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ABSTRACT 
In order to perform realistic network simulations, one needs a 
traffic generator that is capable of generating realistic synthetic 
traffic in a closed-loop fashion that “looks like” traffic found on 
an actual network. We describe such a traffic generation system 
for the widely used ns-2 simulator. The system takes as input a 
packet header trace taken from a network link of interest. The 
trace is “reverse compiled” into a source-level characterization of 
each TCP connection present in the trace. The characterization, 
called a connection vector, is then used as input to an ns module 
called tmix that emulates the socket-level behavior of the source 
application that created the corresponding connection in the trace. 
This emulation faithfully reproduces the essential pattern of 
socket reads and writes that the original application performed 
without knowledge of what the original application actually was. 
When combined with a network path emulation component we 
have constructed called DelayBox, the resulting traffic generated 
in the simulation is statistically representative of the traffic 
measured on the real link. This approach to synthetic traffic 
generation allows one to automatically repro-duce in ns the full 
range of TCP connections found on an arbitrary link. Thus with 
our tools, researchers no longer need make arbitrary decisions on 
how traffic is generated in simulations and can instead easily 
generate TCP traffic that represents the use of a net-work by the 
full mix of applications measured on actual network links of 
interest. The method is evaluated by applying it to packet header 
traces taken from campus and wide-area networks and comparing 
the statistical properties of traffic on the measured links with 
traffic generated by tmix in ns.   

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Protocols; C.2.3 [Computer-Communication Networks]– 
Network Operations; C.4 [Performance of Systems] Modeling 
Techniques.  

General Terms 
Measurement, Performance, Experimentation, Verification. 

Keywords 
Source-level modeling, synthetic traffic generation, ns. 

1. INTRODUCTION 
Networking research has long relied on simulation as the 

primary vehicle for demonstrating the effectiveness of proposed 
protocols and mechanisms. Typically, one simulates network 
hardware and software in software using, for example, the widely 

used ns-2 simulator [3]. Experimentation proceeds by simulating 
the use of the network by a given population of users using 
applications such as ftp or web browsers. Synthetic workload 
generators are used to inject data into the network according to a 
model of how the applications or users behave.  

This paradigm of simulation follows the philosophy of using 
source-level descriptions of applications advocated by Floyd and 
Paxson [12]. The fundamental motivation is that TCP congestion 
control is an end-to-end closed-loop mechanism. In the case of 
TCP-based applications, TCP’s end-to-end congestion control 
shapes the low-level packet-by-packet traffic processes. For 
simulating networks used by TCP applications, the generation of 
network traffic must be accomplished by using models of 
applications layered over TCP/IP protocol stacks. This is in 
contrast to an open-loop approach in which packets are injected 
into the simulation according to some model of packet arrival 
processes (e.g., a Pareto process). The open-loop approach is now 
largely deprecated as it ignores the essential role of congestion 
control in shaping packet-level traffic arrival processes. Therefore 
a critical problem in doing network simulations is generating 
application-dependent, network-independent workloads that 
correspond to contemporary models of application or user 
behavior.  

From our experiences performing network simulations, we 
observe that the networking community lacks contemporary 
models of application workloads. More precisely, we lack 
validated tools and methods to go from measurements of network 
traffic to the generation of synthetic workloads that are 
statistically representative of the range of applications using the 
network. Current workload modeling efforts tend to focus on 
creating application-specific workload models such as models of 
HTTP workloads. The status quo for HTTP is a set of synthetic 
traffic generators based in large part on the web-browsing 
measurements of Barford, et al. that resulted in the well-known 
SURGE model and tools [2, 9]. While the results of these studies 
are widely used today, they were conducted several years ago and 
were based on measurements of a rather limited set of users. 
Moreover, they have not been maintained and updated as uses of 
the web have evolved. Thus, even in the case of the most widely-
studied application, there remains no contemporary model of 
HTTP workloads that accounts for (now) routine uses of the web 
for applications such as peer-to-peer file sharing and remote email 
access. The problem is that the development of application-
specific workload models is a complex and time-consuming 
process. Significant effort is required to understand, measure, and 
model a specific application-layer protocol and this effort must be 
reinvested each time either the protocol changes or applications 
change their use of the protocol (e.g., the use of HTTP as a 
transport protocol for SOAP applications).  
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Consider the problem of simply measuring application-
specific traffic. Typically when constructing workload models, 
the only means of identifying application-specific traffic in a 
network is to classify connections by port numbers.1 For 
connections that use common reserved ports (e.g., port 80) we 
can, in theory, infer the application-level protocol in use (HTTP) 
and, with knowledge of the operation of the application level 
protocol, construct a source-level model of the workload 
generated by the application. However, a growing number of 
applications use port numbers that have not been registered with 
the IANA. Worse, many applications are configured to use port 
numbers assigned to other applications (allegedly) as a means of 
“hiding” their traffic from detection by network administrators or 
for passing through firewalls. For example, the Internet 2 
NetFlow report shows that the percentage of traffic classified as 
unidentified, in terms of originating application, has increased 
from 28% in 2002 to 37% in 2006 [19]. However, even if all 
connections observed on a network could be uniquely associated 
with an application, constructing workload models requires 
knowledge of the (sometimes proprietary or “hidden”) 
application-level protocol to deconstruct a connection and 
understand its behavior. Doing this for the hundreds of 
applications (or even the top twenty) found on a network is a 
daunting task.  

We advocate a different approach. Our goal is to create an 
automated method for characterizing the full range of TCP-based 
applications using a network of interest without any knowledge of 
which applications are actually present in the network. This 
characterization should be sufficiently detailed to allow one to 
statistically reproduce the applications’ workload in an ns 
simulation.  

The general paradigm we follow is an empirically based 
method. One first takes one or more packet header traces on a 
network link and uses the trace(s) to construct a source-level 
characterization of applications’ uses of the network. This source-
level workload model is constructed by “reverse compiling” 
TCP/IP headers into a higher-level, abstract representation that 
captures the dynamics of both end-user interactions and 
application-level protocols above the socket layer. Each TCP 
connection is represented as a connection vector. A connection 
vector, in essence, models how applications use TCP connections 
as a series of data-unit exchanges between the TCP connection 
initiator and the connection accepter. The data units we model are 
not packets or TCP segments but instead correspond to the objects 
(e.g., files or email messages) or protocol elements (e.g., HTTP 
GET requests or SMTP HELO messages) as defined by the 
application and the application protocol. The data units exchanged 
may be separated by time intervals that represent application 
processing times or user “think” times. A sequence of such 
exchanges constitutes the connection’s “vector.” This model is 
described in detail in Section 3. 

Collectively, the set of connection vectors derived from a 
network trace is a representation of the aggregate behavior of all 
the applications found on the measured network. These 
connection vectors are input to a trace-driven workload-
generating program called tmix that “replays” the source-level 
(socket-level) operations of the original applications. In this 
manner, tmix creates inputs to TCP that are statistically similar to 

                                                                 
1 This is largely because user privacy concerns dictate that it is 
inappropriate to record and analyze packet data beyond the TCP/IP header 
without the prior approval of users.  

the TCP inputs from the applications that created the original 
packet trace. tmix can generate realistic synthetic TCP traffic in 
either a network testbed or in an ns simulation. Here we focus on 
the implementation of tmix in ns.   

Our workload modeling approach is presented and validated 
empirically by comparing synthetically generated traffic in ns 
with trace data obtained from the UNC Internet access link (a 
Gigabit Ethernet link). Similar validations have been performed 
using measurements from wide-area links such those in Abilene 
(Internet-2). For a further comparison, we also include a 
comparison of the same synthetic traffic generated in our testbed. 
This is done primarily to suggest that in cases where the ns 
simulation results deviate from reality, that these deviations are 
due in part to shortcomings of the ns simulator itself.  

We claim our method of representing TCP connections as 
connection vectors, and using these vectors to generate synthetic 
workloads, is a natural and substantial step forward. Connection 
vectors are easily constructed directly from packet traces from 
existing network links, without any a priori knowledge of the 
variety or type of applications, or application-level protocols, 
being measured. With our method and tools, the process of going 
from network traces to generating a synthetic TCP workload that 
is statistically representative of that observed on the measured 
link, can be reduced from months to hours. But most importantly, 
connection vectors derived from a trace can be used to generate 
realistic synthetic traffic that statistically approximates the traffic 
on the measured link. Thus with our methods, researchers no 
longer need make arbitrary decisions concerning, for example, the 
number of short-lived and long-lived flows to simulate in an 
experiment. Instead one can simply generate the actual mix of 
TCP connections found on an actual link. Moreover, standard 
statistical sampling techniques can be used to generate controlled 
and meaningful departures from approximations to the measured 
traffic.  

Like all workload modeling efforts, our work on tmix is 
necessarily limited. The careful reader will have no trouble 
identifying some aspect of TCP application behavior that we 
either fail to account for or are fundamentally unable to model 
given our approach. Thus, the core issue is one of parsimony: are 
we able to capture enough information about applications’ uses of 
TCP to reproduce interesting, important, and new measures of 
traffic in the synthetically generated traffic, and with what effort 
are we able to do so? In general, this important discussion is 
beyond the scope of this paper (but is addressed in detail in [15]). 
We simply note that this paper reports on the reproduction of a 
combined set of features of real network traffic that to our 
knowledge have not been previously demonstrated nor addressed 
in the literature. For this reason we further believe this work to be 
an important advance.  

An additional limitation of the work present here is the fact 
that we only consider the faithful reproduction of TCP traffic. 
Modeling and synthetic generation of UDP traffic is a simpler 
task and one that is accommodated by a straightforward extension 
of the methods presented here. The UDP work is not presented 
here because of space limitations but will be addressed in a future 
paper.   

The remainder of this paper is organized as follows. Section 
2 reviews related work in workload characterization and 
generation. Section 3 describes the methodology for constructing 
connection vectors from packet-header traces and discusses the 
limitations of the methods. Section 4 describes the ns 
implementation of the tmix tool for synthetic workload 
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generation. Section 5 presents a series of validation experiments 
using traces from the UNC network. Section 6 gives a summary 
of the results and discusses directions for further research.  

2. RELATED WORK 
A compelling case for workload generation as one of the key 

challenges in Internet modeling and simulation is made by Floyd 
and Paxson [12]. In particular, they emphasize the importance of 
generating workloads from source-level models in order to 
perform closed-loop network simulations. Two important 
measurement efforts that focused on application-specific models, 
but which preceded the growth of the web, were conducted by 
Danzig, et al., [4, 10], and by Paxson [25]. These researchers laid 
the foundation for TCP workload modeling using empirical data 
to derive distributions for the key random variables that 
characterize applications at the source level.  

Measurements to characterize web usage have been a very 
active area of research. Web workload generators in use today are 
often based on web-browsing measurements by Barford, et al. [2, 
9] that resulted in the well-known SURGE model and tools. More 
recent models of web workloads have been published by Smith, et 
al. [27], and Cleveland, et al. [5, 8]. Finally, we note that source 
modeling for multimedia data, especially variable bit-rate video, 
has been an active area of research [16, 20]. A recent study of 
Real Audio traffic by Mena and Heidemann [24] provides a 
source-level view of streaming-media flows. Other approaches to 
traffic modeling with an emphasis on packet-level traffic are 
surveyed in [17]. 

Researchers have used the above HTTP workload models to 
generate web-like traffic in laboratory testbed networks [2, 8], and 
in the ns-2 network simulator. The web traffic workload built-in 
to ns is the WebTraf module based on the work of Feldmann, et 
al. [11] (an extension of the SURGE model). The nsweb module 
[28] is another SURGE extension that includes pipelining and 
persistent HTTP connections. The PackMime-HTTP module is 
another ns-2 generator that allows traffic generation based on a 
model of HTTP traffic developed at Bell Labs [5]. However, 
despite this previous work, there is no traffic generator for ns-2 
that can provide a realistic mix of today’s TCP applications, such 
as web, email, and P2P file sharing.  

Our project has goals similar to the SAMAN project [21] at 
ISI. They have developed tools that convert network 
measurements to application-level models. They have produced a 
software tool, RAMP, which takes tcpdump trace data from a 
network and generates a set of CDF (cumulative distribution 
function) files that model Web and FTP applications. In fact, their 
set of tools for the Web modeling is based on earlier versions [27] 
of our trace analysis techniques described here. Our goal is to be 
able to deal with all the TCP-based applications found on a 
network.  

Outside of ns, special purpose traffic generators exist for 
testing servers [7] and routers [26], however, both these works 
ignore the source-level structure of connections. Additionally, 
commercial synthetic traffic generation products such as Chariot 
[6] and IXIA exist, but these generators are typically based on a 
limited number of application source types. Moreover, it is not 
clear that any are based on empirical measurements of actual 
Internet traffic. 

3. CHARACTERIZING TCP 
CONNECTIONS2 

The foundation of our approach to characterizing TCP 
workloads is the observation that, from the perspective of the 
network, the vast majority of application-level protocols are based 
on a few simple patterns of data exchanges within a logical 
connection between the endpoint processes. Endpoint processes 
exchange data in units defined by their specific application-level 
protocol. The sizes of these application-data units (ADUs) depend 
only on the application protocol and the data objects used in the 
application and, therefore, are (largely) independent of the sizes 
of the network-dependent data units employed at the transport 
layer and below. For example, HTTP requests and responses 
depend on the sizes of headers defined by the HTTP protocol and 
the sizes of files referenced but not on the sizes of TCP segments 
used at the transport layer.  

The simplest and most common pattern used by TCP 
applications arises from the client-server model of application 
structure and consists of a single ADU exchange. For example, 
given two endpoints, say a web server and browser, we can 
represent their behavior over time with the simple diagram shown 
in Figure 1. A browser makes a request to a server that responds 
with the requested object. Note that the time interval between the 
request and the response depends on network or end-system 
properties that are not directly related to (or controlled by) the 
application.  

More generally, a client makes series of k requests of sizes 
a1, a2, ..., ak, to a server that responds by transmitting k objects of 
sizes b1, b2, ..., bk, such that the ith request is not made until the (i 
– 1)st response is received in full. Application protocols that 
exchange multiple ADUs between endpoints in a single TCP 
connection include HTTP/1.1, SMTP, FTP-CONTROL, and 
NNTP. An example of this pattern, a persistent HTTP/1.1 
connection, is shown in Figure 2. In addition to the ADU sizes, 
we also measure a duration that represents the time between an 
exchange that is most likely to be independent of the network 
(e.g., human “think times” or other application-dependent elapsed 
times). Note that we do not record the time interval between the 
                                                                 
2 The material presented Sections 3 and 4 may be the subject of a 
pending US patent application [30]. However, the ns code 
described herein will be made freely available for non-
commercial use.  
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Figure 1: The pattern of ADU exchange in an HTTP 1.0 

connection. 
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Figure 2: ADU exchanges in an HTTP 1.1 connection. 
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request and its corresponding response as this time depends on 
network or end-system properties that are not directly related to 
(or controlled by) the application.  

More formally, we represent a pattern of ADU exchanges as 
a connection vector Ci = <Ei, E2, ..., Ek> consisting of a set of 
epochs Ei = (ai, bi, ti) where ai is the size of the ith ADU sent from 
connection initiator to connection acceptor, bi is the size of the ith 
ADU sent from connection acceptor to connection initiator, and ti 
is the think time between the receipt of the ith “response” ADU 
and the transmission of the (i + 1)th “request.” In addition, for 
each connection vector i we also record its start time Ti. Thus we 
can view a TCP application as generating a number of time-
separated epochs where each epoch is characterized by ADU sizes 
and an inter-epoch time interval. For example, the HTTP 
connection in Figure 2 represents a persistent HTTP connection 
over which a browser sent three requests of 329, 403, and 365 
bytes, respectively, and a server responded to each of them with 
HTTP responses (including object content) of 403, 25821, and 
1198 bytes, respectively. The second request was sent by the 
browser 120 milliseconds after the last segment of the first 
response was received and the third request was sent 3,120 
milliseconds after the second response was received. This 
connection would represented as the connection vector:  

Ci = <(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0)>. 
Abstractly we say that the connection vector consists of three 
epochs corresponding to the three HTTP request/response 
exchanges.  

Note that the a-b-t characterization admits the possibility of 
an application protocol omitting one of the ADUs during an 
exchange (e.g., epochs of the form (ai, 0, ti) and (0, bi, ti), are 
allowed). Single ADU epochs are commonly found in ftp-data 
connections or in streaming media connections.  

A final pattern allows for ADU transmissions by the two 
endpoints to overlap in time (i.e., to be concurrent) as shown in 
Figure 3. This pattern is not commonly implemented in 
applications used in the Internet today, but can be used by 
application-level protocols such as HTTP/1.1, NNTP, and 
BitTorrent. While uncommon, such concurrent connections often 
carry a significant fraction of the total bytes seen in a trace (15%-
35% of the total bytes in traces we have processed) and hence are 
critical to model if one wants to generate realistic traffic mixes. 
The ability to model and reproduce the behavior of concurrent 
connections is, we believe, unique to our modeling effort.  

To represent concurrent ADU exchanges, the actions of each 
endpoint are considered to operate independently of each other so 
each endpoint is a separate source generating ADUs that appear 
as a sequence of epochs following a uni-directional flow pattern 
(see [14, 15]). 

3.1 From packet traces to connection vectors 
Modeling TCP connections as a pattern of ADU 

transmissions provides a unified view of connections that does not 
depend on the specific applications driving each TCP connection. 
The first step in the modeling process is to acquire a trace of 

TCP/IP headers and process the 
trace to produce a set of connection 
vectors; one vector for each TCP 
connection in the trace.  

The basic method for 
determining ADU boundaries and 
inter-ADU idle times (“think 
times”) is described in detail in [27] 
and briefly summarized here. 

Connection vectors for sequential (non-concurrent) connections 
can be computed from unidirectional traces. The analysis 
proceeds by examining sequence numbers and acknowledgement 
numbers in TCP segments. Changes in sequence numbers in TCP 
segments are used to compute ADU sizes flowing in the direction 
traced and changes in ACK values are used to infer ADU sizes 
flowing in the opposite (not traced) direction. In sequential 
connections, there will be an alternating pattern of advances in the 
ACK values followed by advances in the data sequence values (or 
vice versa). This observation is used to construct a rule for 
inferring the beginning and ending TCP segments of an ADU and 
the boundary between exchanges. Of course, other events such as 
FIN, Reset, or idle times greater than a threshold, can mark ADU 
boundaries as well. Timestamps on the tcpdump of segments 
marking the beginning or end of an ADU are used to compute the 
inter-epoch times and timestamps on the SYN segments are used 
to compute connection inter-arrival times. The complexity of this 
analysis (per connection) is O(sW) where s is the number of 
segments in the connection and W is the receiver’s maximum 
advertised window size. 

For example, consider again the pattern of sequential ADU 
exchanges illustrated in Figure 2. This example, taken from real 
measurement data, manifested itself in a packet header trace as 29 
TCP segments (including SYNs and FINs). If the connection 
analysis is applied to this sequence of packet headers it would 
generate the 3-epoch connection vector Ci, listed above. Note that 
while the actual sizes and timing of the TCP segments represented 
in the original packet header trace are network-dependent, the 
analysis has produced a compact, summary representation that 
models the source-level behaviors of a web browser and server.3  

The computation of connection vectors that derive from 
application protocols which overlap rather than alternate 
exchanges between endpoints (the pattern in Figure 3) requires a 
different method than the one described above. We have 
developed an algorithm that can be used to detect and model 
instances of concurrent ADU exchanges in a TCP connection. 
Briefly, the idea is to detect situations in which both end points 
have unacknowledged data in flight. The algorithm detects 
concurrent data exchanges between two end points A and B in 
which there exists at least one pair of non-empty TCP segments p 
and q such that p is sent from A to B, q is sent from B to A, and 
the following two inequalities are satisfied: p.seqno > q.ackno and 
q.seqno > p.ackno. If the conversation between A and B is 
sequential, then for every pair of segments p, q, either p was sent 
after q reached A, in which case q.seqno ≤ p.ackno, or q was sent 
after p reached B, in which case p.seqno ≤ q.ackno. The 
classification of concurrent connections requires a bi-directional 
header trace. 

                                                                 
3 In general, the connection vector representation of TCP 
connections is 50-100 times smaller than a packet header trace. 
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Figure 3: A pattern of concurrent ADU exchanges in a BitTorrent connection. 
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4. WORKLOAD GENERATION FROM 
CONNECTION VECTORS 

The tmix traffic generation tool takes as input a set of 
connection vectors. If the connection vectors come directly from a 
trace on a network link then, as described next, the tmix tool will 
faithfully reproduce the traffic observed on the link. This 
reproduction, called “replay,” is the basis for the validation 
procedure described in Section 5 where tmix is shown to generate 
TCP traffic that is statistically representative of the measured 
traffic from which the connection vectors derive. However, in 
addition to replay, a wide-range of alternative workload 
generation scenarios are also possible. For example, one can 
derive distributions of values for the key random variables that 
characterize applications at the source level (e.g., distributions of 
ADU sizes, time values, number of epochs, etc.). These can be 
used to populate analytic or empirical models of the workload in 
much the same way as has been done for application-specific 
models (e.g., as in the SURGE model for web browsing).  

Alternatively, if one wanted to model a “representative” 
workload for an entire network, traces from several links in the 
network could be processed to produce their connection vectors 
and these vectors could be pooled into a library of TCP 
connection vectors. From this library, random samples could be 
drawn to create a new trace that would model the aggregate 
workload. To generate this workload in a simulation, one could 
assign start times for each TCP connection according to some 
model of connection arrivals (perhaps derived from the original 
packet traces).  

A third possibility is to apply the methods of semi-
experiments introduced in [18] at the application level instead of 
at the packet level. For example, one could replace the recorded 
start times for TCP connections with start times randomly 
selected from a given distribution of inter-arrival times (e.g., 
Weibull) in order to study the effects of changes in the connection 
arrival process on a simulation. Other interesting transforms to 
consider include replacing the recorded ADU sizes with sizes 
drawn from analytic distributions (e.g., LogNormal) with 
different parameter settings. One might replace all multi-epoch 
connections with single-epoch connections where the new a and b 
values are the sums of the original a and b values and the t values 
are eliminated (this is similar to using NetFlow data to model 
TCP connections). All such transforms provide researchers with a 
powerful new tool to use in simulations for studying the effects of 
workload characteristics in networks. The simple structure of a 
connection vector makes it a flexible tool for a broad range of 
approaches to synthetic workload generation.  

4.1 The tmix workload generation tool 
tmix takes a set of connection vectors and replays them to 

generate synthetic TCP traffic. The vectors can be the exact 
connection vectors found in a trace or an artificial set generated 
via any of the methods described above.  

At a high-level, tmix will initiate TCP connections at times 
taken from the Ti and, for each connection, send and receive data 
as specified in Ci. For an example, consider the replay of an a-b-t 
trace containing the connection vector described in Section 3 
corresponding to the persistent HTTP connection in Figure 2: 

Ci = <(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0)>. 
• At time Ti the tmix connection initiator establishes a new TCP 

connection to the tmix connection acceptor.  
• The initiator writes 329 bytes to its socket and reads 403 bytes.  

• Conversely, the connection acceptor reads 329 bytes from its 
socket and writes 403 bytes.  

• After the initiator has read the 403 bytes, it sleeps for 120 
milliseconds and then writes 403 bytes and reads 25,821 bytes.  

• The acceptor reads 403 bytes and writes 25,821 bytes.  
• After sleeping for 3,120 milliseconds, the third exchange of 

data units is handled in the same way and the TCP connection 
is terminated.  

The following is the representation of the connection vector used 
by tmix: 
SEQ 102345 3 // Sequential connection  
w 16384 16384 // Window size 
r 13450 // Minimum RTT 
> 329 // Epoch 1 
< 402 
t 12000 
> 403 // Epoch 2 
< 25821 
t 312000 
> 356 // Epoch 3 
< 1198 
 

The input specifies that a sequential connection should be 
started at time 102,345 milliseconds and that the connection will 
consist of 3 epochs. Each endpoint has a maximum TCP receiver 
window of 16,384 bytes. The base (minimum) RTT of the 
connection is 13.450 milliseconds. The window sizes and RTTs 
are optional. If present they are used with an additional ns module 
we have developed that implements per flow delays and losses. 
This component, called DelayBox [29], is required to emulate 
certain network path properties to enable us to validate traffic 
synthetically generated in ns against the actual measured traffic. 
(The connection’s window size and minimum RTT are extracted 
from the trace data using the techniques described in [1].)  

Lines beginning with ‘>’ indicate the number of bytes sent 
from initiator to acceptor (i.e., the a size), and those beginning 
with ‘<’ indicate the number of bytes sent from acceptor to 
initiator (i.e., the b size). The lines beginning with ‘t’ indicate the 
amount of time (in microseconds) between bi and ai+1. 

Below we show an example connection vector describing a 
concurrent connection with 2 epochs in each direction: 
CONC 3737620 2 2 // Concurrent connection 
w 65535 64240  // Window size 
r 166883  // Minimum RTT 
c> 91 
t> 2514493 
c< 111 
t< 2538395 
c> 55 
t> 1985074 
c< 118 
t< 7516197 
 

Lines beginning with ‘c>’ indicate the number of bytes sent 
from initiator to acceptor (i.e., the a size), and those beginning 
with ‘c<’ indicate the number of bytes sent from acceptor to 
initiator (i.e., the b size). Lines beginning with ‘t>’ indicate the 
amount of time (in microseconds) between ai and ai+1. Likewise, 
lines beginning with ‘t<’ indicate the amount of time between bi 
and bi+1. Note that unlike the case with sequential connector 
vectors, in concurrent connection vectors there is no implied 
ordering between the transmission of a’s and b’s. In this 
representation, the notation is interpreted as specifying a sequence 
for each direction of the connection independently. Thus, for 
example, although the connection vector above lists an a data unit 
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of 91 bytes before a b data unit of 111 bytes, this first a and first b 
will actually be transmitted concurrently.  

4.2 Implementation of tmix in ns  
The a-b-t connection vector model includes parameters for 

end systems (connection start time, a sizes, b sizes, and t 
durations) as well as the optional path parameters (minimum 
RTTs, loss rates). We split the implementation of tmix along these 
lines. The module tmix-end includes the implementation of the 
end system emulation, and the module tmix-net includes the 
implementation of the network path emulation. 

Because we want to generate network traffic as realistically 
as possible, we base tmix on the Full-TCP model. Full-TCP 
provides TCP connection startup and teardown, variable packet 
sizes, and full-duplex connections. The connection vectors 
produced from the a-b-t model generate two-way traffic, with 
initiators and acceptors on both sides of the network. By default, 
tmix models a single direction with initiators on one side of the 
network and acceptors on the other. Users who wish to generate 
two-way traffic should use two separate tmix modules (as we have 
done in the validation) to create two-way traffic. 
4.2.1 tmix-end 

The tmix-end module controls all the activities of a set of 
initiators and acceptors. Upon startup, the tmix-end module reads 
the connection vectors from a specified file. Two lists are then 
created. One list holds each connection’s ID and start time, and 
the other list (indexed by connection ID) holds the remaining 
parameters for each connection (type of connection (sequential or 
concurrent), initiator window size, acceptor window size, 
connection start time, list of a sizes, list of b sizes, list of t times).  

Once the connection vector file has been processed, new 
connections are started according to the connection start time list. 
The tmix-end module sets the appropriate window sizes for both 
the initiator and acceptor. The remaining operation of tmix-end 
depends upon whether the connection vector describes a 
sequential or concurrent connection. In sequential connections, 
the initiator sends a-type ADUs (“requests”) that the acceptor 
“responds to” with a b-type ADU. No pipelining of requests is 
used. In concurrent connections, the initiator uses pipelining to 
send multiple a-type ADUs without waiting for a response from 
the acceptor. 
4.2.1.1 Sequential Connections 

The initiator uses the connection’s a sizes and inter-request 
times, while the acceptor uses the connection’s b sizes and server 
delays. The initiator sends a-type ADUs in the order specified and 
with the appropriate gap. The inter- a-type ADU gap specifies the 
time the initiator waits between receiving a response and sending 
a new a-type ADU. Once the acceptor receives an a-type ADU, it 
waits for the time specified in the next server delay and then 
sends the next b-type ADU in the list. After the acceptor has sent 
its final response, it sends a FIN to close the connection. 
4.2.1.2 Concurrent Connections 

In the case of concurrent connections, each side (acceptor or 
initiator) is scheduled independently. The initiator sends its a-type 
ADUs  according to the schedule given (waiting the inter- a-type 
ADU delay time before sending a new a-type ADU). The 
acceptor sends its b-type ADUs according to its schedule (waiting 
the inter- b-type delay time before sending a new b-type ADU). 
The acceptor no longer waits to receive an a-type ADU before 
sending a response, and the initiator no longer waits to receive a 

b-type ADU before sending the next a-type ADU. The side 
sending the last ADU will send the FIN to close the connection. 
4.2.2 tmix-net 

The tmix-net module allows a user to create per-flow delays 
and losses. The delay and loss rates for each connection are 
contained in the connection vector. A tmix-net node should be 
placed in the network between nodes used by tmix-end. Upon 
startup, the tmix-net module reads each connection’s ID, source, 
destination, RTT, and loss rate into a table. When a packet is 
received, tmix-net looks up the connection ID, source, and 
destination in the table to find the appropriate delay and loss 
values. The tmix-net module is symmetric, in that both a data and 
ACK from the same connection will be delayed the same amount. 
Because of this, the delay value in the table is the connection's 
RTT/2. tmix-net uses the aforementioned DelayBox component to 
implement per-flow delays.  

Using tmix, each packet in a flow is delayed the same 
amount before being passed on to the next ns node. Any 
variations in delays between packets in the same flow are due 
only to network effects. This allows each TCP connection in the 
experiment to have a different minimum RTT. 

There is a separate queue for each connection, so the 
connection’s packets stay in order while they are being delayed. 
Packets from different connections may be forwarded in a 
different order than they were received based on their delay 
values. Once packets are delayed for their specified time, they are 
passed up to the single network-level queue for the node. This 
allows each packet to experience additional queuing delays and 
possible queue overflows, just as in a regular ns forwarding node. 
When a FIN is received for a connection, its entry is deleted from 
the table. 

5. VALIDATION EXPERIMENTS 
In this section we describe experiments designed to validate 

our approach to workload characterization and generation. Our 
experimental procedure is based on the following steps: 
• Acquire a TCP/IP header trace from an Internet link. 
• Filter this Internet link trace to obtain a sub-trace consisting of 

all the packets from all the TCP connections to be included in 
the workload generation. For the experiments described in this 
paper, a sub-trace includes all packets from TCP connections 
where the SYN or SYN+ACK was present in the trace (so we 
could explicitly identify the initiator of the connection) and the 
connection was terminated by FIN or RST. This eliminates 
only those connections that were in progress when the packet 
trace began and ended. In the remainder of the paper, phrases 
like “UNC trace” will refer to the sub-trace derived according 
to the above description. We also refer to these sub-traces as 
the “original” traces. 

• Derive a trace, T, of a-b-t connection vectors from the sub-
trace packet headers using the process described in Section 3.2 

• Use T to generate the workload in an ns-2 simulation with the 
tmix generator described in section 4.2. 

• Capture the packet trace from the simulation. In the remainder 
of this paper, phrases “UNC simulation” will refer to the packet 
traffic captured from the ns-2 simulation. 

• Compare various properties of the traffic in the original trace 
with the simulation trace. 

We report the results from applying this approach to TCP/IP 
header traces from a 1 Gbps Ethernet link connecting the campus 
of the University of North Carolina at Chapel Hill (UNC) with the 
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router of its ISP. The UNC access-link trace is a one-hour bi-
directional trace acquired using standard tools (e.g., tcpdump).  

The ns-2 topology used for the validation is a classical 
“dumbbell” network (a 1 Gbps network connecting two clusters 
of emulated end systems). While this network topology is in no 
way representative of the network traced (the UNC campus), by 
using the tmix-net component to emulate per flow RTTs, window 
sizes, and losses (using measurement data acquired from the trace 
along with the connection vectors), we are in fact able to closely 
reproduce in the ns simulation important measures of network 
performance observed on the UNC network.  

5.1 Verification of source-dependent 
properties 

Our methodology makes strong emphasis on accurately 
modeling the way in which TCP connections are used by the 
sources. Our underlying assumption is that these source-level 
dependent properties are mostly independent of the specific 
network-dependent properties of the link in which they are 
measured. If this is true, we should be able to use our model for 
generating traffic in testbeds and simulators and safely change 
some network mechanism (e.g., the TCP flavor or the queuing 
mechanism) but maintain the same TCP application workload.  

We validate this idea in two ways. The first, reported in [15], 
is to instrument a set of TCP applications to record actual ADU 

sizes and inter-ADU idle times. A header trace of the execution of 
these applications is taken and the a’s, b’s, and t’s we compute 
from this trace are compared against the data measured by the 
applications. As shown in [15], our heuristics for computing 
connection vectors are surprisingly accurate.  

The second validation is to study the source-dependent 
properties of a packet header trace from a real link, and compare 
with the source-level properties of a packet header trace collected 
from a tmix simulation. If the source-dependent properties remain 
unchanged, we would prove that these properties (and the way we 
use them to generate traffic) represent a fixed point that does not 
depend on the underlying network mechanisms.  

Figure 4 compares the bodies of the distributions of a and b 
data unit sizes from the UNC trace with the UNC simulation, 
while Figure 5 compares the tails of the same distributions. One 
interesting feature of these distributions was that the distribution 
of a sizes was considerably lighter in the body of the distribution 
than the distribution of b sizes. This confirms our expectation that 
a units were more likely to be small because they are usually 
requests (e.g., in HTTP) and the b units (the responses) are more 
likely to be larger. The distributions appeared to be consistent 
with a heavy-tailed distribution.  
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Figure 4: ADU sizes from the original trace and the simulation. 
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Figure 5: ADU sizes from the original trace and the simulation. 
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5.2 Validation against real link traffic 
The most demanding validation experiment that we could 

devise was to use the workload models derived from the UNC 
trace with the goal of reproducing certain essential characteristics 
of the original packet traces when the workloads are simulated in 
ns-2. The question being explored is: to what extent can we 
reproduce the traffic found on real network links in a simulation?  

Our metrics for evaluating the fidelity of reproduction 
between the real and simulated packet traffic include the 
following:  
• The link load or throughput – the number of bits per second 

(including protocol headers) transmitted on a link. This metric 
would be used by experimenters to gauge the level of 
congestion on simulated links. Note that because we can replay 
the applications’ use of TCP connections at both endpoints, we 
are able to generate the packet-level traffic flowing in both 
directions of the link concurrently.  

• The distribution of goodput (application-level throughput) 
across flows. This metric is a more sophisticated measure of 
link throughput as it speaks to how aggregate link throughput is 
realized. Moreover, reproduction of goodput implies that tmix’s 

emulation of applications reproduces both network and 
application-layer measures of throughput.  

• The time series of active connections per bin size. Accurately 
reproducing the number of active connections is important for 
experimenting with network services and mechanisms that 
maintain per flow state.  

• The statistical properties of the time series of counts of arriving 
packets and bytes on a link in an interval of time (e.g., Hurst 
parameter estimates, wavelet spectra). The breakthrough results 
in studying these time series over the past several years have 
identified self-similarity and long-range dependence as 
fundamental features of network traffic that should be 
preserved in synthetic traffic.  

To reproduce traffic from a real link in a laboratory network, 
we must consider a second set of factors that are network-
dependent but are, to a first approximation, independent of the 
applications using the network. These are further classified as 
being determined at the TCP endpoints or along the path between 
endpoints. The primary network-dependent endpoint factors we 
consider are the TCP sender and receiver window sizes (ns does 
not simulate receiver window sizes, but does implement a sender 
maximum window) and the maximum segment size (MSS). Other 
network-dependent endpoint factors one might consider (and that 
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Figure 8: Cumulative distribution of goodput per connection.  Figure 10: Time series of packet arrivals.  
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we have experimented with but do not provide data here for) 
include the TCP variant used (e.g., Reno, NewReno, SACK, etc.). 
The network-dependent path factors we consider in this paper are 
the distributions of per-flow round-trip times and loss rates. We 
are working on incorporating per-flow bottleneck bandwidths.  

Figure 6 shows the distribution of estimated RTT per flow in 
the original traces compared with the achieved replay RTT 
distribution. There was a good match between the RTTs in the 
real network and their approximation in the simulation.  

The bytes transmitted on the UNC link in 1-minute intervals 
are shown in Figure 7. The simulation appears to track the 
fluctuations in load reasonably well. However, overall there is a 
slight trend for the simulation to generate less throughput than 
was observed on the UNC network. To test whether this effect is 
an artifact of the tmix implementation or whether it is an artifact 
of ns, we also show the performance of a comparable 
implementation of tmix on a laboratory network testbed. (The 
testbed, described in more detail in [22], is also structured as a 
dumbbell network with a 1 Gbps link in the center. Technology 
similar to that described here is used to emulate minimum per-
flow delays so as to ensure all flows experience a different 
minimum round-trip time.) 

We interpret the fact that the testbed implementation of tmix 
more closely approximates the original UNC throughput as an 
indication that in principle tmix can sufficiently reproduce the 
aggregate throughput of TCP connections. Moreover, while a 
complete discussion is beyond the scope of this paper, we have 
ample evidence to suggest that the essential problem here lies in 
the ns software itself.  

Figure 8 shows the CDF of goodput achieved per connection, 
and we see that the simulation follows the original trace rather 
well. Thus while the aggregate throughput is less than perfect, on 
a per flow basis, application-layer throughput is closely 
approximated.  

Figure 9 shows the time series of active connections. In this 
case there is an excellent match between the original trace, the ns 
simulation, and the testbed data. The bell-shaped nature of the 
curve is an artifact of startup and termination effects inherent in 
the original packet header trace (see [15]).  

For evaluating how well we reproduced the packet- and byte-
arrival time series, we used the methods (and MATLAB software) 
developed by Abry and Veitch [14] to study the wavelet spectrum 
of the time series. The output of this tool is a log-scale diagram 
that provides a visualization of the scale-dependent variability in 
the data. Briefly, the logscale diagram plots the log2 of the 
(estimated) variance of the Daubechies wavelet coefficients for 
the time series against the log2 of the scale (j) used in computing 
the coefficients. The wavelet coefficients are computed for scales 
up to 216. Since the scale effectively sets the time scale at which 
the wavelet analysis is applied there is a direct relationship 
between scale and time intervals (see the top labels of the 
following plots). For processes that exhibit long-range 
dependence, the logscale diagram will exhibit a region in which 
there is an approximately linear relationship with slope > 0 
between scale and variance. An estimate of the Hurst parameter 
along with confidence intervals on the estimate can be obtained 
from the slope of this line H = (slope+1)/2. For more information 
than this (grossly oversimplified) summary, see [14]. 

Figure 10 shows the time series of packet arrivals. While the 
testbed implementation faithfully reproduces the packet arrival 
process, the ns simulation does not. We again interpret this as a 
shortcoming of the ns simulator itself. In particular, the packet 

arrival process in ns is negatively affected by ns’s implementation 
of delayed-ACKs.  

Figure 11 shows the logscale diagram for both directions of 
the UNC trace. Both the original and the simulation show strong 
scaling starting around 500 milliseconds, so the simulation 
substantially reproduces the long-range dependence of the traffic. 
The strength of these scaling in the inbound direction, as 
estimated by the Hurst parameters, was H = 0.95 for the original 
(the confidence interval was between 0.93 and 0.98) and H = 0.94 
for the simulation (C.I. = [0.91, 0.96]).  

The results presented above show that is possible to use 
workload models and reproduce with reasonable fidelity the 
traffic from access links like UNC in an ns simulation. This also 
validates the workload modeling and generation approach.  

 

6. SUMMARY AND CONCLUSIONS 
Simulation is the dominant method for evaluating most 

networking technologies. However, it is well known that the 
quality of a simulation is only as good as the quality of its inputs. 
An overlooked aspect of simulation methodology is the problem 
of generating realistic synthetic workloads to drive a simulation or 
laboratory experiment. We have developed an empirically-based 
approach to workload generation. Starting from a trace of TCP/IP 
headers on a production network, a model is constructed for all 
the TCP connections observed in the network. The model, a set of 
a-b-t connection vectors, can be used in the workload generator 
tmix to replay the connections and reproduce the application-level 
behaviors observed on the original network. Moreover, by 
combining set of connection vectors or sub-sampling vectors 
according to any number of heuristics, a wide range of 
meaningful departures from reality are possible. This enables 
researchers to perform “what if” experiments where the synthetic 
traffic can be manipulated in controlled ways.  

We believe this approach to source-level modeling, and the 
tmix generator, are significant contributions to network 
evaluations, specifically because of their ability to automatically 
generate valid workload models representing all TCP applications 
in a network with no a priori knowledge about them. Our work 
therefore serves to demonstrate that researchers need not make 
arbitrary decisions when performing simulations such as deciding 
the number of flows to generate or the mix of “long-lived” versus 
“short-lived” flows. Given an easily acquired TCP/IP header 
trace, it is straightforward to populate a workload generator and 
instantiate a generation environment capable of reproducing a 
broad spectrum of interesting and important features of network 
traffic. For this reason, we believe this work holds the potential to 
improve the level of realism in network simulations. 
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