). pERK pro-
motes expression of dll4 in zebrafish angiogenic ECs7,10 and dll4
expression was reduced by tmem33 knockdown (Figs. 6h, n,
arrowheads). These data indicate tmem33 is required for ERK
phosphorylation and Notch signalling, which act downstream of
VEGF in angiogenic ECs.

As tmem33 promotes sprouting angiogenesis cell autono-
mously (Fig. 3), we examined whether several other molecular
and cellular consequences of tmem33 inhibition were due to
tmem33 function within ECs. Similar to knockdown of tmem33
by morpholino and CRISPRi, Tg(fli1a:dCas9) embryos injected
with tmem33 sgRNA displayed reduced endothelial Ca2+

oscillations (Supplementary Fig. 13a–c, white arrowheads),
reduced filopodia number and length (Supplementary Fig. 13d–g,
black arrowheads), reduced EC number in ISVs (Supplementary
Fig. 13h–j) and reduced endothelial Notch signalling (Supple-
mentary Fig. 13k–m, arrowheads) in CFP-positive embryos in
comparison with CFP-negative siblings. Collectively, this indi-
cates tmem33 is required cell autonomously to promote
endothelial Ca2+ oscillations, filopodia formation, Notch signal-
ling and to regulate EC number during angiogenesis.

SOCE inhibition inhibits angiogenesis. Although tmem33
knockdown impairs angiogenesis and reduces endothelial cyto-
solic Ca2+ oscillations, it was possible that these effects were due
to different roles of tmem33 rather than causally linked. We
therefore sought to determine whether inhibiting EC cytosolic
Ca2+ release was sufficient to cause the observed phenotype of
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tmem33 knockdown. We inhibited SOCE using SKF-96365, a
compound that inhibits STIM1 and TRPC1 function7,50. SKF-
96365 treatment between 21 hpf and 27 hpf reduced SeA length
(Fig. 7a–c arrowheads) as induced by tmem33 knockdown
(Fig. 1j, k white arrowheads). Embryos treated from 21 hpf until
50 hpf displayed incomplete DLAV formation (Fig. 7d–f, arrow-
heads) similar to tmem33 knockdown (Fig. 1n, o). Importantly,
although tmem33 expression was unaffected by SKF-96365
treatment (Fig. 7g), frequency of endothelial Ca2+ oscillations
was significantly reduced in tip cells (Fig. 7h–j). Furthermore,
Notch reporter expression (Fig. 7k–m) and endothelial tip cell

filopodia number (Fig. 7n–p) was reduced in ECs following SKF-
96365 treatment similar to tmem33 knockdown (Fig. 6d–f and
Fig. 2f-i, respectively). SKF-96365-treated embryos also displayed
abnormal spade-shaped tip cell morphology (Fig. 7b, e, o, blue
arrowheads) as induced by tmem33 knockdown (Fig. 1k, white
arrowhead). Given the similar angiogenic defects induced by
tmem33 knockdown and SKF-96365 treatment, we examined
whether inhibition of SOCE could account for reduced EC
number and migration previously observed in tmem33 mor-
phants (Fig. 4f–h, and Supplementary Fig. 2). We treated
embryos from 21 hpf until 30 hpf and quantified EC proliferation
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and migration in the presence and absence of SKF-96365 between
24 and 30 hpf (Supplementary Fig. 14 and Supplementary
Movies 10, 11), and observed that both SeA migration (Supple-
mentary Fig. 14a–e, arrowheads) and tip and stalk cell pro-
liferation (Supplementary Fig. 14a–d,f–h) were significantly
reduced in migrating SeAs treated with SKF-96365. Consistent
with this, expression of VEGF receptors in tmem33 crispants were
unaffected (Fig. 4i) and thus unlikely to account for reduced EC
number (Fig. 4f–h and Supplementary Fig. 13h–j). Collectively,
these data demonstrate that SOCE inhibition impairs angiogen-
esis in vivo by limiting EC migration, proliferation, disrupting
signalling pathways downstream of VEGF and inhibiting filopo-
dia formation similar to tmem33 knockdown. This is consistent
with our hypothesis that reduced cytosolic EC Ca2+ oscillations
account for the angiogenic defects observed caused by tmem33
knockdown. Thus, tmem33 is essential for VEGF-mediated
endothelial Ca2+ oscillations that are required for tip cell filo-
podia formation, the downstream consequences of VEGF sig-
nalling and developmental angiogenesis (Fig. 8).

Discussion
No previous study has examined the function of tmem33 in a
multicellular organism. Previous studies in yeast20–22 and trans-
formed human cells23,24 had localised tmem33 to the ER, but no
function has been demonstrated during development. We find
tmem33 is expressed widely throughout the developing zebrafish
embryo and localised to structures indicative of ER in zebrafish
ECs. In keeping with its expression patterns, tmem33 knockdown
demonstrated a requirement for tmem33 during normal angio-
genesis and pronephric development. Furthermore, TMEM33 is
also required for VEGFA-mediated angiogenesis in human ECs,
indicating a conserved function between zebrafish and human.

We find that tmem33 is required for Vegfa-mediated cytosolic
Ca2+ oscillations in endothelial tip cells. Although increases in
cytosolic Ca2+ are a well-established response to VEGF in ECs37,
it remained unclear whether Ca2+ signalling was required for its
effects in vivo and, if so, how Ca2+ co-ordinated EC behaviours
during angiogenesis. Recent studies have established that Vegfa/
Kdrl signalling is required for endothelial Ca2+ oscillations dur-
ing sprouting angiogenesis in vivo39. Our findings are consistent
with these, as VEGFR inhibition abrogated Ca2+ oscillations and
overexpression of vegfa165 mRNA or Notch inhibition increased
Ca2+ oscillations in tip cells. Reduction of Ca2+ oscillations in tip
cells following either tmem33 knockdown or acute SOCE inhi-
bition were associated with reduced formation of filopodia,
abnormal tip cell migration and aberrant anastomosis. Impaired
SeA migration and DLAV anastomosis have been observed in
embryos with reduced EC filopodia formation, suggesting this

may contribute to the angiogenic defects induced by tmem33
knockdown42. Importantly, the frequency of cytosolic Ca2+

oscillations in tip cells was unaffected following loss of filopodia.
This is in keeping with studies that demonstrated tip cells without
filopodia retained their ability to respond to Vegfa42 and suggests
reduced filopodia formation induced by tmem33 knockdown was
secondary to reduced EC Ca2+ oscillations. Ca2+ oscillations
have been reported to promote F-actin reorganisation and cell
migration in vitro51,52. It therefore seems likely to be that
tmem33-mediated cytosolic Ca2+ oscillations induced by VEGF
signalling promote tip cell migration in vivo via organisation of
the actin cytoskeleton. As such, tmem33-mediated Ca2+ oscilla-
tions permit tip cells to respond quickly to the proangiogenic
Vegfa stimulus.

Vegfa-mediated activation of ERK signalling is also required
for angiogenic sprouting and induction of tip cell marker
expression including dll4 7,10,33,53. tmem33 knockdown reduced
ERK phosphorylation and Dll4/Notch signalling, and delayed tip
cell migration in a similar way to ERK inhibition7,53 without
significantly affecting vegfr expression. This indicates tmem33
function contributes to activation of these pathways in vivo, likely
to be via Ca2+-dependent mechanisms downstream of Vegfa.
Interestingly, induction of Dll4/Notch signalling at 26 hpf was not
dependent on tmem33 function; however, its attenuation at 48
hpf, suggests tmem33 contributes to maintenance of Dll4/Notch
signalling in ECs. Consistent with this, inhibition of SOCE
reduced Notch reporter activity at 48 hpf, suggesting an input
from VEGF-mediated calcium signalling between 1 and 2 dpf to
maintain Dll4/Notch signalling within developing arteries. Fur-
thermore, recent studies indicate a requirement for Ca2+ binding
during folding of Notch receptors and ligand engagement,
including the Dll4–Notch1 interaction54. Reduced expression of
dll4 induced by tmem33 knockdown is in keeping with observed
reductions in ERK phosphorylation. ERK phosphorylation is
required for development of the lymphatic system33-35,55; there-
fore, reduced ERK phosphorylation induced by tmem33 knock-
down may contribute to defective lymphatic sprouting.

Surprisingly, tmem33 mutants exhibited normal angiogenesis,
yet displayed substantial reductions in tmem33 expression. The
relative ease with which one can now generate targeted lesions
within the zebrafish genome and widespread adoption of these
approaches by the community has generated substantial evidence
that many loss-of-function mutants fail to recapitulate
morpholino-induced phenotypes56. Although this was initially
attributed to well-established off-target effects of morpholinos57,
recent studies have indicated a greater degree of compensation
within the zebrafish genome than previously considered45. The
tmem33sh443 allele is predicted to generate a premature stop
codon within coding exon 4, located 53 nucleotides downstream

Fig. 6 tmem33 knockdown reduces endothelial Notch and ERK signalling during angiogenesis. a–c Notch reporter expression is unaffected by injection of

0.4 ng tmem33 morpholinos at 26 hpf. Notch signalling activity in control embryos is present in neural tube (blue arrowhead) and DA (red arrowhead)

(c, unpaired t-test; t= 0.5553; DF= 20; 2 repeats; n= 5 or 6 embryos per group). Scale bars 50 µm. d–f Injection of 0.4 ng tmem33 morpholinos reduces

Notch reporter expression at 48 hpf. Notch expression in control Tg(csl:venus) embryos is present in the neural tube (blue arrowhead), DA (red arrowhead)

and SeAs (white arrowheads) (f, unpaired t-test; p= 0.0451; t= 2.138; DF= 20; 2 repeats; n= 6 and 4 embryos per group). Scale bars 50 µm.

g Expression of notch1b, dll4, hey2 and her12 are not significantly altered by tmem33 CRISPRi at 26 hpf (one-way ANOVA using post hoc Tukey’s comparison

test. n= 3 repeats). h Expression of notch1b, dll4, hey2 and her12 are significantly reduced at 48 hpf by tmem33 CRISPRi (one-way ANOVA using post hoc

Tukey’s comparison test. *p= < 0.05; **p= < 0.01. n= 3 repeats). i–p In comparison with control morphants (i–l), embryos injected with 0.4 ng tmem33

morpholino (m–p) display reduced expression of notch1b within the DA (i, m, red arrowheads) and SeAs (i, m, white arrowheads), dll4 within SeAs

(j, n, white arrowheads), hey2 within the DA (k, o, red arrowheads) and her12 within the DA (l, p, red arrowheads) and SeAs (l, p, white arrowheads). Scale

bars 100 µm. q–t tmem33 knockdown by CRISPRi reduces endothelial ERK phosphorylation (q, r, SeAs highlighted by yellow outline and white arrowheads).

Intensity plot of ERK staining is shown (s, t, SeAs highlighted by yellow outline and white arrowheads). Scale bars 50 µm. u tmem33 crispants display

significantly reduced levels of pERK phosphorylation. Pixel intensity normalised to neural tube ERK fluorescence (unpaired t-test, **p= 0.0097, t= 2.993

DF= 14. n= 2 repeats, 4 embryos per group). Source data are provided as a Source Data file
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of an exon junction. This is consistent with the requirement for
induction of nonsense-mediated decay58 and observed reductions
in tmem33 expression. It is therefore likely that this allele
represents a severe loss of function or null mutation, and that

compensatory machinery exists within the zebrafish genome to
account for normal angiogenesis in tmem33sh443 mutant embryos.

To circumvent these compensatory pathways, we have devel-
oped a strategy to transiently knock down gene function within
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zebrafish endothelium and pronephros using tissue-specific
CRISPRi. Using this approach we were able to uncouple tissue-
specific functions of tmem33 and show that tmem33 is required
cell autonomously in both tissues for their normal development.
tmem33 functions within ECs to promote endothelial Ca2+

oscillations and filopodia formation during angiogenesis, and also
to promote Notch signalling and regulate EC number. Tissue-
specific CRISPRi offers a relatively straightforward method to
study gene function within different tissues and represents an
alternative to laborious cell transplantation procedures. Tissue-
specific CRISPRi can be employed transiently to uncouple tissue-
specific functions of genes, via co-injection of gene-targeting
sgRNAs, dCas9 expression constructs and Tol2 mRNA. However,
we observed more severe defects using this approach than when
using stable transgenic lines expressing dCas9. We suspect this
may be due to variable copy number integration mediated by
Tol2 and thus variable dCas9 expression, in addition to inherent
toxicity of DNA microinjections. At minimal phenotypic doses,
CRISPRi is less prone to induction of p53 than some morpholinos
and although this will vary depending upon the sgRNA, target
and morpholino employed, our experience with the genes we
have studied to date suggests CRISPRi may be susceptible to
fewer off-target effects.

The localisation of tmem33 within the ER in zebrafish ECs
suggest it may have an important function in regulation of endo-
thelial SOCE. Consistent with this, acute antagonism of SOCE
induced similar reductions in cytosolic Ca2+ oscillations, filopodia
formation and endothelial Notch activity as tmem33 knockdown,
without affecting tmem33 expression. Furthermore, SOCE inhibi-
tion reduced EC proliferation, consistent with reduced EC number

induced by tmem33 knockdown. Genome-wide protein interaction
studies in Drosophila embryos, have shown that the Drosophila
Tmem33 orthologue, Kr-h2, physically interacts with SERCA59, and
although this requires functional validation, the interaction appears
to be conserved in humans. This suggests an ancestral function of
Tmem33 in regulation of SOCE. Tmem33 may also act to augment
the activity of Ca2+ channels such as IP3R within the ER. Alter-
natively, tmem33may be involved in mediating cortical distribution
of the ER, as has been described for a yeast orthologue Tts1p22.
Interestingly, rapid changes in cytosolic Ca2+ are known to induce
dynamic changes in actin cytoskeleton organisation in vitro60. The
actin cytoskeleton has been linked to normal SOCE function by
facilitating interaction of ER-resident proteins with their plasma
membrane counterparts19,61. As tmem33 knockdown reduces Ca2+

oscillations and inhibits filopodia formation, this represents an
intriguing possibility. VEGF has been shown to induce distinct
modalities of calcium oscillations that correlate with different EC
behaviours, including migration and proliferation62. We find that
inhibition of SOCE impairs both migration and proliferation of ECs
and knockdown of tmem33 similarly impairs EC migration and
reduces EC number, suggesting an essential requirement for Ca2
+oscillations in both processes. The endothelial actin cytoskeleton is
necessary for efficient mitosis and migration, and is notably dis-
rupted by tmem33 knockdown or SOCE inhibition. This suggests
that reduced EC proliferation and migration induced by inhibition
of SOCE or reduced migration and EC number induced by tmem33
knockdown may represent a consequence of Ca2+-dependent dis-
ruption of the endothelial actin cytoskeleton. Further studies will be
required to address the precise function of Tmem33-mediated Ca2+

within the ER in ECs in response to VEGF.
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Fig. 8 Proposed model for tmem33 function in endothelial cells during angiogenesis. When VEGFA binds to its cognate receptor, e.g., Kdrl, the resulting

phosphorylation of PLCγ generates inositol 1,4,5-trisphosphate (IP3) and this, in turn, binds to IP3 receptors on the ER membrane, which release Ca2+ into

the cytosol from intracellular stores. Our data suggest the VEGF-mediated release of Ca2+ from ER stores during angiogenesis is dependent on Tmem33

function within the ER membrane. Furthermore, resultant Ca2+ oscillations generated in tip cells downstream of Vegfa contribute to phosphorylation of

ERK and induction or maintenance of downstream targets including Dll4/Notch signalling, to co-ordinate cellular behaviours during vascular

morphogenesis. ER, endoplasmic reticulum; P, plasma membrane

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08590-7

12 NATURE COMMUNICATIONS |          (2019) 10:732 | https://doi.org/10.1038/s41467-019-08590-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Methods
Zebrafish strains, morpholinos and sgRNA. All zebrafish were maintained
according to institutional and national ethical and animal welfare guidelines. All
experiments were performed under UK Home Office licences 40/3708 and 70/8588.
The following published zebrafish lines were employed: Tg(fli1a:EGFP)y1 63 Tg
(−0.8flt1:enhRFP)hu5333 25, Tg(−26wt1b:EGFP)li1 64, Tg(flk1:EGFP-NLS)zf109 65, Tg
(kdrl:HRAS-mCherry-CAAX)s916 66 and Tg(csl:venus)qmc6149. For details on mutant
and transgenic line generation, see Supplementary Methods. A quantity of 0.2 or 2
ng of Sp2b and Sp3 morpholinos were injected. Where these were co-injected, a
total of 0.4 ng or 4 ng was injected. Four nanograms of morpholino was found to
exhibit some induction of p53 (Supplementary Fig. 7h) and was titrated to 0.4 ng to
reduce this; however, phenotypes were equivalent at each dose. One nanogram of
each sgRNA was injected alongside 500 pg of dCas9 mRNA45. Negative control
sgRNAs contained the DNA-binding element of the active gRNA but lacked the
stem-loop forming region associated with binding to the Cas9 or dCas9 protein.
For morpholino, sgRNA and primer sequences, see Supplementary Methods.

Generation of tmem33sh443 mutant allele. TALENs specific for tmem33
(ENSDARG00000041332) were designed against the following sequence 5′-
cttcctggcccaggctt-3′ targeting an EcoNI site within exon 3. TALENs were assem-
bled using the Golden Gate TALEN and TAL Effector Kit (Addgene, MA, USA)44

to generate the pTmem33Tal1L&R plasmids. Following linearisation of
pTmem33Tal1L&R with NotI, capped mRNA was generated by in vitro tran-
scription and 1500 pg TALEN mRNA was injected per embryo. Individual G0
embryos were tested by PCR and restriction fragment length polymorphism using
tmem33ex3F and tmem33ex3R primers (Table S1), to identify somatic mutations
that destroyed the EcoNI restriction site. The progeny of TALEN-injected G0
adults were incrossed and genotyped to confirm the presence of the sh443 allele. All
studies were performed using F3 and F4 generations.

Generation of fli1a:dCas9 and enpep:dCas9 constructs. pME-dCas9 was gen-
erated by cloning the nls-dCas9-nls coding sequence from pT3TS-dCas9, a kind gift
of Didier Stainier, into pME-MCS2, which contained the multiple cloning site of
pCS2+. fli1a:dCas9;cryaa:cfp and enpep:dCas9;cryaa:cfp constructs (Supplementary
Fig. 10a) were subsequently generated using the Tol2 Kit via standard methods67.
Each construct was injected into Nacre embryos alongside Tol2 mRNA at 25 pg/nl.

Generation of transgenic lines. Tg(fli1a:Gal4FFubs3;UAS-GCaMP7a)sh392 was
generated via injection of pTol2UASGCaMP7a into progeny of tg(fli1a:Gal4FF)
ubs3 68 heterozygous outcross alongside tol2 mRNA according to standard proto-
cols67. Tg(fli1a:LifeAct-mClover)sh467 was generated by fusing the LifeAct F-Actin
binding motif69 to the N terminus of mClover by PCR (Table S1) to generate pME-
LifeAct-mClover. fli1a:LifeAct-mClover construct was generated using the tol2 Kit
via standard methods67 and the following components: fli1a enhancer/promoter70,
pME-LifeAct-mClover, pDestTol2-pA267, and p3E-SV40pA67. Tg(fli1a:DsRedEx2)
sh495 was generated using the tol2 Kit via standard methods67 and the following
components: fli1a enhancer/promoter70, pENTRDSRedEx270, pDestTol2-pA267,
and p3E-SV40pA67. Tg(fli1a:AC-TagRFP)sh511 was generated by amplifying the
actin-VHH-TagRFP coding sequence from pAC-TagRFP (Chromotek) and adding
attB1/B2R sites (Table S1) to generate pME-AC-TagRFP. fli1a:AC-tagRFP con-
struct was generated using the Tol2 Kit67 and components listed above. Tg(fli1a:
dCas9, cryaa:Cerulean)sh512 was generated by co-injecting fli1a:dCas9, cryaa:cfp
plasmid with Tol2 mRNA. Embryos were injected at one-cell stage with 25 ng/μl
Tol2 mRNA and corresponding plasmid DNA.

mRNA microinjections. Microinjections of both vegfa16563 (300 pg), tmem33 (250
pg) and tmem33-gfp (1200 pg) mRNA were performed on single-cell-stage embryos
with 1 nl injection volume.

RNA in situ hybridisation and immunohistochemistry. Alkaline phosphatase
wholemount in situ hybridisation experiments were performed using standard
methods as described previously71. Detailed protocols are available upon request.
EC dCas9 expression was detected using Cas9 in situ probe72. Immunohis-
tochemistry to detect pERK was performed using Phospho-p44/42 Erk1.2 (Thr202.
Tyr204) Rabbit mAb (#4370, cell signal, 1:250) and quantified by normalising EC
signal against ERK staining within the neural tube as described7,73. Immunohis-
tochemistry to detect dCas9 was performed on whole-mount and sectioned
embryos as described74 using mouse anti-CRISPR/Cas9 (7A9-3A3) (Novus Bio-
logicals, NBP2-36440, 1:100), chicken anti-GFP (Abcam, ab13970, 1:500) primary
antibodies, goat anti-mouse IgG (H&L) Alexa Fluor® 647 (Thermo Fisher A21235,
1:1000), and goat anti-chicken IgY (H&L) Alexa Fluor® 488 (Thermo Fisher
A11039, 1:1000) secondary antibodies. Sectioned embryos were fixed at 3 dpf in 4%
paraformaldehyde overnight, washed into 30% sucrose and sectioned at 14 μm
thickness on a Jung Frigocut cryostat (Leica).

Quantitative RT-PCR. qRT-PCR was performed using Taqman™ assays according
to the manufacturer’s instructions (see Supplementary Methods for probe details).
RNA was extracted from batches of 20 or 30 whole embryos per repeat using

Trizol®, as a template for complementary DNA synthesis (Verso™ cDNA synthesis
kit, Thermo Fisher). A 7900 Real-Time PCR system (Applied Biosystems) was used
for qPCR experiments. Gene expression levels were normalised to eef1α and for
each comparison the experimental group was normalised to their relative control
unless otherwise stated. All experiments were performed in triplicate. Results
display triplicate 2−ΔΔCT values and SEM (unless otherwise stated).

Image acquisition and analysis. For light sheet imaging, embryos were anaes-
thetised using tricaine in E3 medium and mounted in 1% agarose. A light sheet
Z.1 system was used and images were acquired using ZEN software (Zeiss). For
confocal microscopy, still images were taken using an Ultraview VOX confocal
spinning disc system (Perkin Elmer), Zeiss LSM880 with Airyscan and Leica SP5.
Images were analysed using Volocity®V5.3.2, ZEN software (Zeiss) and Leica LCS
Confocal software. In cases where samples displayed drift during time lapses, these
were corrected using the translation algorithm in ZEN (Blue Edition).

Calcium imaging. Calcium oscillations were quantified using 12–14 SeAs between
24 and 28 hpf on a Zeiss Lightsheet Z.1. All time lapses were taken at 3 µm z-
intervals at 20 frames per second (fps) with an acquisition time of 4–6 s per stack
using a × 20 objective lens for 300 s. Changes in fluorescence over time were
measured throughout the DA to establish a baseline. Changes in fluorescence
measured in tip cells were determined to be peaks by subtracting mean DA
fluorescence. Changes in fluorescence were normalised to DA baseline values. In
experiments where ectopic Ca2+ oscillations were induced in the DA, the mean DA
value of control embryos was used to normalise datasets. Absolute calcium peak
number was quantified and averaged per SeA, per minute. FIJI was employed to
quantify fluorescence intensity. Tip cells were manually segmented as regions of
interest and mean and peak fluorescence (arbitrary units) were determined.

Pharmacological treatment. VEGF inhibition using Tivozanib/AV951 (500 nM),
Notch inhibition using DAPT (100 μM) or inhibition of F-actin polymerisation
using Latrunculin B (380 nM) was conducted using dechorionated embryos
between 24 and 28 hpf in E3 medium with dimethyl sulfoxide (DMSO) as a
control. SERCA inhibition using Thapsigargin (5 μM) was performed for 45 min
before immediate imaging using a Perkin Elmer Spinning Disk. SOCE inhibition
using SKF-963656 (50 μM) dissolved in water was performed on dechorionated
embryos using untreated embryos as control. The effect of SKF-96365 treatment on
EC proliferation and migration (Supplementary Fig. 14) was performed using
continuous exposure to compound within a light sheet chamber using SKF-96365
at a concentration of 50 μM within 0.7% agarose mounting medium and sur-
rounding E3 medium+ Tricaine. Embryos were treated from 21 hpf and imaged
between 24 and 30 hpf. One to two embryos were imaged for each individual
condition and three congruent repeats of each condition were performed.

Calculation of DA blood flow velocimetry. Single Z-plane time lapses of 3 dpf
zebrafish DA were acquired at 66 fps using a Zeiss Lightsheet Z.1 microscope. The
resulting images were subjected to axial line scan particle image velocimetry
designed for Lightsheet imaging using custom authored scripts in MATLAB
2017b®. Each time lapse was analysed frame by frame using intensity-based
thresholding of circulating erythrocytes. Thresholded images were made binary
followed by conversion of two-dimensional image to one-dimensional (1D) signal
by summing up in ‘y’ direction (all column pixels). The 1D signal was low pass
filtered to remove spurious and highly correlated pixels (low correlation implies
displacement of 1D wave signal). Cross-correlation across time was calculated on
filtered images for each time frame using inbuilt MATLAB 2017b® functions. Thus,
the obtained correlation (in pixels/frames) was then converted to mm/s using the
following equation:

Velocityðmm=sÞ ¼
Correlationðpixels=frameÞ ´ fps ´ 10�3

Scaleðpixels=μmÞ

Algorithm is available on request.

siRNA-TMEM33 knockdown in HUVEC. Small interfering RNA (siRNA)-medi-
ated knockdown of TMEM33 gene expression in HUVEC cells was performed
using ON-TARGET-plus SMART pool human TMEM33 (Thermo Scientific). ON-
TARGET-plus non-targeting pool control duplexes (Thermo Scientific) were used
as a control. For siRNA transfection, HUVECs (Cellworks, ZHC-2301) were plated
in 0.1% gelatin pre-coated six-well tissue culture plates (3 × 105 cells/well) and
incubated overnight. The following morning, cells were washed with phosphate-
buffered saline and incubated in serum-free, antibiotic-free OPTIMEM medium for
1 h. Then, 100 pmol of siRNA/well were transfected using 5 μl of Lipofectamine
2000 (Thermo Scientific). Transfection medium was removed after incubation for
6 h and substituted by ECGM supplemented with ECGM-supplement mix and 1%
penicillin/streptomycin/amphotericin B (Sigma-Aldrich). Cells were incubated for
72 h and then used for further experiments.
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Wound-healing EC migration assay. Cell migration of HUVECs and MLECs,
treated as indicated, was assayed using the Cytoselect™ 24-well Wound Healing
Assay kit (Cell Biolabs). Images were captured with a Nikon DSFi1 digital camera
coupled to a Nikon ECLIPSE TS100 microscope at × 4 magnification. Cell-free area
was quantified with ImageJ software.

Matrigel EC tube-formation assay. HUVECs transfected with the corresponding
siRNA were plated onto Geltrex Reduced Growth-Factor Matrix (Invitrogen) in
Medium 200 with no phenol red and supplemented with 2% foetal calf serum and
VEGF (25 ng/ml) when indicated. Tube formation was quantified after incubation
at 37 °C for 16 h. Images were recorded with a Nikon DSFi1 digital camera coupled
to a Nikon ECLIPSE TS100 microscope at 4× magnification.

Statistical analysis. All statistical analysis employed two-tailed tests and are
described in figure legends. All error bars display the mean and SD, except for
qPCR error bars, which display the mean and SEM. Numbers of experimental
repeats are listed in figure legends. P-values, unless exact value is listed, are as
follows: * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001. F-values, t-values and
degrees of freedom are listed in individual figure legends.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The datasets generated during and/or analysed during the current study are available

from the corresponding author on reasonable request. The source data underlying

Figs. 1l–m, 2b, d, e, h, i, 3g, j, m, p, 4e, h, i, 5a–c, 6c, f–h, u and 7c, f, g, j, m, p, and

Supplementary Figs. 2e, 3d, 4d, e, 5b, d, f, h–j, 6c, f, 7e, h, l, o, 8c , e, g, h, k–m, 9j, k, 10k,

l , 12c, f , 13c, f, g, j, m and 14e–h are provided as a Source Data file. A Reporting

Summary for this Article is available as a Supplementary Information file.
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