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ABSTRACT 

 

Purpose - The main purpose of this paper is to describe the specification language TML for adaptive mission 
plans that we designed and implemented for the open source framework Aerostack for aerial robotics. 
Approach – The TML language combines a task-based hierarchical approach together with a more flexible 
representation, rule-based reactive planning, to facilitate adaptability. This approach includes additional notions 
that abstract programming details. We built an interpreter integrated in the software framework Aerostack. The 
interpreter was validated with flight experiments for multi-robot missions in dynamic environments.  
Findings – The experiments proved that the TML language is easy to use and expressive enough to formulate 
adaptive missions in dynamic environments. The experiments also showed that the TML interpreter is efficient 
to execute multi-robot aerial missions and reusable for different platforms. The TML interpreter is able to verify 
the mission plan before its execution, which increases robustness and safety, avoiding the execution of certain 
plans that are not feasible.  
Originality – One of the main contributions of this work is the availability of a reliable solution to specify 
aerial mission plans, integrated in an active open-source project with periodic releases. To the best knowledge 
of the authors, there are not solutions similar to this in other active open-source projects. As additional 
contributions, TML uses an original combination of representations for adaptive mission plans (i.e., task trees 
with original abstract notions and rule-based reactive planning) together with the demonstration of its adequacy 
for aerial robotics.  

Keywords Mission plan specification; Autonomous aerial systems; Adaptive mission plans; Aerial 
robotic systems 
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1. Introduction 

To build aerial robotic systems with high levels of autonomy it is important to have tools 
to integrate multiple heterogeneous computational solutions (e.g., computer vision 
algorithms, actuator controllers, planning algorithms, etc.). This integration should be 
done in a way to be easily used by developers and operators of such a systems. This 
technical challenge has been one of our motivations for building the software framework 
Aerostack in our research group (www.aerostack.org) [Sanchez-Lopez et al., 2016; 2017]. 
This framework has demonstrated to be an effective tool for building different types of 
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aerial systems. Aerostack is currently an active open-source project with periodic 
software releases. 
 
One of the important functions of this type of tool is to help developers specify a mission 
plan for aerial systems. In the initial version of Aerostack, this specification was based on 
writing programs and configuration text files. This method can be adequate for 
programmers who are familiar with Aerostack architecture, but it may not be appropriate 
for other kind of users. The main problem of this solution is that the developer must 
know many low-level technical details. The programs assume that the developer knows 
all these details and they are not adequately protected against errors. Therefore, this 
solution can be difficult to use and error-prone for other type of users. 
 
To improve this, it is needed a solution to specify a mission easier to use and robust 
together with other practical requirements (e.g., efficiency, scalability, flexibility). In 
aerial robotics, there are applications that help operators to describe a mission with 
simple methods that are easy to use (e.g., waypoint lists). However, this type of method is 
insufficient to provide the necessary adaptability for autonomous flights in dynamic and 
complex environments. There are other methods with more flexible representations (e.g., 
task trees, finite state machines, rule bases, Petri nets, etc.) that have been used in other 
robotic systems, different from aerial systems. But, to the best knowledge of authors, 
there are not reliable tools available for the research community implementing these 
methods for aerial autonomous multi-robot systems. 
 
As an answer to this need, this paper presents a mission specification language called 
TML for aerial robotics together with a reliable interpreter integrated in the Aerostack 
framework. TML combines a task-based hierarchical approach together with a more 
flexible representation (rule-based reactive planning) as a solution to formulate adaptive 
mission plans, with additional notions that abstract technical details at a programming 
level. We programmed an interpreter for this language with verification procedures to 
increase robustness. The interpreter was validated with real flight experiments in complex 
missions and it is freely available as part of the open-source framework Aerostack. 
 
The remainder of the paper is structured as follows. First, the paper presents a discussion 
about the state of the art in mission plan specification in robotics. Then, the paper 
describes the characteristics of our proposed representation and the TML language. Then, 
the paper presents how the interpreter was implemented as a set of processes together 
with the framework Aerostack. Finally, we describe the results of the experimental 
evaluation based on real flights that demonstrate how TML can be used to formulate and 
execute adaptive mission plans for aerial robotics. 
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2. Related Work 

A mission plan specification describes formally how to determine the order in which the 
robot must perform a sequence of simple actions to achieve a certain mission goal (e.g. a 
rescue mission). In aerial robotics, there are software applications that provide languages 
to the operators to specify mission plans. Many of these languages use lists of GPS 
waypoints with associated actions or commands. For instance, MP – Mission Planner1 
uses navigation commands to travel to waypoints, do commands to execute specific 
actions (e.g., taking pictures), and condition commands that control when other 
commands are able to run. However, the representations using waypoint lists are not able 
to adapt flexibly to mission circumstances [Santamaria et al., 2008; Schwatz et al 2014]. 
The specification is normally based on a fixed list of waypoints that cannot change 
dynamically in the presence of certain events.  
 
To overcome this limitation, mission specification languages can follow other more 
flexible representations. For example, a popular approach in robotics is using finite state 
machines (FSMs). This representation has been used, for example, in languages such as 
the Behavior Language [Brooks 1990], or the Colbert language [Konolige, 1997]. Some 
more recent tools have also followed the FSM representation. For example, MissionLab2 
is an integrated tool that supports a graphical construction of state-transition diagrams 
together with a multiagent approach [MacKenzie 1997]. Currently Missionlab is an 
inactive project (the last release of the MissionLab was distributed in 2006). 
 
The main problem of FSMs is that they are difficult to use in large complex models. They 
do not scale well and are difficult to maintain when the number of robot behaviors 
increases [Klöckner, 2013]. A particular state can be connected to any other state 
(anywhere in the model), which can be difficult to maintain when number of states is 
large. This has been sometimes called the state and transition explosion [Olsson 2016].  
 
To solve this problem, other approaches have proposed modular and hierarchical 
representations such as hierarchical finite state machines (HFSM) [Yannakakis, 2000] 
[Kurt, Ozguner, 2013] or statecharts [Harel, 1987]. HFSM are modular and therefore 
more flexible to change and more comprehensible than FSMs. For example XABSL3 
(Extensible Agent Behavior Specification Language) is a programming language created 
in an open-source project [Loetzsch et al 2006] [Risler, 2009]. It was developed and 
demonstrated for soccer robots but it was conceived to be general for other types of 
robots (the last of release of XABSL was in 2009). Another proposal that uses HFSM is 
the State Control Library4 and Behavior Control Framework5 in NimboRo-OP [Allgeuer, 
Behnke, 2013]. This corresponds to open-source software validated in soccer robots, 
although there is not user documentation (the last release was in 2014).  
 
Another hierarchical approach common in robotics is the task-based representation. The 
task is an intuitive common concept, easily understandable by general users, that has 

 
1 http://ardupilot.org/planner  
2 http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab 
3 http://www.xabsl.de   
4 http://sourceforge.net/projects/statecontroller/ 
5 http://sourceforge.net/projects/behaviourcontrol/ 
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been already used in classical planning (e.g., HTN – Hierarchical Task Network). In 
robotics, this representation has been used in ground robot control [Simmons, 
Apfelbaum, 1998; Nicolescu, Matarić, 2002], underwater vehicles [Roberts et al., 2003; 
Ridao et al., 2005] or for multi-agent UAV systems [Doherty et al 2010] (as a 
demonstrative prototype). Task-based specifications are intuitive descriptions so they are 
comparatively easier to specify and monitored than others [Fernandez- Perdomo et al., 
2010].  
 
The representation with behavior trees is another approach that uses a hierarchical 
representation. Behavior trees were proposed in the computer gaming industry: Halo 2 
[Isla, 2005], Facade [Mateas, Stern, 2003], and Rockstar Games [Champandard, 2007]. In 
robotics, behavior trees have been used recently [Marzinotto et al 2014] [Colledanchise, 

Ogren, 2014] and, specifically for UAVs [Ögren 2012] [Klöckner, 2013], such as the 
Modelica library (not free available) for UAV [Klöckner, et al. 2014]. [Olsson, 2016] 

shows the advantages of using behavior trees instead of FSMs with quantitative metrics.  
 
In summary, the review of the research literature in robotics shows that there are different 
solutions to specify mission plans: waypoint lists, state-based specification and 
hierarchical approaches (task trees, hierarchical FSMs, behavior trees) besides others 
(workflow languages, imperative languages, Petri-nets, rule-based systems, etc.). 
Hierarchical representations are popular solutions for complex and adaptive missions. 
However, in the field of aerial robotics the available software tools are mainly based on 
waypoints (an insufficient representation for dynamic environments) and we have not 
found reliable tools for mission specification, for example in the form of active open-
source projects, with a demonstrated adequacy for aerial autonomous multi-robot 
systems.  

3. Representation of Adaptive Mission Plans 

This section describes the representation that we propose to specify adaptive mission 
plans. Our representation is an integrated solution that combines a hierarchical task-based 
approach and rule-based reactive planning, together with concepts that abstract 
programming details. 
 
It is important to note that we designed this representation to increase the degree of 
autonomy of the robot with respect to the operators. Operators should be able to ask 
robots to perform sets of tasks (formulated as a mission plan in a simple language easy to 
use) and the robot should be autonomous to respond to the request in two ways: 
 
1. Verification. The robot should be autonomous to accept or reject the proposed tasks 

of the mission plan. For this purpose, the aerial robot should exhibit a certain degree 
of understanding of the requested tasks to verify their correctness and physical 
feasibility before the execution. The robot should also explain clearly to the operator 
the reasons that justify why certain requests are rejected. 
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2. Adaptation. The robot should be autonomous to adapt safely the execution of the 

plan to the specific details and unexpected events of dynamic environments. We use 
the adjective adaptive for mission plans to express that they should be general and 
flexible enough to be adapted to mission circumstances (for example, changes in the 
environment due to the presence of unknown obstacles, presence of other robots, 
etc.). 

 
In addition, we designed the representation considering also additional practical 
requirements such as independence on aerial platforms, efficiency to be used in real 
flights of aerial robotics, and scalability to grow up easily with new functionalities. 
 

3.1. The task-based approach 

To describe this representation formally in we use the following notation. The 
hierarchical specification is as a tuple H = 𝑇, 𝐴, 𝑆, 𝑓, 𝑔, ℎ  where T is a set of tasks, A 
is a set of actions, S is a set of skills, and the functions f : T → P(T), g : T → A, and h : T 
→ P(S) represent respectively child nodes of a task (subtasks), action of a task and skills 
of a task. P(T) is the power set of the set T. 

3.1.1. Task trees 

We specify a mission plan with a set of tasks organized in task trees. A task ti ∈ T 
specifies a piece of work to be done by the robot to achieve a desired goal in the mission. 
The name given to each task represents the activity to do to reach a goal such as search a 

subject or enter the building (i.e., the name of the task is not the goal expressed as a final 
state such as the subject is found or the vehicle is inside the building).  
 
The task is used as a basic component to structure a mission with a modular organization. 
The mission is specified with a hierarchy of tasks and subtasks that describe the different 
parts of the mission to be done. An intermediate node ti of the task tree with child nodes 
Ti = {t1, t2, …, tn}, Ti  ⊂ T, is formalized with the function f(ti) = Ti, where ti ∉ Ti. This 
represents that the goal of task ti is achieved by doing tasks t1, t2, …, and tn.  
 
The task tree is a useful representation to establish the execution order of actions, for 
example, following a deep-first search strategy. However, to have a more flexible flow 
control in our approach, the nodes of the task tree accept control regime modifiers such as 
repetitions (i.e., the same task is performed several times) or conditional execution (i.e., a 
task is only performed if a condition is satisfied). 

3.1.2. Actions and skills 

In the task tree, a terminal node describes an action to do. We use the concept action ai ∈ 
A to express an elementary piece of work that the aerial robot is able to achieve directly 
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without the need of any further decomposition. Each action ai is associated to a terminal 
task tj, i.e., a task that is not decomposed into other subtasks. This can be formally 
expressed as f(tj) = 𝜙 and g(tj) = ai. The following list is an illustrative set of motion 
actions: take off, go to a point, land, look at a point, flip, follow a trajectory, wait 
hovering a certain time, track an object and move in circles. Besides motion actions there 
are others such as: take a video, turn off the lights, memorize object image (to be 
tracked), memorize current point, say a sentence out loud, take a photo, send a message 
to other robots, etc. We assume that certain actions (e.g., actions that use the same 
actuators) are mutually exclusive, i.e., only one action can be performed at any given 
moment.  
 
Actions can be specified with the help of specific parameters such as the following: 
• Spatial references. For example, waypoints including spatial location (x, y, z) and 

optionally other values (e.g., speed, acceleration, and orientation). 
• Temporal references with absolute time values (hour, minute, second) or relative 

values (before, after, overlap, etc.) expressing temporal constraints for certain tasks. 
 
To complement actions, we use the concept of skill si ∈ S that represents a particular 
robot’s ability. The following list shows example skills: avoid obstacles, limit extreme 
movements, interpret ArUco visual markers, interpret voice sentences, and say out loud 
the current action.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An example of task tree with actions and skills. Ellipses represent tasks,  
rectangles represent actions and rounded rectangles represent skills. 

 
Skills can be active or inactive in a particular robot. The activation of a particular skill 
does not usually have a direct effect. Its effect is normally observed indirectly when an 
action is performed. Since skills have influence in the behavior of actions, we can 
understand skills as global modifiers for sets of actions.  
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The notion of skill is useful as an abstract concept to help operators express more easily 
what complex abilities should be active, without considering low-level technical details. 
Internally, a skill is automatically translated to a set of running processes. Thus, the 
activation of skills is associated to the increase of resource consumption (memory space, 
processing time, battery charge) so it is important to deactivate unnecessary skills when it 
is possible. 
 
In the task tree, each task ti has, optionally, a set of skills Si = {s1, s2, …, sk}, Si ⊆ S, 
formalized with the function h(ti) = Si, which means that the set of skills Si must be active 
while the robot is doing task ti. We also consider that skills could be activated with 
certain constraints such as: (1) distance, i.e., the skill is only activated when the distance 
between the position of the robot and a certain point is less than certain value, (2) delay, 
i.e., the skill is activated after a number of seconds, (3) yaw, i.e., the skill is only 
activated for a particular yaw. 

 

3.2. Reactive planning  

We combine the task-based solution with a rule-based reactive planning to provide more 
adaptability to changes of the environment. In general, reactive planning differs from 
classical planning in that it determines just one next action in every instant. This type of 
representation does not require having a representation of the effects of actions, as it is 
usually used in classical planning. This simplification is useful to cope with highly 
dynamic and unpredictable environments. 
 
Reactive planning normally represents an internal state about the robot intentions (in our 
case, this is expressed with tasks). Actions are selected based on the internal state (the 
current task) and conditions about the external world state [Downs, Reichgelt, 1991]. 
Thus, for a given world state, different actions can be selected depending on the internal 
state. Both, the internal state and the conditions about the world, are normally represented 
using high level qualitative representations that abstract details from sensor data. 
 
To represent conditions about the world state, we use the concept of event. An event is 
the occurrence of a significant change in the state of the external environment or the state 
of the own robot. Events can be related to normal situations (e.g., the detection of a 
specific visual marker) or undesired situations (discharged battery, etc.).  
 
In our representation, the mission specification includes event handlers that define what 
to do in the presence of some events. Event handlers are formulated as condition-action 
rules, a typical representation used in reactive planners: 
 
         p1 ∧ p2 ∧ …∧ pn  →  q1 ∧ q2 ∧ …∧ qm 
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The condition part of the rules {pi} includes conditions about the presence of events 
and/or conditions about what is the current task. The action part of the rules {qj} includes 
requests about: additional skills to be active, additional actions to be done, and/or change 
the normal execution flow (abort mission, abort task, jump to task, etc.).  

3.2.1. Multi-robot communication based on events 

We use events with reactive planning as a solution for multi-robot communication. A 
message sent from robot A to robot B is understood by robot B as a particular type of 
event (e.g., a public event). The mission plan of robot B captures the event with the 
corresponding event-handler that describes how robot B must react to its presence of such 
an event. To send a message, we follow two alternative solutions:  
 

• There are specific actions to communicate with other robots. For example, the 
action send message sends a text message to other robots. This action includes 
different arguments such as the destination robots, the message, etc.  

 
• We can assume that certain prefixed events detected by one robot (e.g., 

recognize the presence of a particular visual marker) are always automatically 
communicated to other robots.  

 
Section 5 describes how we implemented this solution (with the components called event 
detector and event publisher). Section 6 presents an experimental example that illustrates 
how two robots communicate using this approach. 

4. The TML Language 

Based on the described approach for mission specification, we designed the language 
called TML (Task-based Mission specification Language). TML uses XML syntax to be 
readable by both humans and machines. Figure 2 shows a complete example of a mission 
specification using TML language, corresponding to the example presented in figure 1. 
 
According to the TML syntax, a mission is defined with the tag <mission> and the 
attribute name. The body of the mission is separated in two parts: tasks and event 
handlers.  The first part includes a task tree and each task is specified using the tag 
<task> and the attribute name.  
 
The body of a terminal task specifies an action (e.g., TAKE_OFF, LAND, etc.) with the tag 
<action> and the attribute name. An action can include optionally arguments. Arguments 
use the tag <argument> and the attributes {name, value}. Table 1 shows a partial list of 
actions used in TML language. The body of a terminal task can specify several skills to 
be active with the tag <skill> and the attribute name. The available actions and skills 
used by TML can be increased easily with new actions and skills elements without 
affecting the central structure of representation of TML language. 
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Table 1: Example actions used by TML. 
 

Action Description 

FLIP The vehicle performs a flip in a certain direction (argument “direction” with the values 

{front, back, right, left}). The direction by default is to the front. 

GO_TO_POINT The vehicle moves to a given point. The point can be expressed using absolute 

coordinates (argument “point”) or coordinates relative to the vehicle (argument 

“relative point”). 

LAND The vehicle descends vertically (through the z axis) until it touches the ground. It is 

assumed that the ground is static. 

ROTATE_YAW The vehicle rotates the yaw a number of degrees (argument “angle”). 

 

STABILIZE The vehicle tries to cancel all the perturbations and turbulences that may affect its 

system such as movement speeds and attitude speeds. 

TAKE_OFF The vehicle takes off from its current location to the default altitude. If the vehicle is 

flying, this action is ignored.  

WAIT The vehicle waits on the air for a specified number of seconds (argument “time”). 

 
 <mission name="Exploration mission"> 
  <task name="Explore"> 
      <skill name="RECOGNIZE_VISUAL_MARKERS"/> 
      <task name="Initiate exploration"> 
          <task name="Initial take off"> 
              <action name="TAKE_OFF"/> 
          </task> 
          <task name="Memorize home base"> 
              <action name="MEMORIZE_POINT"/> 
                 <argument name="coordinates" label="HOME"/> 
              </action> 
          </task> 
      </task> 
      <task name="Search"> 
          <skill name="AVOID_OBSTACLES"/> 
          <task name="Go to unexplored area"> 
              <action name="GO_TO_POINT"> 
                <argument name="coordinates" value="(6.0, 4.0, 1.0)"/> 
              </action> 
          </task> 
          <task name="Turn"> 
              <action name="ROTATE_YAW"> 
                <argument name="angle" value="180"/> 
              </action> 
          </task> 
      </task> 
      <task name="Return to home base"> 
          <skill name="AVOID_OBSTACLES"/> 
          <task name="Go to home base"> 
              <action name="GO_TO_POINT"> 
                <argument name="coordinates" label="HOME"/> 
              </action> 
          </task> 
          <task name="Final land"> 
              <action name="LAND" /> 
          </task> 
      </task>     
  </task> 
  <event_handling> 
      <event name="Land command recognized"> 
          <condition parameter="visualMarker" comparison="equal" value="3"/> 
          <action name="LAND"/> 
          <termination mode="ABORT_MISSION"/> 
      </event> 
  </event_handling> 
</mission> 

 
Figure 2: Simple example of mission specification in TML language. 
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The body of a non-terminal task can include skills that are active during the task 
execution. The body of a non-terminal task does not include actions. Instead, the body 
includes one or several simpler tasks. The linear sequence of task execution can be 
modified with repetitions and conditions. For example, the tag <repeat> and the attribute 
times is used to repeat a task a number of times. The tag <condition> and the attributes 
{parameter, comparison, value} are used to establish a condition about the presence of 
an event to execute a task. The allowable values for the attribute comparison  are {equal, 
less than, less than or equal to, greater than, greater than or equal to, not 
equal to}. For example: 
 

<task name="Flip three times if green is observed"> 
  <condition parameter="observed color"comparison="equal" value= "green"/> 
  <task name="Flip three times" times="3"> 
     <action name="FLIP"/> 
  </task> 
</task> 

 
The second part of a mission is a list of event handlers. This part of the specification is 
defined with the tag <event_handling>. Each event handler describes how to react to a 
particular event. Events are defined with the tag <event> and the attribute name. Each 
event includes a list of conditions (in conjunctive form), a list of actions to be done and 
an ending step defined with the tag <termination> and the attribute mode. Events can use 
a particular type of condition with the attribute currentTask. This is useful to express 
that the event is considered while a particular task is being executing.  

5. Execution of TML Plans with Aerostack 

This section describes the solution that we designed and implemented for the software 
framework Aerostack [Sanchez-Lopez et al., 2016; 2017] to execute mission plans 
formulated in TML language. 
 
We designed an architecture of processes divided into three parts: the TML interpreter, a 
set of executive processes and the Aerostack interface. This architecture is supported at 
the implementation level by the middleware ROS (Robot Operating System). Figure 3 
shows our architecture as a block diagram. Each rectangle represents a process (mission 
plan interpreter, action interpreter, etc.) implemented as a ROS node. Each process has a 
set of ports (with arrows) that describes how its inputs and outputs are connected to other 
processes. In the figure, we use two different notations for the ports: squared ports that 
use a publish/subscribe communication model and rounded ports that use a request/reply 
communication model (see ROS6 for a detailed description about this type of inter-
process communication). Next sections describe all these processes in more detail. 

 
6 http://www.ros.org 
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5.1. The TML interpreter 

The TML interpreter is implemented with a process called mission plan interpreter. This 
process reads a text specification in TML language written by the human operator and 
verifies the correct description of the mission plan. Then, during the plan execution, the 
interpreter adapts safely the execution of the plan to mission circumstances, generating 
step by step the next action to perform with the set of skills to be active.  

5.1.1. Interpretation algorithm  

During the plan execution, the mission plan interpreter uses an algorithm that follows two 
basic strategies:  

• A task-driven strategy, i.e., the execution follows the sequence of tasks 
established by the task tree and translates them into specific action requests to be 
done and skills to be active, and 

• An event-driven strategy, i.e., when the interpreter is waiting until a requested 
action is completed, the interpreter analyzes the presence of specific events to 
react according to the event handlers. 

 
Algorithm 1 shows how these two strategies are implemented. The task-driven strategy is 
described as a loop (line 2) that covers all tasks according to a sequence established by 
line 12 (next task). This line can be implemented as a function call that generates step by 
step the sequence of tasks following a depth-first control strategy, although this can be 
modified with repetitions and conditions defined for some tasks.  
 

Algorithm 1. Interpretation of a mission plan specification 

1. ti  ←  root node t1 of the task tree 
2. while (ti not empty) do 
3.     if f(ti) = 𝜙 (ti is a terminal node) then 
4.          T1i = {tk / tk belongs to the path that goes from the root t1 to the node ti} 
5.          S1i = {sj / tk  ∈ T1i  ,  h(tk) = Sk  ,   sj  ∈ Sk } (skills sj of all tasks tk in T1i)  
6.          request the activation of the set of skills S1i 
7.          request the execution of action ai = g(ti) 
8.          while (action ai is running) do 
9.              check conditions of event handlers 
10.              if (event handler e satisfies its condition) then  
11.                   interpret the requests of handler e 
12.      ti  ← next task of ti  

 

The event-driven strategy is described in line 9 where event handlers are checked. We 
assume that when more than one handler condition holds in a given instant, the conflict is 
solved selecting the first handler according to the order they present in the specification. 
This gives to the operator the possibility to establish priority orders. Line 11 corresponds 
to the interpretation of the requests of the handler. As a consequence of this interpretation 
it is possible to: request additional skills to be active, request additional actions to be 
done, and/or change the execution flow (abort mission, abort task, jump to task, etc.).  
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Figure 3: Block diagram of the processes used to execute mission plans formulated in TML language.  

 

5.1.2. Verification of mission plans 

The interpreter of TML language verifies the mission plan before the plan is executed. 
This is important to increase the degree of robustness and safety, avoiding the execution 
of incorrect plans. For example, TML performs the validation of the language, which 
corresponds to the lexical, syntax and semantic validation of the mission specification 
according to the grammar defined for the TML language.  
 
In addition to language validation, it is important to consider also the verification of the 
physical feasibility, which checks if the specified mission can be performed in practice 
considering constraints of the physical world (this validates, for example, that a point to 
reach is not too close to an obstacle or that the distance to cover is not too long for the 
capacity of the battery). To carry out the verification of physical feasibility it is necessary 
to use models that represent knowledge of physical laws and the environment. In our 
approach, we separate the verification of physical feasibility into (1) the verification of an 
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individual action, and (2) the verification of the complete mission taking into account the 
temporal evolution of the whole set of actions and skills.  
 
Section 5.2.3 describes how we verify an individual action using a constraint-based 
approach. The verification of the complete mission, taking into account the temporal 
evolution, is a procedure that requires more complex models [Rothwell, et al., 2013; 
Humphrey, et al., 2014]. Figure 4 shows an example of an experimental representation 
that we used to explore how to verify the temporal verification of plans. The example 
shows a logic-based representation using event calculus. Here, a TML plan is 
automatically translated into a logic representation. This representation also includes 
logic axioms about physical reasoning. Then, a reasoning tool uses logic inference to 
evaluate if the plan is feasible.  
 

 

HoldsAt (InAir (robot), t) ∧ HoldsAt (StandingOn (robot,xyz1), t) ∧ 

HoldsAt(MaxVelocity (robot,velocitymax), t) ∧ 

HoldsAt(DistanceOneToTwo(xyz1,xyz,distance), t) ∧ 

HoldsAt(MoveOk(robot,distance), t) ∧ HoldsAt(ObstacleOk(robot,xyz1,xyz),t) ∧ 

Happens(MoveTo(robot,xyz,velocity),t) ∧ velocity ≤ velocitymax 

 → Terminates(MoveTo(robot,xyz,velocity), Stabilize(robot), t) 
 

Figure 4. Example of logic based representation using event calculus. 

To analyze the adequacy of this approach in aerial robotics, we used DEC reasoner, a 
software tool for discrete event calculus [Mueller, 2004; Mueller, 2014]. A problem of 
this solution is that it needs important computational resources, which could be 
acceptable only in some specific cases, before the actual execution of the mission plan. 
 
An alternative to the previous solution for temporal verification is the use of physical 
simulators. In this case, a simulator executes virtually the mission plan (under certain 
environmental assumptions) and an evaluator process verifies if the mission is carried out 
correctly. The environmental assumptions can be divided in several possible scenarios 
and the simulation can be repeated for all of them. We believe that this simulation-based 
alternative is a possible solution to be used in the future, due to the availability of 
reusable specialized software components in robotics for simulation and the increasing 
computational power. 

5.2. Executive processes 

To coordinate the correct execution of the actions requested from the mission plan 
interpreter, we designed a set of executive processes. These processes create a separation 
between two representation levels:  
 
• The symbolic level, where the mission goals are described with intuitive and more 

abstract symbols (actions, skills and events), and  
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• The execution level, where the goals are described with concepts that are near the 
execution, using technical details (e.g., executable commands, running processes, 
quantitative references, etc.). 

 
This separation is important to have a more intuitive language for the operator that 
abstracts programming details and simplifies the way the mission is described in TML 
language. The following sections describe the executive processes in more detail. 

5.2.1. The action interpreter 

The action interpreter accepts requests to execute actions and translates them into 
descriptions at the execution level. In particular, the action interpreter performs the 
following main functions: 

• Translate requested actions (e.g., take off, move to a point, etc.) into specific 
execution level commands and quantitative references. 

• Translate desired active skills (e.g., active the interpretation of Aruco visual 
markers) into running processes.  

• Guarantee the consistency of requested actions and skills.  
 

The action interpreter verifies if a request to active a skill is compatible with previous 
skill requests. If it is compatible, the action interpreter approves the request and 
memorizes it (the skill is not activated yet). Otherwise, the action interpreter rejects the 
request indicating incompatible previous requests. The interpreter of mission plans can 
request additional skills, one by one. Then, the interpreter of mission plans can request an 
action to be performed that is translated by the action interpreter into quantitative 
references and a command that includes the executable command to be done with the 
processes that need to be running.  

5.2.2. The action monitor 

The action monitor supervises the correct execution of initiated actions and detects if they 
have finished successfully or they have failed. For example, if the requested action is to 
go to a certain point, the action monitor verifies periodically the distance between the 
robot and the destination point and, when the distance is less than a threshold (established 
by a configuration parameter), the action monitor notifies that the behavior has been 
completed. 

5.2.3. The action specialist 

The action specialist verifies the physical feasibility of actions. This is useful to 
anticipate if a tentative action is feasible, according to the current situation. For example, 
the action specialist can verify in advance that a certain spatial point is too far to be 
reached, considering the current charge of battery.  
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The action specialist verifies the physical feasibility of individual actions using a 
constraint-based representation. This approach uses the following elements: 
• Variables {xi} represent the dynamic values of physical references and magnitudes 

(e.g., destination point, current charge of battery, etc.).  
• Parameters {ki} represent constant values for physical magnitudes related to the 

performance of the robot such as maximum speed, battery consumption rate of the 
vehicle, etc. Parameters can be divided into vehicle-independent parameters (general 
for any kind of vehicle, based on common sense knowledge about aerial robotics) or 
vehicle-specific for each type of vehicle.  

• Functions {fi} represent spatio-temporal and motion functions (see Table 2) such as 
the length of a trajectory, distance to the closest obstacle, maximum distance covered 
with certain battery charge, required speed to reach a point at certain time, etc.  

• Constraints {ci} are conditions about the robot and the physical world that must be 
satisfied.  

 

Table 2. Example functions used in the verification model. 

Function Description 

Distance(x, y) Distance from point x to point y 

DistanceBattery(x, y) Maximum distance covered with battery charge x and consumption rate y 

DistanceObstacle(x) Distance from point x to the closest obstacle 

Length(x) Length of trajectory x 

Speed(x, y, z) Required speed to departure from point x and arrive at point y at time z 

Trajectory(x, y) Trajectory from point x to point y (generated by a trajectory planner) 

 
For example, consider the following three conditions: the destination point must be safe 
from obstacles, there must be enough battery for the movement, and the destination point 
must be reachable at an acceptable speed. This can be represented with the following 
three constraints: 
 

c1: DistanceObstacle(x2) > k2 

c2: Length(Trajectory(x1, x2)) < DistanceBattery(x3, k1) 
c3: Speed(x1, x2, x4) < k3 

 
where the variable x1 is the current point, x2 is the destination point, x3 is the current 
battery charge, and x4 is the planned time of arrival to the destination; and the parameter 
k1 is the battery consumption rate, k2 is the minimum free acceptable space between 
obstacle and vehicle, and k3 is the maximum speed of the vehicle.  
 
The proposed representation can be used to verify the feasibility of individual actions in 
the following way. For a given action, the verification procedure reviews the set of 
constraints that correspond to categories to which the given action belongs. For example, 
there is a set of constraints for actions related to rotation motions, another set of 
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constraints for actions related to translation motions, etc. This type of model is generic to 
be reusable for different physical platforms and scalable to include more constraints in 
the future. The robot-specific parameter values must be manually calibrated (or 
automatically obtained with machine learning methods) for each type of vehicle. 
 
The action specialist is also able to predict physical magnitudes of certain actions such as 
expected required time, expected distance to cover, amount of battery to consume, 
required free space, etc. It is important to know, that this estimation is approximate, i.e. it 
is done using inexact models and help to find more efficiently the solution, anticipating 
certain clear solutions.  

5.2.4. The event detector 

The event detector identifies the presence of significant events to be used by the mission 
plan interpreter. For example, the event detector reads the outputs of perception 
algorithms (e.g., recognition of visual markers) and generates symbolic descriptions of 
events. The TML interpreter uses these descriptions and reacts to them according to the 
event handlers of the mission. 
 

5.2.4. The event publisher 

The event publisher implements a multi-robot communication method based on events. 
The objective of the event publisher is to determine if an event that has been recognized 
by a robot must be sent to other robots. Algorithm 2 describes in detail how this 
communication process works with the event publisher in combination with the event 
detector.  

 
Algorithm 2. Multi-robot communication based on events 
1. let R = {R1, …, Rn} the set of robots of the system 
2. for each robot Ri ∈ S do 
3.      robot Ri analyzes the environment with the event detector Di  
4.      if (event detector Di identifies a local event ei) then 
5.          robot Ri analyzes event ei with the event publisher Pi 
6.          if (event publisher Pi decides to publish ei for robots S = {Rk},  k ≠ i)  then 
7.               publish event ei for robots S = {Rk} 
8.      for each event ej published by another robot Rj, j ≠ i do 
9.          robot Ri analyzes event ej with the event detector Di 
10.          if (event detector Di decides that ej is relevant for robot Ri)  then 
11.                     Di creates a new local event ej’ for Ri  
 
According to this algorithm, in a particular situation, a robot Ri may analyze the 
environment using the event detector Di to identify a local event ei. Then, the event 
publisher Pi of robot Ri may determine that this detected event must be sent to a set of 
robots S = {Rk},  k ≠ i. This decision is based on the category of the event ei and the 
social model of robot Ri. On the other hand, if robot Ri receives a public event ej detected 
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and published by robot Rj, the detector Di of robot Ri analyzes ej to determine whether this 
event is relevant for robot Ri or not. If ej is relevant, the event detector Di creates a new 
local symbolic event ej’ for robot Ri to be processed by the interpreter to react according 
to the event handlers of the mission specification. The experiment described at the end of 
this paper shows an example of this multi-robot interaction where the event is related to 
the recognition of a searched subject. 

5.3. Aerostack interface 

Aerostack [Sanchez-Lopez et al., 2016; 2017] supports the detailed execution of TML 
plans and the operation with aerial platforms. The executive processes of the TML 
interpreter interact with Aerostack to use functionalities related to perception, commands 
at the execution level, specialized planning tasks (e.g., trajectory planning) and 
communication with the operator and with other robots. The interaction with Aerostack is 
done based on the inter-process mechanisms provided by ROS (Robot Operating 
System). 
 
We integrated the TML interpreter and the executive processes in Aerostack as additional 
open-source components of the Aerostack library. The integration with Aerostack was 
important to satisfy certain practical requirements. For example, since Aerostack is a 
software framework platform independent, the TML implementation also has this 
property. Only certain platform-dependent parameters must be calibrated for each type of 
vehicle. Aerostack also provides flight proven motion controllers and computer vision 
algorithms that provide the required efficiency for the TML execution to be used in real 
flights. 

6. Experimental Evaluation 

TML language has been tested in real flights using different mission cases with various 
degrees of complexity and with several interacting robots. Some examples are the 
following: 

• We used TML to represent complex missions corresponding to recent 
competitions in aerial robotics, such as the indoor competition of IMAV 2016 
[Molina et al., 2016]. These experiments proved that TML has an adequate level 
of expressivity to formulate adaptive mission plans to operate in dynamic 
environments. In addition, TML showed scalability to accept new actions and 
events for the different missions, keeping the basic design of the interpreter. 

• We used TML as a language for our students in our university to learn practical 
aerial robotics. This experience showed that TML was an easy language to learn 
and use. Besides the members of our own research group, other users of 
Aerostack have operated with aerial robots with TML in their own projects and 
they have reported the correct operation of the language to formulate mission 
plans.  
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Figure 5: Demonstrative mission where two drones search in an autonomous flight for a hidden 
subject in a spatial area with unknown obstacles. Visual markers (ArUco) are used by the drones for 

self-positioning, obstacle detection and subject detection. 

This section describes an experiment based on a representative example of a mission 
execution to demonstrate and illustrate the capabilities of TML. The experiment 
described here is based on a search and rescue mission. 

6.1. Mission Set-up 

In this mission, several autonomous drones depart from a rescue equipment base to 
search for a subject. The rescue equipment operators have previously defined the regions 
where they wanted the drones to search for the subject, so each drone covers a different 
search area. The drones autonomously navigate to these areas avoiding collisions with 
obstacles and with other drones in narrow areas. Once a drone detects the subject, it lands 
to stay with the subject and the other drones return to rescue equipment base.  
 
To carry out the experiment, we used two physical platforms AR Drone 2.0. More drones 
and other platforms can be used in this mission, but since they have the same TML 
representation, two drones is enough to illustrate the TML operation in a multi-robot 
system and this simplifies the practical execution of the experiment. We also used two 
Unix based laptops, with Wi-Fi and Ethernet connection. The two laptops were connected 
in a LAN using the Ethernet interface and a switch. Every aerial platform was 
individually connected to an associated laptop by means of a Wi-Fi connection.  
 
We defined the mission with robots that use visual markers (ArUco markers) to detect 
obstacles and the searched subject. We used these markers also for simplicity although 



   

 

19 

other methods for localization and mapping could be also used. In more detail, the 
mission is as follows: 
• Two drones take off at the same time from one side of the spatial area. 
• Each drone covers a different search area defined with an origin point and a 

destination point. 
• Unknown obstacles are present and each drone must detect them and avoid them. In 

addition, each drone must avoid collisions with the other drone. The drones must 
cross narrow areas and they must decide how to enter in the appropriate order to 
avoid collisions between them. 

• When a drone recognizes the presence of the subject, it sends a message to the other 
drone, which returns home and land. 

• The drone that finds the subject lands to stay near the subject. 
 

 
 

Figure 6: Example of the Aerostack user interface showing dynamically the movement of one of the 
two drones. The red line shows a planned trajectory. The black line corresponds to the actual flight. 

6.2. Results 

As a first result, the experiment shows that TML language was expressive to represent 
this aerial mission. Appendix A shows the complete specification in TML language for 
this mission. During the preparation of the mission, the experiment also demonstrated 
that the interpreter was able to verify correctly the language to identify wrong 
descriptions and explain adequately the detected errors to the operator. 
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6.2.1. Multi-robot operation  

 

Figure 7: Complete trajectories carried out by both drones. They are performed during the same 
mission but, for the sake of clarity, we present them here separately here in two parts.  

Figure 7 shows the trajectories followed by the two drones. Drone A and drone B move 
from their starting point to the destination point. Drone B crosses the entrance before 
drone A (step 1 in the figure). In its way, drone A has to wait until drone B crosses the 
narrow entrance (step 2 in the figure). The figure shows several red lines, corresponding 
to the tentative trajectories generated by drone A before crossing. Then, drone A 
recognizes the subject (step 3). This event is sent to drone B that starts returning home 
(step 4). Finally, Drone B arrives home and lands (step 5). Note that the global behavior 
of this multi-drone system is an emergent behavior that is not explicitly programmed, but 
it is a consequence of the interaction between drones and with the dynamic environment. 
 
The experiment illustrates how the interaction between several drones can be managed 
through the use of event handlers in TML. In this experiment, the TML mission includes 
the following event handler: 
 
    <event name="Subject recognized by other drone"> 
      <condition parameter= "RECOGNIZED_ARUCO_MARKERS_BY_OTHERS" 
                 comparison="includes" value="2" /> 
      <termination mode= "NEXT_TASK" /> 
    </event> 

 
Here, the parameter RECOGNIZED_ARUCO_MARKERS_BY_OTHERS is a parameter whose value is 
generated by the event detector by reading messages received from other drones.  

6.2.2. Performance of the execution 

In the example presented here, our system was running on two computers: (1) computer 
A with an Intel I7-6560U (2.20 GHz, 4 cores) and 16 GB of memory and (2) computer B 
with Intel i7-4700HQ (2.4 GHz, 4 cores) and 4 GB of memory. Aerostack uses 
asynchronous multitasking, where different processes run concurrently, with inter-
process communication provided by ROS. In this example, one single aerial robot was 
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operated with 31 processes executed simultaneously and the ROS messages were 
published on 67 different ROS topics.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Example of inter-process communication developed in the experiment. 

Figure 8 shows part of the inter-process communication between some processes in the 
experiment. This example shows only a few messages for illustrative purposes (the 
complete experiment includes a number near 1000 messages). The example shows, for 
example, how the mission plan interpreter sends messages to the action interpreter. The 
example also illustrates how the event corresponding to the subject detection triggers the 
landing action by the interpreter. In the figure, the time stamps indicate (in seconds) the 
delay of the sequence of messages. Even with this amount of processes and information 
exchanged, the solution worked fluidly and efficiently in real time. 

7. Conclusions 

In this paper, we have presented TML, a computer language that we designed to specify 
mission plans for aerial robots in the software framework Aerostack. TML shares some 
representation characteristics with other languages for mission plan specification (e.g., 
task trees and actions) but it also uses an original combination of representations easy to 
use and more adaptive to changes in dynamic environments (e.g., skills, and rule-based 
reactive planning).  
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Ac/on		
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...	 ...	 ...	

...	

Event	
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Command	Ack		

Command	Ack		

Command	Ack		

...	

...	...	 ...	

...	...	 ...	
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We reviewed other proposals for mission plan specification in robotics. However, we 
found that they were insufficient for our needs in Aerostack because either (1) they use 
representations that are not adequate for dynamic environments (e.g., waypoint lists), or 
(2) they are theoretical approaches or partial prototypes that have not fully demonstrated 
their practical utility in aerial robotics. In contrast, TML has shown its applicability and 
practical utility in real flights of aerial multi-robot missions in dynamic environments. 
 
Another important contribution of TML language is that it is part of an active open-
source project. In consequence, its interpreter is freely available to be used by the 
community of developers in robotics. As a result of the literature review in this field, we 
have not found any other active open-source project with a similar capability to TML for 
dynamic environments to be used in aerial robotics.  
 
Since TML is part of the Aerostack, we plan to generate periodically new releases of this 
specification language with improvements and extensions. For example, we plan to 
extend TML with additional actions and skills for aerial robotics. Based on the intuitive 
hierarchical structure of mission plans provided by TML, we also plan to design and 
build a graphical user interface to facilitate the creation of mission plans by manipulating 
graphical objects.  
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Appendix A.  Mission Specification in TML Language 

This appendix shows the complete mission plan specification in TML language that we 
used for the experiment presented in this paper. 
 
<mission name="Search and rescue"> 
   
  <task name="Prepare departure"> 
    <skill name="RECOGNIZE_ARUCO_MARKERS"/> 
    <task name="Initial take off"> 
      <action name="TAKE_OFF" /> 
    </task> 
    <task name="Wait one second"> 
      <action name="WAIT"> 
        <argument name="duration" value="1"/> 
      </action> 
    </task> 
    <task name= "Adjust position at the initial point"> 
      <action name="GO_TO_POINT"> 
        <argument name="coordinates" value="(5.0, 7.5, 1.3)"/> 
      </action> 
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    </task> 
    <task name="Stabilize position"> 
      <action name="STABILIZE"/> 
    </task> 
    <task name="Memorize home base"> 
      <action name="MEMORIZE_POINT"> 
        <argument name="coordinates" label="HOME" /> 
      </action> 
    </task> 
  </task> 
   
  <task name="Search subject"> 
    <skill name="RECOGNIZE_ARUCO_MARKERS"/> 
    <skill name="AVOID_OBSTACLES"/> 
    <task name= "Go to point (5.0,1.5)"> 
      <action name="GO_TO_POINT"> 
        <argument name="coordinates" value="(5.0, 1.5, 1.3)"/> 
      </action> 
    </task> 
    <task name="Wait for 30 seconds"> 
      <action name="WAIT"> 
        <argument name="duration" value="30"/> 
      </action> 
    </task> 
  </task> 
   
  <task name="Complete search"> 
    <skill name="RECOGNIZE_ARUCO_MARKERS"/> 
    <skill name="AVOID_OBSTACLES"/> 
    <task name="Return to home base"> 
      <task name="Stabilize before turning"> 
        <action name="STABILIZE"/> 
      </task> 
      <task name="Turn 90 degrees"> 
        <action name="ROTATE_YAW"> 
          <argument name="orientation angle" value="90"/> 
        </action> 
      </task> 
      <task name="Stabilize before returning"> 
        <action name="STABILIZE"/> 
      </task> 
      <task name="Go to home base"> 
        <action name="GO_TO_POINT"> 
          <argument name="coordinates" label="HOME" /> 
        </action> 
      </task> 
      <task name="Final land"> 
        <action name="LAND"/> 
      </task> 
    </task> 
  </task> 
   
  <event_handling> 
     
    <event name="Subject recognized"> 
      <condition parameter="RECOGNIZED_ARUCO_MARKERS" 
                 comparison="includes" value="2" /> 
      <action name="LAND"/> 
      <termination mode="END_MISSION" /> 
    </event> 
     
    <event name="Subject recognized by other drone"> 
      <condition parameter= "RECOGNIZED_ARUCO_MARKERS_BY_OTHERS" 
                 comparison="includes" value="2" /> 
      <termination mode= "NEXT_TASK" /> 
    </event> 
     
  </event_handling> 
   
</mission> 
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