
Tmix: A Tool for Generating Realistic TCP
Application Workloads in ns-2

Michele C. Weigle
Prashanth Adurthi
Clemson University

mcweigle@acm.org, padurth@cs.clemson.edu

Félix Hernández-Campos
Kevin Jeffay

F. Donelson Smith
University of North Carolina at Chapel Hill

{fhernand,jeffay,smithfd}@cs.unc.edu

ABSTRACT
In order to perform realistic network simulations, one needs a
traffic generator that is capable of generating realistic synthetic
traffic in a closed-loop fashion that “looks like” traffic found on
an actual network. We describe such a traffic generation system
for the widely used ns-2 simulator. The system takes as input a
packet header trace taken from a network link of interest. The
trace is “reverse compiled” into a source-level characterization of
each TCP connection present in the trace. The characterization,
called a connection vector, is then used as input to an ns module
called tmix that emulates the socket-level behavior of the source
application that created the corresponding connection in the trace.
This emulation faithfully reproduces the essential pattern of
socket reads and writes that the original application performed
without knowledge of what the original application actually was.
When combined with a network path emulation component we
have constructed called DelayBox, the resulting traffic generated
in the simulation is statistically representative of the traffic
measured on the real link. This approach to synthetic traffic
generation allows one to automatically repro-duce in ns the full
range of TCP connections found on an arbitrary link. Thus with
our tools, researchers no longer need make arbitrary decisions on
how traffic is generated in simulations and can instead easily
generate TCP traffic that represents the use of a net-work by the
full mix of applications measured on actual network links of
interest. The method is evaluated by applying it to packet header
traces taken from campus and wide-area networks and comparing
the statistical properties of traffic on the measured links with
traffic generated by tmix in ns.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.3 [Computer-Communication Networks]–
Network Operations; C.4 [Performance of Systems] Modeling
Techniques.

General Terms
Measurement, Performance, Experimentation, Verification.

Keywords
Source-level modeling, synthetic traffic generation, ns.

1. INTRODUCTION
Networking research has long relied on simulation as the

primary vehicle for demonstrating the effectiveness of proposed
protocols and mechanisms. Typically, one simulates network
hardware and software in software using, for example, the widely

used ns-2 simulator [3]. Experimentation proceeds by simulating
the use of the network by a given population of users using
applications such as ftp or web browsers. Synthetic workload
generators are used to inject data into the network according to a
model of how the applications or users behave.

This paradigm of simulation follows the philosophy of using
source-level descriptions of applications advocated by Floyd and
Paxson [12]. The fundamental motivation is that TCP congestion
control is an end-to-end closed-loop mechanism. In the case of
TCP-based applications, TCP’s end-to-end congestion control
shapes the low-level packet-by-packet traffic processes. For
simulating networks used by TCP applications, the generation of
network traffic must be accomplished by using models of
applications layered over TCP/IP protocol stacks. This is in
contrast to an open-loop approach in which packets are injected
into the simulation according to some model of packet arrival
processes (e.g., a Pareto process). The open-loop approach is now
largely deprecated as it ignores the essential role of congestion
control in shaping packet-level traffic arrival processes. Therefore
a critical problem in doing network simulations is generating
application-dependent, network-independent workloads that
correspond to contemporary models of application or user
behavior.

From our experiences performing network simulations, we
observe that the networking community lacks contemporary
models of application workloads. More precisely, we lack
validated tools and methods to go from measurements of network
traffic to the generation of synthetic workloads that are
statistically representative of the range of applications using the
network. Current workload modeling efforts tend to focus on
creating application-specific workload models such as models of
HTTP workloads. The status quo for HTTP is a set of synthetic
traffic generators based in large part on the web-browsing
measurements of Barford, et al. that resulted in the well-known
SURGE model and tools [2, 9]. While the results of these studies
are widely used today, they were conducted several years ago and
were based on measurements of a rather limited set of users.
Moreover, they have not been maintained and updated as uses of
the web have evolved. Thus, even in the case of the most widely-
studied application, there remains no contemporary model of
HTTP workloads that accounts for (now) routine uses of the web
for applications such as peer-to-peer file sharing and remote email
access. The problem is that the development of application-
specific workload models is a complex and time-consuming
process. Significant effort is required to understand, measure, and
model a specific application-layer protocol and this effort must be
reinvested each time either the protocol changes or applications
change their use of the protocol (e.g., the use of HTTP as a
transport protocol for SOAP applications).

ACM SIGCOMM Computer Communication Review 67 Volume 36, Number 3, July 2006

Consider the problem of simply measuring application-
specific traffic. Typically when constructing workload models,
the only means of identifying application-specific traffic in a
network is to classify connections by port numbers.1 For
connections that use common reserved ports (e.g., port 80) we
can, in theory, infer the application-level protocol in use (HTTP)
and, with knowledge of the operation of the application level
protocol, construct a source-level model of the workload
generated by the application. However, a growing number of
applications use port numbers that have not been registered with
the IANA. Worse, many applications are configured to use port
numbers assigned to other applications (allegedly) as a means of
“hiding” their traffic from detection by network administrators or
for passing through firewalls. For example, the Internet 2
NetFlow report shows that the percentage of traffic classified as
unidentified, in terms of originating application, has increased
from 28% in 2002 to 37% in 2006 [19]. However, even if all
connections observed on a network could be uniquely associated
with an application, constructing workload models requires
knowledge of the (sometimes proprietary or “hidden”)
application-level protocol to deconstruct a connection and
understand its behavior. Doing this for the hundreds of
applications (or even the top twenty) found on a network is a
daunting task.

We advocate a different approach. Our goal is to create an
automated method for characterizing the full range of TCP-based
applications using a network of interest without any knowledge of
which applications are actually present in the network. This
characterization should be sufficiently detailed to allow one to
statistically reproduce the applications’ workload in an ns
simulation.

The general paradigm we follow is an empirically based
method. One first takes one or more packet header traces on a
network link and uses the trace(s) to construct a source-level
characterization of applications’ uses of the network. This source-
level workload model is constructed by “reverse compiling”
TCP/IP headers into a higher-level, abstract representation that
captures the dynamics of both end-user interactions and
application-level protocols above the socket layer. Each TCP
connection is represented as a connection vector. A connection
vector, in essence, models how applications use TCP connections
as a series of data-unit exchanges between the TCP connection
initiator and the connection accepter. The data units we model are
not packets or TCP segments but instead correspond to the objects
(e.g., files or email messages) or protocol elements (e.g., HTTP
GET requests or SMTP HELO messages) as defined by the
application and the application protocol. The data units exchanged
may be separated by time intervals that represent application
processing times or user “think” times. A sequence of such
exchanges constitutes the connection’s “vector.” This model is
described in detail in Section 3.

Collectively, the set of connection vectors derived from a
network trace is a representation of the aggregate behavior of all
the applications found on the measured network. These
connection vectors are input to a trace-driven workload-
generating program called tmix that “replays” the source-level
(socket-level) operations of the original applications. In this
manner, tmix creates inputs to TCP that are statistically similar to

1 This is largely because user privacy concerns dictate that it is
inappropriate to record and analyze packet data beyond the TCP/IP header
without the prior approval of users.

the TCP inputs from the applications that created the original
packet trace. tmix can generate realistic synthetic TCP traffic in
either a network testbed or in an ns simulation. Here we focus on
the implementation of tmix in ns.

Our workload modeling approach is presented and validated
empirically by comparing synthetically generated traffic in ns
with trace data obtained from the UNC Internet access link (a
Gigabit Ethernet link). Similar validations have been performed
using measurements from wide-area links such those in Abilene
(Internet-2). For a further comparison, we also include a
comparison of the same synthetic traffic generated in our testbed.
This is done primarily to suggest that in cases where the ns
simulation results deviate from reality, that these deviations are
due in part to shortcomings of the ns simulator itself.

We claim our method of representing TCP connections as
connection vectors, and using these vectors to generate synthetic
workloads, is a natural and substantial step forward. Connection
vectors are easily constructed directly from packet traces from
existing network links, without any a priori knowledge of the
variety or type of applications, or application-level protocols,
being measured. With our method and tools, the process of going
from network traces to generating a synthetic TCP workload that
is statistically representative of that observed on the measured
link, can be reduced from months to hours. But most importantly,
connection vectors derived from a trace can be used to generate
realistic synthetic traffic that statistically approximates the traffic
on the measured link. Thus with our methods, researchers no
longer need make arbitrary decisions concerning, for example, the
number of short-lived and long-lived flows to simulate in an
experiment. Instead one can simply generate the actual mix of
TCP connections found on an actual link. Moreover, standard
statistical sampling techniques can be used to generate controlled
and meaningful departures from approximations to the measured
traffic.

Like all workload modeling efforts, our work on tmix is
necessarily limited. The careful reader will have no trouble
identifying some aspect of TCP application behavior that we
either fail to account for or are fundamentally unable to model
given our approach. Thus, the core issue is one of parsimony: are
we able to capture enough information about applications’ uses of
TCP to reproduce interesting, important, and new measures of
traffic in the synthetically generated traffic, and with what effort
are we able to do so? In general, this important discussion is
beyond the scope of this paper (but is addressed in detail in [15]).
We simply note that this paper reports on the reproduction of a
combined set of features of real network traffic that to our
knowledge have not been previously demonstrated nor addressed
in the literature. For this reason we further believe this work to be
an important advance.

An additional limitation of the work present here is the fact
that we only consider the faithful reproduction of TCP traffic.
Modeling and synthetic generation of UDP traffic is a simpler
task and one that is accommodated by a straightforward extension
of the methods presented here. The UDP work is not presented
here because of space limitations but will be addressed in a future
paper.

The remainder of this paper is organized as follows. Section
2 reviews related work in workload characterization and
generation. Section 3 describes the methodology for constructing
connection vectors from packet-header traces and discusses the
limitations of the methods. Section 4 describes the ns
implementation of the tmix tool for synthetic workload

ACM SIGCOMM Computer Communication Review 68 Volume 36, Number 3, July 2006

generation. Section 5 presents a series of validation experiments
using traces from the UNC network. Section 6 gives a summary
of the results and discusses directions for further research.

2. RELATED WORK
A compelling case for workload generation as one of the key

challenges in Internet modeling and simulation is made by Floyd
and Paxson [12]. In particular, they emphasize the importance of
generating workloads from source-level models in order to
perform closed-loop network simulations. Two important
measurement efforts that focused on application-specific models,
but which preceded the growth of the web, were conducted by
Danzig, et al., [4, 10], and by Paxson [25]. These researchers laid
the foundation for TCP workload modeling using empirical data
to derive distributions for the key random variables that
characterize applications at the source level.

Measurements to characterize web usage have been a very
active area of research. Web workload generators in use today are
often based on web-browsing measurements by Barford, et al. [2,
9] that resulted in the well-known SURGE model and tools. More
recent models of web workloads have been published by Smith, et
al. [27], and Cleveland, et al. [5, 8]. Finally, we note that source
modeling for multimedia data, especially variable bit-rate video,
has been an active area of research [16, 20]. A recent study of
Real Audio traffic by Mena and Heidemann [24] provides a
source-level view of streaming-media flows. Other approaches to
traffic modeling with an emphasis on packet-level traffic are
surveyed in [17].

Researchers have used the above HTTP workload models to
generate web-like traffic in laboratory testbed networks [2, 8], and
in the ns-2 network simulator. The web traffic workload built-in
to ns is the WebTraf module based on the work of Feldmann, et
al. [11] (an extension of the SURGE model). The nsweb module
[28] is another SURGE extension that includes pipelining and
persistent HTTP connections. The PackMime-HTTP module is
another ns-2 generator that allows traffic generation based on a
model of HTTP traffic developed at Bell Labs [5]. However,
despite this previous work, there is no traffic generator for ns-2
that can provide a realistic mix of today’s TCP applications, such
as web, email, and P2P file sharing.

Our project has goals similar to the SAMAN project [21] at
ISI. They have developed tools that convert network
measurements to application-level models. They have produced a
software tool, RAMP, which takes tcpdump trace data from a
network and generates a set of CDF (cumulative distribution
function) files that model Web and FTP applications. In fact, their
set of tools for the Web modeling is based on earlier versions [27]
of our trace analysis techniques described here. Our goal is to be
able to deal with all the TCP-based applications found on a
network.

Outside of ns, special purpose traffic generators exist for
testing servers [7] and routers [26], however, both these works
ignore the source-level structure of connections. Additionally,
commercial synthetic traffic generation products such as Chariot
[6] and IXIA exist, but these generators are typically based on a
limited number of application source types. Moreover, it is not
clear that any are based on empirical measurements of actual
Internet traffic.

3. CHARACTERIZING TCP
CONNECTIONS2

The foundation of our approach to characterizing TCP
workloads is the observation that, from the perspective of the
network, the vast majority of application-level protocols are based
on a few simple patterns of data exchanges within a logical
connection between the endpoint processes. Endpoint processes
exchange data in units defined by their specific application-level
protocol. The sizes of these application-data units (ADUs) depend
only on the application protocol and the data objects used in the
application and, therefore, are (largely) independent of the sizes
of the network-dependent data units employed at the transport
layer and below. For example, HTTP requests and responses
depend on the sizes of headers defined by the HTTP protocol and
the sizes of files referenced but not on the sizes of TCP segments
used at the transport layer.

The simplest and most common pattern used by TCP
applications arises from the client-server model of application
structure and consists of a single ADU exchange. For example,
given two endpoints, say a web server and browser, we can
represent their behavior over time with the simple diagram shown
in Figure 1. A browser makes a request to a server that responds
with the requested object. Note that the time interval between the
request and the response depends on network or end-system
properties that are not directly related to (or controlled by) the
application.

More generally, a client makes series of k requests of sizes
a1, a2, ..., ak, to a server that responds by transmitting k objects of
sizes b1, b2, ..., bk, such that the ith request is not made until the (i
– 1)st response is received in full. Application protocols that
exchange multiple ADUs between endpoints in a single TCP
connection include HTTP/1.1, SMTP, FTP-CONTROL, and
NNTP. An example of this pattern, a persistent HTTP/1.1
connection, is shown in Figure 2. In addition to the ADU sizes,
we also measure a duration that represents the time between an
exchange that is most likely to be independent of the network
(e.g., human “think times” or other application-dependent elapsed
times). Note that we do not record the time interval between the

2 The material presented Sections 3 and 4 may be the subject of a
pending US patent application [30]. However, the ns code
described herein will be made freely available for non-
commercial use.

TIME341 bytes

2,555 bytes

WEB BROWSER

WEB SERVER

HTTP Request

HTTP Response
Figure 1: The pattern of ADU exchange in an HTTP 1.0

connection.

TIME329 bytes

403 bytes

BROWSER

SERVER

HTTP Request 1

HTTP Response 1

403 bytes

25,821 bytes

HTTP Request 2

HTTP Response 2

356 bytes

1,198 bytes

HTTP Request 3

HTTP Response 3

0.12 secs 3.12 secs

Document 1 Document 2

Figure 2: ADU exchanges in an HTTP 1.1 connection.

ACM SIGCOMM Computer Communication Review 69 Volume 36, Number 3, July 2006

request and its corresponding response as this time depends on
network or end-system properties that are not directly related to
(or controlled by) the application.

More formally, we represent a pattern of ADU exchanges as
a connection vector Ci = <Ei, E2, ..., Ek> consisting of a set of
epochs Ei = (ai, bi, ti) where ai is the size of the ith ADU sent from
connection initiator to connection acceptor, bi is the size of the ith
ADU sent from connection acceptor to connection initiator, and ti
is the think time between the receipt of the ith “response” ADU
and the transmission of the (i + 1)th “request.” In addition, for
each connection vector i we also record its start time Ti. Thus we
can view a TCP application as generating a number of time-
separated epochs where each epoch is characterized by ADU sizes
and an inter-epoch time interval. For example, the HTTP
connection in Figure 2 represents a persistent HTTP connection
over which a browser sent three requests of 329, 403, and 365
bytes, respectively, and a server responded to each of them with
HTTP responses (including object content) of 403, 25821, and
1198 bytes, respectively. The second request was sent by the
browser 120 milliseconds after the last segment of the first
response was received and the third request was sent 3,120
milliseconds after the second response was received. This
connection would represented as the connection vector:

Ci = <(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0)>.
Abstractly we say that the connection vector consists of three
epochs corresponding to the three HTTP request/response
exchanges.

Note that the a-b-t characterization admits the possibility of
an application protocol omitting one of the ADUs during an
exchange (e.g., epochs of the form (ai, 0, ti) and (0, bi, ti), are
allowed). Single ADU epochs are commonly found in ftp-data
connections or in streaming media connections.

A final pattern allows for ADU transmissions by the two
endpoints to overlap in time (i.e., to be concurrent) as shown in
Figure 3. This pattern is not commonly implemented in
applications used in the Internet today, but can be used by
application-level protocols such as HTTP/1.1, NNTP, and
BitTorrent. While uncommon, such concurrent connections often
carry a significant fraction of the total bytes seen in a trace (15%-
35% of the total bytes in traces we have processed) and hence are
critical to model if one wants to generate realistic traffic mixes.
The ability to model and reproduce the behavior of concurrent
connections is, we believe, unique to our modeling effort.

To represent concurrent ADU exchanges, the actions of each
endpoint are considered to operate independently of each other so
each endpoint is a separate source generating ADUs that appear
as a sequence of epochs following a uni-directional flow pattern
(see [14, 15]).

3.1 From packet traces to connection vectors
Modeling TCP connections as a pattern of ADU

transmissions provides a unified view of connections that does not
depend on the specific applications driving each TCP connection.
The first step in the modeling process is to acquire a trace of

TCP/IP headers and process the
trace to produce a set of connection
vectors; one vector for each TCP
connection in the trace.

The basic method for
determining ADU boundaries and
inter-ADU idle times (“think
times”) is described in detail in [27]
and briefly summarized here.

Connection vectors for sequential (non-concurrent) connections
can be computed from unidirectional traces. The analysis
proceeds by examining sequence numbers and acknowledgement
numbers in TCP segments. Changes in sequence numbers in TCP
segments are used to compute ADU sizes flowing in the direction
traced and changes in ACK values are used to infer ADU sizes
flowing in the opposite (not traced) direction. In sequential
connections, there will be an alternating pattern of advances in the
ACK values followed by advances in the data sequence values (or
vice versa). This observation is used to construct a rule for
inferring the beginning and ending TCP segments of an ADU and
the boundary between exchanges. Of course, other events such as
FIN, Reset, or idle times greater than a threshold, can mark ADU
boundaries as well. Timestamps on the tcpdump of segments
marking the beginning or end of an ADU are used to compute the
inter-epoch times and timestamps on the SYN segments are used
to compute connection inter-arrival times. The complexity of this
analysis (per connection) is O(sW) where s is the number of
segments in the connection and W is the receiver’s maximum
advertised window size.

For example, consider again the pattern of sequential ADU
exchanges illustrated in Figure 2. This example, taken from real
measurement data, manifested itself in a packet header trace as 29
TCP segments (including SYNs and FINs). If the connection
analysis is applied to this sequence of packet headers it would
generate the 3-epoch connection vector Ci, listed above. Note that
while the actual sizes and timing of the TCP segments represented
in the original packet header trace are network-dependent, the
analysis has produced a compact, summary representation that
models the source-level behaviors of a web browser and server.3

The computation of connection vectors that derive from
application protocols which overlap rather than alternate
exchanges between endpoints (the pattern in Figure 3) requires a
different method than the one described above. We have
developed an algorithm that can be used to detect and model
instances of concurrent ADU exchanges in a TCP connection.
Briefly, the idea is to detect situations in which both end points
have unacknowledged data in flight. The algorithm detects
concurrent data exchanges between two end points A and B in
which there exists at least one pair of non-empty TCP segments p
and q such that p is sent from A to B, q is sent from B to A, and
the following two inequalities are satisfied: p.seqno > q.ackno and
q.seqno > p.ackno. If the conversation between A and B is
sequential, then for every pair of segments p, q, either p was sent
after q reached A, in which case q.seqno ≤ p.ackno, or q was sent
after p reached B, in which case p.seqno ≤ q.ackno. The
classification of concurrent connections requires a bi-directional
header trace.

3 In general, the connection vector representation of TCP
connections is 50-100 times smaller than a packet header trace.

TIME68 b68 b

PEER A

PEER B

BitTorrent
Protocol

68 b68 b

BitTorrent
Protocol

657 b657 b

Bitfield

657 b657 b

Bitfield

5b5b

Unchoke

5b5b

Interested

5b5b

Interested

17b17b

16397 bytes16397 bytes

Piece i

Request
Piece i

17b17b

Request
Piece j

17b17b

Request
Piece k

17b17b

Request
Piece l

17b17b

Request
Piece m

16397 bytes16397 bytes

Piece j

16397 bytes16397 bytes

Piece k

16397 bytes16397 bytes

Piece l

16397 bytes16397 bytes

Piece m

Figure 3: A pattern of concurrent ADU exchanges in a BitTorrent connection.

ACM SIGCOMM Computer Communication Review 70 Volume 36, Number 3, July 2006

4. WORKLOAD GENERATION FROM
CONNECTION VECTORS

The tmix traffic generation tool takes as input a set of
connection vectors. If the connection vectors come directly from a
trace on a network link then, as described next, the tmix tool will
faithfully reproduce the traffic observed on the link. This
reproduction, called “replay,” is the basis for the validation
procedure described in Section 5 where tmix is shown to generate
TCP traffic that is statistically representative of the measured
traffic from which the connection vectors derive. However, in
addition to replay, a wide-range of alternative workload
generation scenarios are also possible. For example, one can
derive distributions of values for the key random variables that
characterize applications at the source level (e.g., distributions of
ADU sizes, time values, number of epochs, etc.). These can be
used to populate analytic or empirical models of the workload in
much the same way as has been done for application-specific
models (e.g., as in the SURGE model for web browsing).

Alternatively, if one wanted to model a “representative”
workload for an entire network, traces from several links in the
network could be processed to produce their connection vectors
and these vectors could be pooled into a library of TCP
connection vectors. From this library, random samples could be
drawn to create a new trace that would model the aggregate
workload. To generate this workload in a simulation, one could
assign start times for each TCP connection according to some
model of connection arrivals (perhaps derived from the original
packet traces).

A third possibility is to apply the methods of semi-
experiments introduced in [18] at the application level instead of
at the packet level. For example, one could replace the recorded
start times for TCP connections with start times randomly
selected from a given distribution of inter-arrival times (e.g.,
Weibull) in order to study the effects of changes in the connection
arrival process on a simulation. Other interesting transforms to
consider include replacing the recorded ADU sizes with sizes
drawn from analytic distributions (e.g., LogNormal) with
different parameter settings. One might replace all multi-epoch
connections with single-epoch connections where the new a and b
values are the sums of the original a and b values and the t values
are eliminated (this is similar to using NetFlow data to model
TCP connections). All such transforms provide researchers with a
powerful new tool to use in simulations for studying the effects of
workload characteristics in networks. The simple structure of a
connection vector makes it a flexible tool for a broad range of
approaches to synthetic workload generation.

4.1 The tmix workload generation tool
tmix takes a set of connection vectors and replays them to

generate synthetic TCP traffic. The vectors can be the exact
connection vectors found in a trace or an artificial set generated
via any of the methods described above.

At a high-level, tmix will initiate TCP connections at times
taken from the Ti and, for each connection, send and receive data
as specified in Ci. For an example, consider the replay of an a-b-t
trace containing the connection vector described in Section 3
corresponding to the persistent HTTP connection in Figure 2:

Ci = <(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0)>.
• At time Ti the tmix connection initiator establishes a new TCP

connection to the tmix connection acceptor.
• The initiator writes 329 bytes to its socket and reads 403 bytes.

• Conversely, the connection acceptor reads 329 bytes from its
socket and writes 403 bytes.

• After the initiator has read the 403 bytes, it sleeps for 120
milliseconds and then writes 403 bytes and reads 25,821 bytes.

• The acceptor reads 403 bytes and writes 25,821 bytes.
• After sleeping for 3,120 milliseconds, the third exchange of

data units is handled in the same way and the TCP connection
is terminated.

The following is the representation of the connection vector used
by tmix:
SEQ 102345 3 // Sequential connection
w 16384 16384 // Window size
r 13450 // Minimum RTT
> 329 // Epoch 1
< 402
t 12000
> 403 // Epoch 2
< 25821
t 312000
> 356 // Epoch 3
< 1198

The input specifies that a sequential connection should be
started at time 102,345 milliseconds and that the connection will
consist of 3 epochs. Each endpoint has a maximum TCP receiver
window of 16,384 bytes. The base (minimum) RTT of the
connection is 13.450 milliseconds. The window sizes and RTTs
are optional. If present they are used with an additional ns module
we have developed that implements per flow delays and losses.
This component, called DelayBox [29], is required to emulate
certain network path properties to enable us to validate traffic
synthetically generated in ns against the actual measured traffic.
(The connection’s window size and minimum RTT are extracted
from the trace data using the techniques described in [1].)

Lines beginning with ‘>’ indicate the number of bytes sent
from initiator to acceptor (i.e., the a size), and those beginning
with ‘<’ indicate the number of bytes sent from acceptor to
initiator (i.e., the b size). The lines beginning with ‘t’ indicate the
amount of time (in microseconds) between bi and ai+1.

Below we show an example connection vector describing a
concurrent connection with 2 epochs in each direction:
CONC 3737620 2 2 // Concurrent connection
w 65535 64240 // Window size
r 166883 // Minimum RTT
c> 91
t> 2514493
c< 111
t< 2538395
c> 55
t> 1985074
c< 118
t< 7516197

Lines beginning with ‘c>’ indicate the number of bytes sent
from initiator to acceptor (i.e., the a size), and those beginning
with ‘c<’ indicate the number of bytes sent from acceptor to
initiator (i.e., the b size). Lines beginning with ‘t>’ indicate the
amount of time (in microseconds) between ai and ai+1. Likewise,
lines beginning with ‘t<’ indicate the amount of time between bi
and bi+1. Note that unlike the case with sequential connector
vectors, in concurrent connection vectors there is no implied
ordering between the transmission of a’s and b’s. In this
representation, the notation is interpreted as specifying a sequence
for each direction of the connection independently. Thus, for
example, although the connection vector above lists an a data unit

ACM SIGCOMM Computer Communication Review 71 Volume 36, Number 3, July 2006

of 91 bytes before a b data unit of 111 bytes, this first a and first b
will actually be transmitted concurrently.

4.2 Implementation of tmix in ns
The a-b-t connection vector model includes parameters for

end systems (connection start time, a sizes, b sizes, and t
durations) as well as the optional path parameters (minimum
RTTs, loss rates). We split the implementation of tmix along these
lines. The module tmix-end includes the implementation of the
end system emulation, and the module tmix-net includes the
implementation of the network path emulation.

Because we want to generate network traffic as realistically
as possible, we base tmix on the Full-TCP model. Full-TCP
provides TCP connection startup and teardown, variable packet
sizes, and full-duplex connections. The connection vectors
produced from the a-b-t model generate two-way traffic, with
initiators and acceptors on both sides of the network. By default,
tmix models a single direction with initiators on one side of the
network and acceptors on the other. Users who wish to generate
two-way traffic should use two separate tmix modules (as we have
done in the validation) to create two-way traffic.
4.2.1 tmix-end

The tmix-end module controls all the activities of a set of
initiators and acceptors. Upon startup, the tmix-end module reads
the connection vectors from a specified file. Two lists are then
created. One list holds each connection’s ID and start time, and
the other list (indexed by connection ID) holds the remaining
parameters for each connection (type of connection (sequential or
concurrent), initiator window size, acceptor window size,
connection start time, list of a sizes, list of b sizes, list of t times).

Once the connection vector file has been processed, new
connections are started according to the connection start time list.
The tmix-end module sets the appropriate window sizes for both
the initiator and acceptor. The remaining operation of tmix-end
depends upon whether the connection vector describes a
sequential or concurrent connection. In sequential connections,
the initiator sends a-type ADUs (“requests”) that the acceptor
“responds to” with a b-type ADU. No pipelining of requests is
used. In concurrent connections, the initiator uses pipelining to
send multiple a-type ADUs without waiting for a response from
the acceptor.
4.2.1.1 Sequential Connections

The initiator uses the connection’s a sizes and inter-request
times, while the acceptor uses the connection’s b sizes and server
delays. The initiator sends a-type ADUs in the order specified and
with the appropriate gap. The inter- a-type ADU gap specifies the
time the initiator waits between receiving a response and sending
a new a-type ADU. Once the acceptor receives an a-type ADU, it
waits for the time specified in the next server delay and then
sends the next b-type ADU in the list. After the acceptor has sent
its final response, it sends a FIN to close the connection.
4.2.1.2 Concurrent Connections

In the case of concurrent connections, each side (acceptor or
initiator) is scheduled independently. The initiator sends its a-type
ADUs according to the schedule given (waiting the inter- a-type
ADU delay time before sending a new a-type ADU). The
acceptor sends its b-type ADUs according to its schedule (waiting
the inter- b-type delay time before sending a new b-type ADU).
The acceptor no longer waits to receive an a-type ADU before
sending a response, and the initiator no longer waits to receive a

b-type ADU before sending the next a-type ADU. The side
sending the last ADU will send the FIN to close the connection.
4.2.2 tmix-net

The tmix-net module allows a user to create per-flow delays
and losses. The delay and loss rates for each connection are
contained in the connection vector. A tmix-net node should be
placed in the network between nodes used by tmix-end. Upon
startup, the tmix-net module reads each connection’s ID, source,
destination, RTT, and loss rate into a table. When a packet is
received, tmix-net looks up the connection ID, source, and
destination in the table to find the appropriate delay and loss
values. The tmix-net module is symmetric, in that both a data and
ACK from the same connection will be delayed the same amount.
Because of this, the delay value in the table is the connection's
RTT/2. tmix-net uses the aforementioned DelayBox component to
implement per-flow delays.

Using tmix, each packet in a flow is delayed the same
amount before being passed on to the next ns node. Any
variations in delays between packets in the same flow are due
only to network effects. This allows each TCP connection in the
experiment to have a different minimum RTT.

There is a separate queue for each connection, so the
connection’s packets stay in order while they are being delayed.
Packets from different connections may be forwarded in a
different order than they were received based on their delay
values. Once packets are delayed for their specified time, they are
passed up to the single network-level queue for the node. This
allows each packet to experience additional queuing delays and
possible queue overflows, just as in a regular ns forwarding node.
When a FIN is received for a connection, its entry is deleted from
the table.

5. VALIDATION EXPERIMENTS
In this section we describe experiments designed to validate

our approach to workload characterization and generation. Our
experimental procedure is based on the following steps:
• Acquire a TCP/IP header trace from an Internet link.
• Filter this Internet link trace to obtain a sub-trace consisting of

all the packets from all the TCP connections to be included in
the workload generation. For the experiments described in this
paper, a sub-trace includes all packets from TCP connections
where the SYN or SYN+ACK was present in the trace (so we
could explicitly identify the initiator of the connection) and the
connection was terminated by FIN or RST. This eliminates
only those connections that were in progress when the packet
trace began and ended. In the remainder of the paper, phrases
like “UNC trace” will refer to the sub-trace derived according
to the above description. We also refer to these sub-traces as
the “original” traces.

• Derive a trace, T, of a-b-t connection vectors from the sub-
trace packet headers using the process described in Section 3.2

• Use T to generate the workload in an ns-2 simulation with the
tmix generator described in section 4.2.

• Capture the packet trace from the simulation. In the remainder
of this paper, phrases “UNC simulation” will refer to the packet
traffic captured from the ns-2 simulation.

• Compare various properties of the traffic in the original trace
with the simulation trace.

We report the results from applying this approach to TCP/IP
header traces from a 1 Gbps Ethernet link connecting the campus
of the University of North Carolina at Chapel Hill (UNC) with the

ACM SIGCOMM Computer Communication Review 72 Volume 36, Number 3, July 2006

router of its ISP. The UNC access-link trace is a one-hour bi-
directional trace acquired using standard tools (e.g., tcpdump).

The ns-2 topology used for the validation is a classical
“dumbbell” network (a 1 Gbps network connecting two clusters
of emulated end systems). While this network topology is in no
way representative of the network traced (the UNC campus), by
using the tmix-net component to emulate per flow RTTs, window
sizes, and losses (using measurement data acquired from the trace
along with the connection vectors), we are in fact able to closely
reproduce in the ns simulation important measures of network
performance observed on the UNC network.

5.1 Verification of source-dependent
properties

Our methodology makes strong emphasis on accurately
modeling the way in which TCP connections are used by the
sources. Our underlying assumption is that these source-level
dependent properties are mostly independent of the specific
network-dependent properties of the link in which they are
measured. If this is true, we should be able to use our model for
generating traffic in testbeds and simulators and safely change
some network mechanism (e.g., the TCP flavor or the queuing
mechanism) but maintain the same TCP application workload.

We validate this idea in two ways. The first, reported in [15],
is to instrument a set of TCP applications to record actual ADU

sizes and inter-ADU idle times. A header trace of the execution of
these applications is taken and the a’s, b’s, and t’s we compute
from this trace are compared against the data measured by the
applications. As shown in [15], our heuristics for computing
connection vectors are surprisingly accurate.

The second validation is to study the source-dependent
properties of a packet header trace from a real link, and compare
with the source-level properties of a packet header trace collected
from a tmix simulation. If the source-dependent properties remain
unchanged, we would prove that these properties (and the way we
use them to generate traffic) represent a fixed point that does not
depend on the underlying network mechanisms.

Figure 4 compares the bodies of the distributions of a and b
data unit sizes from the UNC trace with the UNC simulation,
while Figure 5 compares the tails of the same distributions. One
interesting feature of these distributions was that the distribution
of a sizes was considerably lighter in the body of the distribution
than the distribution of b sizes. This confirms our expectation that
a units were more likely to be small because they are usually
requests (e.g., in HTTP) and the b units (the responses) are more
likely to be larger. The distributions appeared to be consistent
with a heavy-tailed distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ADU Size (bytes)

Original A
Simulation A

Original B
Simulation B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Round-Trip Times (ms)

Original Trace
Simulation

Figure 4: ADU sizes from the original trace and the simulation.

Body of the distribution.
Figure 6: Empirical and simulation RTT distributions.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

ADU Size (bytes)

Original A
Simulation A

Original B
Simulation B

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Original Trace
Testbed

Simulation

Figure 5: ADU sizes from the original trace and the simulation.

Tail of the distribution.
Figure 7: UNC throughput with empirical RTTs and window

sizes, outbound.

ACM SIGCOMM Computer Communication Review 73 Volume 36, Number 3, July 2006

5.2 Validation against real link traffic
The most demanding validation experiment that we could

devise was to use the workload models derived from the UNC
trace with the goal of reproducing certain essential characteristics
of the original packet traces when the workloads are simulated in
ns-2. The question being explored is: to what extent can we
reproduce the traffic found on real network links in a simulation?

Our metrics for evaluating the fidelity of reproduction
between the real and simulated packet traffic include the
following:
• The link load or throughput – the number of bits per second

(including protocol headers) transmitted on a link. This metric
would be used by experimenters to gauge the level of
congestion on simulated links. Note that because we can replay
the applications’ use of TCP connections at both endpoints, we
are able to generate the packet-level traffic flowing in both
directions of the link concurrently.

• The distribution of goodput (application-level throughput)
across flows. This metric is a more sophisticated measure of
link throughput as it speaks to how aggregate link throughput is
realized. Moreover, reproduction of goodput implies that tmix’s

emulation of applications reproduces both network and
application-layer measures of throughput.

• The time series of active connections per bin size. Accurately
reproducing the number of active connections is important for
experimenting with network services and mechanisms that
maintain per flow state.

• The statistical properties of the time series of counts of arriving
packets and bytes on a link in an interval of time (e.g., Hurst
parameter estimates, wavelet spectra). The breakthrough results
in studying these time series over the past several years have
identified self-similarity and long-range dependence as
fundamental features of network traffic that should be
preserved in synthetic traffic.

To reproduce traffic from a real link in a laboratory network,
we must consider a second set of factors that are network-
dependent but are, to a first approximation, independent of the
applications using the network. These are further classified as
being determined at the TCP endpoints or along the path between
endpoints. The primary network-dependent endpoint factors we
consider are the TCP sender and receiver window sizes (ns does
not simulate receiver window sizes, but does implement a sender
maximum window) and the maximum segment size (MSS). Other
network-dependent endpoint factors one might consider (and that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Goodput (kbps)

Original Trace
Simulation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

P
ac

ke
t A

rr
iv

al
s

(p
er

 s
ec

on
d)

Time (s)

Original Trace
Testbed

Simulation

Figure 8: Cumulative distribution of goodput per connection. Figure 10: Time series of packet arrivals.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500

A
ct

iv
e

C
on

ne
ct

io
ns

Time (s)

Original Trace
Testbed

Simulation

2 4 6 8 10 12 14

26

28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Outbound
NS−Tmix Replay Outbound
UNC 7:30 PM Inbound
NS−Tmix Replay Inbound

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 9: Time series of active connections. Figure 11: Logscale diagram for inbound and outbound

directions.

ACM SIGCOMM Computer Communication Review 74 Volume 36, Number 3, July 2006

we have experimented with but do not provide data here for)
include the TCP variant used (e.g., Reno, NewReno, SACK, etc.).
The network-dependent path factors we consider in this paper are
the distributions of per-flow round-trip times and loss rates. We
are working on incorporating per-flow bottleneck bandwidths.

Figure 6 shows the distribution of estimated RTT per flow in
the original traces compared with the achieved replay RTT
distribution. There was a good match between the RTTs in the
real network and their approximation in the simulation.

The bytes transmitted on the UNC link in 1-minute intervals
are shown in Figure 7. The simulation appears to track the
fluctuations in load reasonably well. However, overall there is a
slight trend for the simulation to generate less throughput than
was observed on the UNC network. To test whether this effect is
an artifact of the tmix implementation or whether it is an artifact
of ns, we also show the performance of a comparable
implementation of tmix on a laboratory network testbed. (The
testbed, described in more detail in [22], is also structured as a
dumbbell network with a 1 Gbps link in the center. Technology
similar to that described here is used to emulate minimum per-
flow delays so as to ensure all flows experience a different
minimum round-trip time.)

We interpret the fact that the testbed implementation of tmix
more closely approximates the original UNC throughput as an
indication that in principle tmix can sufficiently reproduce the
aggregate throughput of TCP connections. Moreover, while a
complete discussion is beyond the scope of this paper, we have
ample evidence to suggest that the essential problem here lies in
the ns software itself.

Figure 8 shows the CDF of goodput achieved per connection,
and we see that the simulation follows the original trace rather
well. Thus while the aggregate throughput is less than perfect, on
a per flow basis, application-layer throughput is closely
approximated.

Figure 9 shows the time series of active connections. In this
case there is an excellent match between the original trace, the ns
simulation, and the testbed data. The bell-shaped nature of the
curve is an artifact of startup and termination effects inherent in
the original packet header trace (see [15]).

For evaluating how well we reproduced the packet- and byte-
arrival time series, we used the methods (and MATLAB software)
developed by Abry and Veitch [14] to study the wavelet spectrum
of the time series. The output of this tool is a log-scale diagram
that provides a visualization of the scale-dependent variability in
the data. Briefly, the logscale diagram plots the log2 of the
(estimated) variance of the Daubechies wavelet coefficients for
the time series against the log2 of the scale (j) used in computing
the coefficients. The wavelet coefficients are computed for scales
up to 216. Since the scale effectively sets the time scale at which
the wavelet analysis is applied there is a direct relationship
between scale and time intervals (see the top labels of the
following plots). For processes that exhibit long-range
dependence, the logscale diagram will exhibit a region in which
there is an approximately linear relationship with slope > 0
between scale and variance. An estimate of the Hurst parameter
along with confidence intervals on the estimate can be obtained
from the slope of this line H = (slope+1)/2. For more information
than this (grossly oversimplified) summary, see [14].

Figure 10 shows the time series of packet arrivals. While the
testbed implementation faithfully reproduces the packet arrival
process, the ns simulation does not. We again interpret this as a
shortcoming of the ns simulator itself. In particular, the packet

arrival process in ns is negatively affected by ns’s implementation
of delayed-ACKs.

Figure 11 shows the logscale diagram for both directions of
the UNC trace. Both the original and the simulation show strong
scaling starting around 500 milliseconds, so the simulation
substantially reproduces the long-range dependence of the traffic.
The strength of these scaling in the inbound direction, as
estimated by the Hurst parameters, was H = 0.95 for the original
(the confidence interval was between 0.93 and 0.98) and H = 0.94
for the simulation (C.I. = [0.91, 0.96]).

The results presented above show that is possible to use
workload models and reproduce with reasonable fidelity the
traffic from access links like UNC in an ns simulation. This also
validates the workload modeling and generation approach.

6. SUMMARY AND CONCLUSIONS
Simulation is the dominant method for evaluating most

networking technologies. However, it is well known that the
quality of a simulation is only as good as the quality of its inputs.
An overlooked aspect of simulation methodology is the problem
of generating realistic synthetic workloads to drive a simulation or
laboratory experiment. We have developed an empirically-based
approach to workload generation. Starting from a trace of TCP/IP
headers on a production network, a model is constructed for all
the TCP connections observed in the network. The model, a set of
a-b-t connection vectors, can be used in the workload generator
tmix to replay the connections and reproduce the application-level
behaviors observed on the original network. Moreover, by
combining set of connection vectors or sub-sampling vectors
according to any number of heuristics, a wide range of
meaningful departures from reality are possible. This enables
researchers to perform “what if” experiments where the synthetic
traffic can be manipulated in controlled ways.

We believe this approach to source-level modeling, and the
tmix generator, are significant contributions to network
evaluations, specifically because of their ability to automatically
generate valid workload models representing all TCP applications
in a network with no a priori knowledge about them. Our work
therefore serves to demonstrate that researchers need not make
arbitrary decisions when performing simulations such as deciding
the number of flows to generate or the mix of “long-lived” versus
“short-lived” flows. Given an easily acquired TCP/IP header
trace, it is straightforward to populate a workload generator and
instantiate a generation environment capable of reproducing a
broad spectrum of interesting and important features of network
traffic. For this reason, we believe this work holds the potential to
improve the level of realism in network simulations.

7. ACKNOWLEDGMENTS
We would like to thank Shobana Natesan Sampath and

Venkata Vasireddi of Clemson University for their help in the
coding of tmix in ns.

This work was supported in parts by the National Science
Foundation (grants CCR-0208924, EIA-0303590, and ANI-
0323648), Cisco Systems Inc., and the IBM Corporation.

ACM SIGCOMM Computer Communication Review 75 Volume 36, Number 3, July 2006

8. REFERENCES
[1] J. Aikat, J. Kaur, F.D. Smith, and K. Jeffay, Variability in

TCP Round-trip Times, Proc. ACM SIGCOMM Internet
Measurement Conference, Miami Beach, FL, Oct. 2003,
pp. 279-284.

[2] P. Barford and M. E. Crovella, A Performance Evaluation
of HyperText Transfer Protocols, Proc. ACM
SIGMETRICS, Atlanta, GA, May 1999, pp. 188-197.

[3] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and
H. Yu, Advances in Network Simulation, IEEE Computer,
33(5):59-67, May 2000.

[4] R. Caceres, P. Danzig, S. Jamin, and D. Mitzel,
Characteristics of Wide-Area TCP/IP Conversations, Proc.
ACM SIGCOMM, Zurich, Switzerland, Sept. 1991, pp.
101-112.

[5] J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D. Smith, and
M.C. Weigle, Stochastic Models for Generating Synthetic
HTTP Source Traffic, Proc. IEEE INFOCOM, Hong Kong,
Mar. 2004, pp. 1547-1558.

[6] Chariot Performance Evaluation Platform, NetIQ Software
Inc, http://www.netiq.com/products/chr/.

[7] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage, and G.M.
Voelker, Monkey See, Monkey Do: A Tool for TCP
Tracing and Replaying, Proc. USENIX Annual Technical
Conference, Boston, MA, June 2004, pp. 87-98.

[8] W.S. Cleveland, D. Lin, and D.X. Sun, IP Packet
Generation: Statistical Models for TCP Start Times Based
on Connection-rate Superposition, Proc. ACM
SIGMETRICS, Santa Clara, CA, June 2000, pp. 166-177.

[9] M. Crovella, and A. Bestavros, Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes,
IEEE/ACM Transactions on Networking, 5(6):835−846,
Dec. 1997.

[10] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin,
An Empirical Workload Model for Driving Wide-Area
TCP/IP Network Simulations, Internetworking: Research
and Experience, 3(1):1−26, 1992.

[11] A. Feldmann, P. Huang, A.C. Gilbert, and W. Willinger,
Dynamics of IP traffic: A study of the role of variability
and the impact of control, Proc. ACM SIGCOMM,
Cambridge, MA, Aug. 1999, pp. 301-313.

[12] S. Floyd, and V. Paxson, Difficulties in Simulating the
Internet, IEEE/ACM Transactions on Networking, 9(4):392-
403, Aug. 2001.

[13] F. Hernández-Campos, A.B. Nobel, F.D. Smith, and K.
Jeffay, Understanding Patterns of TCP Connection Usage
with Statistical Clustering, Proc. IEEE MASCOTS, Atlanta,
GA, Sept. 2005, pp. 35-44.

[14] F. Hernández-Campos, F.D. Smith, K. Jeffay, Generating
Realistic TCP Workloads, Proc. Computer Measurement
Group Intl. Conf., Las Vegas, NV, Dec 2004, pp. 273-284.

[15] F. Hernández-Campos, Generation and Validation of
Empirically-Derived TCP Application Workloads, Ph.D.

Dissertation, Dept. of Computer Science, UNC Chapel Hill,
2006.

[16] D. Heyman, and T.V. Lakshman, Source Models for VBR
Broadcast Video Traffic, IEEE/ACM Transactions on
Networking, 4(1):37−46, Feb. 1996.

[17] H. Hlavacs, G. Kostsis, and C. Steinkellner, Traffic Source
Modeling, Technical Report TR-99101, Institute of Applied
Computer Science and Information Systems, University of
Vienna, 1999.

[18] N. Hohn, D. Veitch, and P. Abry, Does Fractal Scaling at
the IP Level Depend on TCP Flow Arrival Processes?,
Proc. ACM SIGCOMM Internet Measurement Workshop,
Marseille, France, pp. 63-68, Nov. 2002.

[19] http://netflow.internet2.edu/.

[20] E.W. Knightly, and H. Zhang, D-BIBD: An Accurate
Traffic Model for Providing QoS Guarantees to VBR
Traffic, IEEE/ACM Transactions on Networking,
5(2):219−231, Apr. 1997.

[21] K.-C. Lan and J. Heidemann, Rapid Model
Parameterization from Traffic Measurements, ACM
Transactions on Modeling and Computer Simulation,
12(3):201-229, July 2002.

[22] L. Le, J. Aikat, K. Jeffay, F.D. Smith, The Effects of Active
Queue Management on Web Performance, Proc. ACM
SIGCOMM 2003, Karlsruhe, Germany, August 2003, pp.
265-276.

[23] B. Mah, An Empirical Model of HTTP Network Traffic,
Proc. IEEE INFOCOM, Apr. 1997, pp. 592-600.

[24] A. Mena and J. Heidemann, An Empirical Study of Real
Audio Traffic, Proc. IEEE INFOCOM, Tel-Aviv, Israel,
Mar. 2000, pp. 101-110.

[25] V. Paxson. Empirically Derived Analytic Models of Wide-
Area TCP Connections, IEEE/ACM Transactions on
Networking, 2(4):316-36, Aug. 1994.

[26] J. Sommers and P. Barford, Self-Configuring Network
Traffic Generation, Proc. ACM IMC 2004, Taormina, Italy,
October 2004, pp. 68-81.

[27] F.D. Smith, F. Hernández-Campos, and K. Jeffay. What
TCP/IP Protocol Headers Can Tell Us About the Web,
Proc. ACM SIGMETRICS, Cambridge, MA, June 2001, pp.
245-256.

[28] J. Wallerich, NSWEB - A HTTP/1.1 Extension to the NS-2
Network Simulator, http://www.net.informatik.tu-
muenchen.de/~jw/nsweb/, 2004.

[29] M.C. Weigle, DelayBox: Per-flow Delay and Loss in ns, in
“The ns manual,” K. Fall, K. Varadhan, eds,
http://www.isi.edu/nsnam/ns/doc/.

[30] USA Patent Application, 20060083231, Methods, Systems,
and Computer Program Products for Modeling and
Simulating Application-Level Traffic Characteristics in a
Network Based on Transport and Network Layer Header
Information, April 2006.

ACM SIGCOMM Computer Communication Review 76 Volume 36, Number 3, July 2006

