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Abstract

Transmembrane proteins (TMPs) are important drug targets because they are essential for 

signaling, regulation, and transport. Despite important breakthroughs, experimental structure 

determination remains challenging for TMPs. Various methods have bridged the gap by predicting 

transmembrane helices (TMHs), but room for improvement remains. Here, we present TMSEG, a 

novel method identifying TMPs and accurately predicting their TMHs and their topology. The 

method combines machine learning with empirical filters. Testing it on a non-redundant dataset of 

41 TMPs and 285 soluble proteins, and applying strict performance measures, TMSEG 

outperformed the state-of-the-art in our hands. TMSEG correctly distinguished helical TMPs from 

other proteins with a sensitivity of 98±2% and a false positive rate as low as 3±1%. Individual 

TMHs were predicted with a precision of 87±3% and recall of 84±3%. Furthermore, in 63±6% of 

helical TMPs the placement of all TMHs and their inside/outside topology was correctly predicted. 

There are two main features that distinguish TMSEG from other methods. First, the errors in 

finding all helical TMPs in an organism are significantly reduced. For example, in human this 

leads to 200 and 1600 fewer misclassifications compared to the 2nd and 3rd best method available, 

and 4400 fewer mistakes than by a simple hydrophobicity-based method. Second, TMSEG 

provides an add-on improvement for any existing method to benefit from.
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Introduction

Transmembrane proteins (TMPs) are involved in numerous essential processes within living 

organisms such as signaling, regulation, and transport1. About 20-30% of all proteins within 

* Corresponding author: Michael.Bernhofer@mytum.de. 

HHS Public Access
Author manuscript
Proteins. Author manuscript; available in PMC 2017 November 01.

Published in final edited form as:
Proteins. 2016 November ; 84(11): 1706–1716. doi:10.1002/prot.25155.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any organism have been estimated to be TMPs2,3. Many TMPs, especially G protein-coupled 

receptors (GPCRs), are primary drug targets4 and therefore of high interest.

TMPs cross the membrane bilayer with either transmembrane helices (TMHs) or beta-

strands. The latter are found in the outer membrane of Gram-negative bacteria, mitochondria 

and chloroplasts. They make up only about 1-2% of all proteins in Gram-negative bacteria5. 

We concentrated on the more common class of helical TMPs and will refer to these as TMPs 

in the following. TMPs can cross the membrane only once (single-pass) or multiple times 

(multi-pass). Due to the apolar and hydrophobic environment in the lipid bilayer, most of the 

amino acids found in TMHs are hydrophobic, and their orientation in the membrane (called 

TMP topology), can be discerned through Gunnar von Heijne's positive-inside rule6,7.

Despite their immense importance, and despite crucial experimental advances8-11, less than 

2% of the structures in the Protein Data Bank12 (PDB) are TMPs13-15. As membrane regions 

are typically not visible in high-resolution structures, TMHs are assigned to PDB structures 

by expert resources, most prominently the Orientations of Proteins in Membranes16 (OPM) 

database and the Protein Data Bank of Transmembrane Proteins17 (PDBTM).

Recent advances in experimental structure determination have benefited from advanced 

computational predictions of TMHs from sequence8,9. In the last 25 years, many such tools 

have been developed, ranging from simple algorithms based solely on hydrophobicity scales 

(e.g. TopPred18) to sophisticated uses of hidden Markov models (e.g. TMHMM19, 

HMMTOP20, Phobius21, and PolyPhobius22), neural networks (e.g. PHDhtm23,24, and 

MEMSAT325), and support vector machines (MEMSAT-SVM26). Arguably, the most 

important advance was the incorporation of evolutionary information from sequence profiles 

or multiple sequence alignments23,24. Consequently, almost all methods developed over the 

last decade are based on evolutionary information. A recent assessment applying strict 

evaluation measures showed that many methods perform well overall; the best are some 

recent methods27. Here, we show that a few simple ideas improve significantly over the 

state-of-the-art.

Material and Methods

Dataset TMP166: helical TMPs with known structures

We collected helical TMPs with known structures annotated in OPM16 and PDBTM17 

(releases 2013_07). Both databases use PDB12 chain identifiers. We mapped those PDB 

chains to their UniProtKB28 protein sequences using SIFTS29. We excluded all chimeric 

PDB chains, model structures, X-ray structures with >8Å, and those for which some TMH 

residues did not map gapless to UniProtKB sequences. This gave 1087 PDB chains from 

455 PDB structures (379 X-ray and 76 NMR structures).

UniqueProt30 reduced sequence-redundancy at HVAL>0 (the HVAL depends on alignment 

length and the percentage of pairwise sequence identity31). At this threshold no pair of 

proteins has more than 20% pairwise sequence identity for alignments of more than 250 

residues (see Rost 199932 for precise definitions). The result of this is our final data set 
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consisting of 166 non-redundant TMPs (called TMP166, Table S1, Supporting Online 

Material: SOM).

As the TMH annotations in OPM and PDBTM differed for some proteins, we associated 

TMH annotations from both databases with each sequence. The inside/outside topology of 

the non-transmembrane regions was assigned based on the ATOM coordinates and topology 

annotation from OPM (cf. Note S1 and Fig. S1, SOM). We considered re-entrant 

regions33,34 to be non-transmembrane due to their scarcity in the TMP166 dataset (only 15 

proteins with one or two re-entry regions each; Table S1, SOM).

Dataset SP1441: proteins with and without signal peptides

As signal peptides are often confused with TMHs and vice versa27, a second dataset was 

derived from the SignalP4.1 dataset35. This dataset contained UniProtKB sequences of 

soluble proteins and TMPs with and without signal peptide annotations. Note that these 

TMPs have no inside/outside topology annotations and many of their TMH annotations are 

not supported by experimental evidence.

The SignalP4.1 dataset was redundancy reduced twice using UniqueProt. First, all proteins 

similar to any of those in the TMP166 dataset were removed at HVAL>0. Second, the 

remaining proteins were redundancy-filtered at HVAL>0. The final dataset contained 1441 

proteins sequences (299 TMPs and 1142 soluble proteins, called SP1441; Table S2, SOM). 

477 of those had signal peptide annotations (25 TMPs and 452 soluble proteins).

Splitting the datasets

We split the combined TMP166 and SP1441 dataset into four subsets. We partitioned them 

in a way that all subsets have approximately the same distributions with respect to the 

number of soluble proteins and TMPs, protein sequences with and without signal peptides, 

and sequence lengths (Fig. S2, SOM).

We used the first three subsets to develop TMSEG in a three-fold cross-validation approach 

(cf. TMSEG training). The fourth split, the independent test set called BlindTest, was used 

only for the final performance evaluation, i.e. no parameter was optimized on that set. The 

BlindTest dataset contained 41 TMPs (from TMP166) with known structure and TMH 

annotations from OPM and PDBTM, and 285 soluble proteins from the SP1441 dataset. The 

74 TMPs from the 4th split of SP1441 (Table S2) were not included in the BlindTest dataset, 

because they lack sufficient experimental annotations. However, we used them for the signal 

peptide prediction performance analysis as we did not have curated signal peptide 

annotations for the TMPs from OPM and PDBTM.

Human proteome

We retrieved the human proteome, 20,196 protein sequences, from UniProtKB/Swiss-Prot 

(release 2015_03). We applied our TMSEG algorithm to the whole proteome to provide a 

summary of its TMP composition and to estimate run time.
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Dataset New12

Our original data sets had been based on the PDB release from July 2013, when this work 

began. Shortly before submission of the work in February 2016, i.e. 32 months later, we 

retrieved all TMPs added to OPM and PDBTM since July 2013. We removed all TMPs 

similar (HVAL>0) to proteins in data sets used previously (TMP166 and SP1441). Testing 

the pairwise similarity of the remaining TMPs we found that two pairs were similar 

(HVAL>0), but we decided to keep them due to their low HVAL. This resulted in 12 new 

TMPs (New12 dataset, Table S3, SOM) we used for additional testing. Although the 

statistical power of such a small set is very limited, these 12 constitute the entire addition of 

completely new structures from 2013/07 to 2016/02. Further, these or structurally related 

TMPs have most likely not been used to develop any method used for comparison.

Evaluation

As per-protein scores (correct classification as TMP or non-TMP), we compiled the 

sensitivity (percentage of observed TMPs predicted as TMPs) and the false positive rate 

(FPR: percentage of soluble proteins predicted as TMPs, Table 1). As per-TMH scores 

(correct identification and placement of TMHs), we compiled the precision (percentage of 

predicted TMHs that are correct), recall (percentage of observed TMHs predicted as TMHs), 

Qok and Qtop. Qok is the percentage of TMPs for which all TMHs are correctly predicted 

(Table 1). Qtop requires in addition to Qok correct topology predictions (in/out: Table 1). To 

resolve conflicts between OPM and PDBTM annotations, we chose whichever fit the 

prediction best. Note that while sensitivity and recall have the same formula, we used 

sensitivity in conjunction with TMPs and recall with TMHs to better distinguish between 

those scores in the text.

Each TMH was considered correctly predicted, if predicted and observed TMH ends were 

within five residues (Fig. S3, SOM), and if predicted and observed TMH overlapped by at 

least half of the length of the longer of the two helices. These two criteria are more stringent 

than those that have commonly been used (typically: overlap >3-5 residues anywhere 

between observed and predicted TMH36) and have recently led to re-evaluating TMH 

prediction methods27. None of our major conclusions changed upon applying values slightly 

different than five residues for the maximum allowed discrepancy between predicted and 

observed TMH ends (data not shown).

Error rates for the evaluation measures were estimated by bootstrapping37, i.e. by re-

sampling the population of proteins used for the evaluation 1000 times and calculating the 

sample standard deviation. Each of these sample populations contained 60% of the original 

proteins (picked randomly without replacement).

State-of-the-art methods

We compared TMSEG to the best methods27, namely to PolyPhobius22, MEMSAT325, and 

MEMSAT-SVM26. Like TMSEG, these methods also use evolutionary information to 

predict TMPs: MEMSAT3 and MEMSAT-SVM automatically generate position-specific 

scoring matrices (PSSMs) with PSI-BLAST, while PolyPhobius generates multiple sequence 

alignments (MSAs). To ensure equal conditions for all methods we ran them on our local 
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machines and used the UniProt Reference Cluster with 90% sequence identity (UniRef90, 

release 2015_03) as the homology search database, i.e. to generate the MSAs or PSSMs. 

While we used proteins completely unknown to TMSEG to assess its performance, some of 

the proteins used in our assessment might have been used to develop PolyPhobius, 

MEMSAT3, or MEMSAT-SVM. In this sense, our assessment was likely to over-estimate 

their performance, in particular with respect to TMSEG.

Baseline performance

We also compared all methods to a simple baseline predictor similar to TopPred18: for all 

possible segments of 21 consecutive residues we summed the Eisenberg-hydrophobicity38 

(EisenbergSum, Table S4, SOM). All non-overlapping segments with EisenbergSum≥4 were 

predicted as TMHs, starting with the segments with the highest sum. The inside/outside 

topology was predicted based on the difference between arginine and lysine residues on 

either side of the TMHs, i.e. applying Gunnar von Heijne's positive-inside rule6,7.

TMSEG input/output

TMSEG needs two input files to successfully run a prediction: a FASTA file with the protein 

sequence and a PSI-BLAST PSSM file for the input protein. The PSSM file is mandatory 

and used to include homology-based features that greatly increase the prediction accuracy.

Combining evolutionary information (e.g. PSSMs and MSAs) with machine learning has 

been the most important improvement in protein prediction and is commonly used in TMH 

and secondary structure prediction24,27,39,40. TMSEG incorporates evolutionary information 

through PSI-BLAST profiles41 generated from UniRef90 (release 2015_03). We used two 

sets of profiles: a training set with a stringent E-value cutoff of 10−5 and five iterations for 

creating the profile, as well as a test set with a less strict E-value cutoff of 10−3 and three 

iterations. We deactivated PSI-BLAST's low-complexity filter and enabled the option to 

calculate local optimal Smith-Waterman alignments in order to generate longer and more 

accurate alignments.

In addition, we used biophysical properties (charge, hydrophobicity, polarity; Table S4, 

SOM) and the overall amino acid composition. These features were calculated twice for 

each residue: once for all substitutions with a positive PSSM score and once based on all 

substitutions with a negative score.

The standard output gives a brief summary of the positions of the TMHs and signal peptide 

(if any) and the inside/outside topology. In addition, a raw output is available that also 

contains the unmodified output probabilities of the machine-learning tools.

TMSEG algorithm

TMSEG combines several machine-learning tools and empirical filters. The machine-

learning algorithms used are two random forests (RFs) and one neural network (NN), both 

of which are implementations from the WEKA Java package42. The output of these 

algorithms is further processed with empirically determined filters and thresholds. The 

TMSEG algorithm executes four separate steps (Fig. 1):
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Step 1: Initial per-residue prediction

An RF detects TMHs from the input sequence. This RF slides a window of 19 consecutive 

residues through the protein sequence, predicting whether or not the central residue in the 

window is in a TMH, signal peptide, or non-TM region, i.e. the probability of each residue 

for each state is calculated based on the residue itself and the nine residues left and right of 

it. For each of the 19 residue positions, we compute the PSSM profile. For the central nine 

residues in the window, we also compute the average Kyte-Doolittle43 hydrophobicity, and 

the percentage of hydrophobic, charged, and polar residues (Table S4, SOM).

In addition to these local features, we compile global features: the distance of the residue to 

the N- and C-terminus, the length of the protein sequence, and the global amino acid 

composition. The RF assigns three values to each residue corresponding to the probability to 

be in a TMH, a signal peptide, or a non-TM region. Runtime is decreased by multiplication 

of the probabilities by 1000 and transformation into integers.

Step 2: Per-protein filter: TMP or soluble

The per-residue scores are filtered empirically. First to reduce short peaks of one or two 

residues, all per-residue scores are smoothed by compiling the median score over five 

consecutive residues and assigning it to the center residue. Next, each residue is assigned to 

the state with the highest score (TMH, signal peptide, or non-TM). To prevent over-

prediction due to the under-sampling of signal peptide residues, we applied a penalty of 185 

(i.e. 18.5%) to non-TM and 60 (i.e. 6%) to TMH residues. These penalties were optimized 

during cross-training to best balance over- and under-prediction. Finally, TMHs shorter than 

seven residues are changed into non-TM regions. If a signal peptide of at least four 

consecutive residues is identified within the first 40 N-terminal residues ending in residue at 

position i, TMSEG predicts a signal peptide from residue 1 to residue i (i≤40). Signal 

peptide predictions outside the first 40 residues (i>40) are changed into non-TM, but do not 

invalidate signal peptides inside the first 40 residues. Initial predictions with fewer than four 

consecutive residues are changed into non-TM.

Step 3: Refinement of TMHs

In the third step an NN corrects the predicted TMHs. In contrast to the standard sliding 

window approach of the RF in Step 1, here we introduced a segment-based solution that 

used as input the following averages over the predicted TMHs: length of predicted TMH, 

amino acid composition, average hydrophobicity, as well as the percentages of hydrophobic 

and charged residues. The output of the NN is the predicted probability for the segment to be 

a TMH. Based on this probability, the predicted TMHs from Step 2 are adjusted.

First, TMHs≥35 residues are split into two TMHs with at least 17 residues, if these two 

TMHs increase the overall probability. The minimum length of 35 residues for splitting long 

TMHs and of 17 residues for the resulting two TMHs were empirically chosen based on the 

overall performance during cross-training. Second, the start and end positions for each TMH 

are adjusted by shifting them by up to three residues in either direction. Shifts are accepted if 

they increase the overall probability. The maximum endpoint adjustment by three residues 

was empirically chosen based on the overall performance during cross-training. In addition, 
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the relatively long minimum TMH lengths to allow splitting and the relatively small shift of 

maximally three residues of the TMH ends allow TMSEG to maintain a short runtime.

Step 4: topology prediction

Another RF predicts the inside/outside topology of the TMP, i.e. in which direction the 

TMHs cross the membrane. During this step the non-transmembrane regions are assigned to 

inside (e.g. cytoplasmic side of the membrane) or outside. This prediction is made for the 

entire protein. For each TMH, we consider up to 15 residues before and after the TMH, and 

eight residues at the TMH start and end (for TMHs<16 these residues overlap). As all 

predicted TMHs are assumed to cross the membrane, the in/out assignment is switched after 

each TMH. For each side, we compute as input to the RF the amino acid composition, the 

percentage of positively charged residues (we consider all arginine and lysine residues), and 

the absolute difference of positively charged residues between the two sides. Based on the 

RF output, one side is assigned to be inside (e.g. cytoplasmic), the other to be outside. 

Residues immediately after predicted signal peptides are assigned to outside (non-

cytoplasmic) and all consecutive segments are assigned accordingly without any further 

prediction.

TMSEG training

To reduce the risk of over-fitting, we split our combined TMP166 and SP1441 datasets into 

four even splits (cf. Table S1 and S2). Note that the TMPs from the SP1441 dataset were 

used to train the random forest in the initial prediction (step 1) as they contain signal peptide 

annotations. They are, however, not used for the neural network (step 3) or the random forest 

in step 4, since they have no inside/outside topology annotations and many of their TMH 

annotations are not supported by experimental evidence.

The first of three splits was used to train, the second to cross-train, i.e. to optimize all other 

free parameters (e.g. the minimum TMH length), and the last to evaluate performance (test). 

This procedure was repeated three times, such that each protein had been used exactly once 

for training, cross-training and testing. The final parameters were frozen according to the 

overall best performance for all three rotations (on the test set). Given the frozen parameters, 

we applied the final method to the fourth split, the BlindTest dataset, which had not been 

used before.

Our careful four-fold split leading to three-fold development (each with training, cross-

training, and testing), provided a double protection against overestimating performance. We 

decided about every detail in the final method before using the BlindTest dataset to evaluate 

TMSEG as presented here. Many developers use a two-fold split (training/testing), more 

careful ones the three-fold split (training/cross-training/testing), while the fourth split is 

occasionally introduced through pre-release data39 like the New12 dataset that we generated.

Results and Discussion

The novel TMSEG method introduced here distinguishes between proteins with 

transmembrane helices (TMHs) and soluble proteins. For all helical transmembrane proteins 

(TMPs), it predicts the placement of the TMHs, and their orientation in the membrane, i.e. 
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their inside/outside topology. We established sustained performance through cross-validation 

with two levels of blind testing. We compared our new methods to others, including the best 

at predicting TMPs27, namely PolyPhobius22 and MEMSAT-SVM26. Furthermore, we 

analyzed MEMSAT325 because it excels at the inside/outside topology prediction44, and 

SignalP4.1 as the leading method for signal peptide identification35. In addition, we 

compared to a simple hydrophobicity-based prediction similar to TopPred18.

Outstanding per-protein distinction between TMPs and other proteins

TMSEG correctly identified 40 of the 41 TMPs in the BlindTest dataset (98±2% sensitivity) 

and incorrectly predicted 8 of 285 soluble proteins as TMPs (3±1% false positive rate: FPR). 

TMSEG performed similar to PolyPhobius (100% sensitivity and 5±1% FPR) and 

significantly better than MEMSAT3 and MEMSAT-SVM (Table 2).

Although signal peptides can be confused with TMHs due to the similarity of their signal, 

only one of the 8 mistakes of predicting soluble proteins as TMPs originated from 

incorrectly predicting a signal peptide as a TMH. This shows that training on a dataset 

containing signal peptides helped significantly to reduce false positive predictions. 

PolyPhobius, which also includes a sophisticated signal peptide prediction, did not confuse 

any signal peptides with TMHs. However, MEMSAT-SVM, MEMSAT3, and the Baseline 

predictor had 13, 41, and 69 predicted TMHs, respectively, that overlapped by at least half 

their length with annotated signal peptides. Overall, TMSEG was able to reliably detect 

signal peptides and to not predict them as TMHs (Table S5, SOM).

We used the 74 TMPs from the 4th subset of the SP1441 dataset (cf. Table S2, SOM) to 

further test the prediction of signal peptides and TMHs. For these proteins, TMSEG and 

PolyPhobius incorrectly predicted several single-pass TMPs as soluble proteins, because 

they confused their TMHs near the N-terminus with signal peptides (Table S5, SOM). This 

trend did not occur with the TMPs from the TMP166 dataset (evident by their high 

sensitivity values; Table 2). An explanation might be that TMPs with TMHs within the first 

40 residues are more prevalent in the SP1441 dataset, which makes this misclassification 

more likely to happen. Although these misclassification rates would lower our previous 

sensitivity estimates for TMSEG and PolyPhobius (at least for single-pass TMPs with their 

TMH near the N-terminus), we hesitate to generalize the results to everyday applicability 

since the SP1441 dataset is biased (it was generated to develop the signal peptide predictor 

SignalP4.1) and contains many TMPs with a TMH near the N-terminus. Further, only 2 of 

the 9 TMHs that were incorrectly predicted as SPs had experimental evidence.

While all methods reached high sensitivity, they differed vastly in their false positive rates, 

i.e. soluble proteins incorrectly considered to contain TMHs (Table 2). By translating the 

error rates, the number of proteins that would be misclassified in the entire human proteome 

can be estimated using two reasonable assumptions: (i) the error estimates for all methods 

based on the 326 non-redundant proteins (41 TMPs and 285 soluble proteins) in the 

BlindTest dataset hold true for the (redundant) human proteome, (ii) the human proteome 

has 20,196 proteins and 4791 of those are TMPs (cf. Section below “Application to the 
human proteome”). Under these assumptions, TMSEG achieves 97% per-protein accuracy 

and misclassifies only about 558 human proteins. The 2nd best method, PolyPhobius, makes 
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770 mistakes (212 more than TMSEG) and MEMSAT-SVM as the 3rd best method already 

misclassifies 2253 proteins (1695 more than TMSEG, Table 2). In fact, TMSEG is almost 

8.8-times superior to the Baseline predictor, PolyPhobius over 6.5-times better, and 

MEMSAT-SVM 2.2-times better than the Baseline predictor (Table S6, SOM).

Best overall per-TMH prediction

Overall, TMSEG achieved a sustained level of precision (87±3%) and recall (84±3%) for the 

TMHs, i.e. 87±3% of all predicted TMHs were at the correct position and 84±3% of all 

observed TMHs had been accurately predicted (Fig. S4A and S4B, SOM). These values 

were second to no other method, however, only slightly above the 2nd best method 

MEMSAT-SVM (85±3% precision at 83±3% recall). All other methods had scores below 

80%. For 66±6% of all TMPs, TMSEG predicted all observed TMHs at their correct 

positions, i.e. Qok=66±6% (Fig. 2). MEMSAT-SVM followed as second best with 

Qok=61±7% (Fig. 2). Nevertheless, given the small data sets, the top performance of 

TMSEG remained within one standard deviation of all compared methods, except the 

baseline hydrophobicity prediction (Fig. 2: error bars).

When comparing the performance on TMP subsets based on the number of TMHs, the 

performance got worse the more TMHs a protein had (Fig. S4C and S4D, SOM). This might 

be misunderstood to imply that prediction methods perform better in placing the TMHs in 

single-pass TMPs than in, e.g. GPCRs (with 7 TMHs). However, this simple numerical 

comparison ignores the difference in the difficulty of the task: The Baseline predictor 

reached a high value in Qok for single-pass TMPs, but failed to predict all TMHs correctly 

for any TMP with more than 5 TMHs (Fig. S4C, SOM). In fact, when we simply compiled 

performance for the subset of proteins for which the Baseline predictor failed, we found 

similar values for proteins with one TMH, those with 2-5, and those with more than 5 TMHs 

(Fig. S5, SOM).

In contrast, it surprised us that even for the trivial cases, i.e. those for which the Baseline 

predictor had all TMHs correct, the more advanced methods failed for some of them. This 

suggests that the large number of different features used by the more advanced methods 

sometimes interfere with and obscure a strong hydrophobicity signal. Indeed, only 11 of the 

19 trivial TMPs were correctly predicted by all four other methods. However, TMSEG still 

performed best with Qok=89±6%, followed by MEMSAT3 and MEMSAT-SVM with 

Qok=84±7% (data not shown).

Best inside/outside topology prediction

TMSEG and MEMSAT3 correctly placed the N-terminus as inside (e.g. cytoplasmic) or 

outside (e.g. extracellular), i.e. correctly predicted the topology, for 93±4% of all TMPs 

(Table 2). When taking into account the global topology and correct TMH placement (i.e. 
Qtop), TMSEG performed better than all other methods reaching Qtop=63±6% (Fig. 2). This 

is five percentage points higher than the 2nd best method, MEMSAT-SVM (albeit still within 

one standard deviation). Most advanced methods predicted the topology correctly for almost 

all proteins for which they correctly predicted all TMHs (Qtop almost identical to Qok for all 

methods, except for the Baseline predictor in Fig. 2).
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Application to the human proteome

We applied TMSEG to predict all helical TMPs in the human proteome (20,196 proteins 

from UniProtKB/Swiss-Prot). TMSEG predicted a total of 5157 TMPs, almost half of these 

(2300 = 45%) were predicted with one TMH. Given the sensitivity and false positive rate of 

TMSEG (98±2% and 3±1%, respectively; Table 2), we estimate that 462 TMPs were 

incorrectly predicted (over-predicted) and 96 were missed (under-predicted). In total, we 

thus misclassified 558 proteins, and our corrected estimate was that humans have about 4791 

TMPs, i.e. about 24% of all proteins cross the membrane. While TMSEG misclassified 

about 558 human proteins, the mistake in the estimate of this percentage appeared to be less 

than a per-mille, i.e. ±0.01%. However, our error estimate might be too simplistic due to the 

high number of single-pass TMPs for which the error rates are much higher than for proteins 

with more TMPs.

Confirming previous observations2,3, we also observed two peaks of predicted TMPs for 

proteins with 7 TMHs (819 proteins) and 12 TMHs (189 proteins). These likely represent G 

protein-coupled receptors (GPCRs) and transporter proteins. Applying UniqueProt to the 

5157 predicted TMPs we found around 500 non-redundant TMPs of which 320 are single-

pass TMPs.

Latest experimental structures confirmed our estimates

The 12 new TMPs (New12 dataset) that have recently been added to the PDB constituted the 

only data set with truly identical conditions for all methods assessed. The New12 dataset 

allowed us to confirm the outstanding performance of our new method TMSEG. TMSEG 

and PolyPhobius correctly identified 10 of the 12 TMPs (83±10% sensitivity), while 

MEMSAT3, MEMSAT-SVM and the Baseline predictor identified 11 (92±7% sensitivity). 

However, TMSEG correctly predicted every TMH of those 10 TMPs, resulting in a 

Qok=83±10%, compared to Qok=58±13% for PolyPhobius, MEMSAT3, and MEMSAT-

SVM (Baseline predictor Qok=50±13%). TMSEG also performed best taking into account 

the topology prediction and reached Qtop=66±12%, compared to a Qtop=58±13% for 

MEMSAT3 and MEMSAT-SVM, and Qtop=50±13% for PolyPhobius and the Baseline 

predictor.

Comparisons complicated by small data sets

The two small datasets available for evaluation (BlindTest with 41 TMPs and New12 with 

12 TMPs) implied high standard errors for many performance estimates. Especially standard 

errors for the TMH-segment based scores are so high (up to 16 percentage points, Fig. S4, 

SOM) that comparisons between methods hardly provide statistically significant differences 

on the TMH-segment level. Nevertheless, TMSEG seemed to perform on par with any 

existing method. Note that the differences in the distinction between helical TMPs and other 

proteins in the BlindTest dataset were statistically significant even in considering TMSEG as 

slightly better than the 2nd best PolyPhobius (Table 2).

Further, we could not use a single gold standard, because OPM and PDBTM differed in their 

TMH annotations: comparing the OPM annotations to the PDBTM annotations (i.e. 
‘predicting’ one with the other) yielded Qok=56±7%. In other words, if we considered one of 
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those experiment-based annotations as the prediction of the other, the average performance 

would be similar to that of TMSEG and the other methods. When using only OPM or 

PDBTM annotations to evaluate the prediction performance, TMSEG still performed 

excellently (Fig. S6, SOM). However, this was also the only comparison in which one other 

method reached a numerically higher value for a data set than TMSEG, namely MEMSAT-

SVM on the PDBTM annotations. Overall, all predictions agreed more with OPM than with 

PDBTM annotations (Fig. S6, SOM).

Performance best with diverse alignments

TMSEG strongly depends on the evolutionary information taken from PSI-BLAST PSSMs. 

We recommend using a sufficiently large search database (e.g. UniRef90) to generate the 

PSSMs. Additionally, redundancy reduction might help (e.g. at 90% pairwise sequence 

identity as in UniRef90).

Alignments built from smaller search-databases (e.g. UniRef50 and Swiss-Prot) only slightly 

lowered the per-protein performance: the sensitivity never dropped below 90±4%, while the 

false positive rate remained at or below 3±1%. However, the TMH-based precision and 

recall values dropped substantially (Fig. S7, SOM). Thus, for sequences that produce no 

PSI-BLAST hits, we recommend using a larger search database or – in the rare case that the 

protein is a true singleton – a method that is independent of evolutionary information, e.g. 
Phobius21,27.

Re-entrant membrane helices not predicted correctly

Our dataset contained only few re-entrant helices, insufficient to learn their prediction (Table 

S1, SOM). Therefore, we considered re-entrant helices as non-TM during training to avoid 

later interference with the inside/outside topology prediction. Due to the lack of data we 

could not reliably assess how well TMSEG distinguishes TMHs from re-entrant membrane 

helices: The BlindTest dataset included only seven re-entrant regions (OPM and PDBTM 

annotations combined). TMSEG incorrectly predicted 5 of 7 as TMHs; 2 of these 5 were 

predicted as two separate TMHs, thus the overall inside/outside topology was not 

influenced. MEMSAT-SVM, the only tested method that predicts re-entrant helices, 

identified 5 of the 7 as re-entrant, predicted one as a TMH, and missed the last. When 

considering re-entrant regions as TMHs, Qok remained the same for TMSEG and 

PolyPhobius and dropped by 2-5 percentage points for MEMSAT-SVM, MEMSAT3, and 

the Baseline predictor.

TMSEG easily combined with other methods

Due to the modularity of TMSEG (i.e. its four separate steps, Fig. 1), it can be used to refine 

other methods. This includes the adjustment of the TMHs as well as the inside/outside 

topology prediction. We used the TMH predictions of the reference methods, and applied 

steps 3 and 4 of TMSEG to their prediction (Fig. 2). Applying TMSEG as refinement 

improved the performance for most methods (Fig. 3; Fig. S8, SOM). While the improvement 

was small for the TMH placement (Qok), TMSEG improved most methods by over eight 

percentage points in Qtop (correct TMHs and topology).
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Runtime estimation

We estimated the runtime by applying TMSEG to the human proteome (20,196 proteins). As 

the time to run PSI-BLAST differs depending on the database size, we decided to use pre-

computed PSSMs to measure only the time needed by TMSEG. Given those PSI-BLAST 

profiles, the prediction for the entire human proteome took about 90 minutes (Intel Core 

i7-3632QM 2.2GHz, 8GB RAM; no multithreading), which corresponds to three to four 

protein sequences per second.

Conclusion

In our hands, our new method TMSEG almost always outperformed existing state-of-the-art 

prediction methods (Table 2, Fig. 2). However, due to the small data sets, many 

improvements on the per-TMH level remained too small for the large margin of statistical 

significance (standard errors up to 16 percentage points, Fig. S4, SOM). Most importantly, 

TMSEG achieved the significantly best per-protein classification in the distinction between 

helical TMPs and all other proteins. For instance, for the prediction of all human proteins, 

this implied about 558 incorrectly predicted proteins. This number might appear high, 

however, no method tested reached such a low level, e.g. PolyPhobius misclassified about 

200 more proteins than TMSEG and MEMSAT-SVM fared about four times worse 

(corresponding to over 2000 incorrect predictions).

The highest per-protein performance resulted from a combined prediction of TMHs, non-

TM regions, and signal peptides. In order to predict re-entrant helices, another state would 

have to be introduced; as is, TMSEG predicted 5 of 7 re-entrant helices in our data set as 

TMHs. The sustained high levels of per-segment predictions resulted from our new segment-

focused algorithm. Another major advantage of our new concept is that it can be used to 

improve the predictions of most other TMH prediction methods.

Availability and speed

Other than its top performance, using TMSEG may also be recommended due to its speed 

and because it might help to improve over the method that you run locally. The method is 

easily and freely available: online through the PredictProtein45 webserver 

(www.predictprotein.org), and as standalone Debian package from the Rostlab Debian 

repository (www.rostlab.org/owiki) and GitHub (www.github.com/Rostlab/TMSEG). A 

tutorial on how to use PSI-BLAST and TMSEG can be found in the Rostlab Wiki 

(www.rostlab.org/owiki/index.php/TMSEG).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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3D three-dimensional

GPCR G protein-coupled receptor

NN (artificial) neural network

OPM Orientations of Proteins in Membranes

PDB Protein Data Bank
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RF random forest

TMH transmembrane alpha-helix

TMP transmembrane protein
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Fig. 1. TMSEG algorithm
The new method TMSEG has four steps of machine learning and optimization. Step 1: A 

random forest (RF) assigns a score to each residue for the three states transmembrane helix 

(TMH), signal peptide, and non-TM region. Step 2: The previous scores are smoothed 

(median over 5 residues), all residues are assigned to the state with the highest score, and 

short segments are removed. Step 3: A segment-based neural network (NN) adjusts the 

exact position of predicted TMHs, and their length, sometimes splitting TMHs, sometimes 

shifting, extending, or compressing them. Step 4: The inside/outside topology is predicted 

by another RF.
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Fig. 2. TMSEG compared favorably to state-of-the-art
Results are provided for all 41 TMPs in the BlindTest dataset. Error bars are the sample 

standard deviation based on bootstrapping (cf. Methods). Shown is on the left the percentage 

of proteins for which all TMHs were predicted correctly (Qok, Table 1) and on the right the 

percentage of proteins with correctly predicted TMHs and inside/outside topology (Qtop, 

Table 1; note that Qok≥Qtop by definition).
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Fig. 3. TMSEG applied to refine other methods
The TMSEG algorithm iteratively refines performance through four consecutive steps. Here, 

we applied steps 3 and 4 as post-filters to other methods (data set and error bars as in Fig. 2). 

Given is the improvement of Qok and Qtop (cf. Table 1 for definitions) of the prediction 

method by applying TMSEG, i.e. Q(method+TMSEG) – Q(method). Note that PolyPhobius 

(1st bar on the left) and MEMSAT-SVM (3rd bar on the left) showed, on average, no 

improvement in Qok.
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Table 1
Evaluation measures

Listed are the evaluations measures used and how they were calculated. Precision and recall for the 

performance evaluation of the TMH prediction were computed by combining all TMHs within the dataset (i.e. 
not averaged over each protein). Qok and Qtop were calculated based on all TMPs, where N was the number of 

TMPs in the dataset, pi and ri were the TMH precision and recall for protein i within the dataset, and ti = 100% 

indicated a correctly predicted N-terminal inside/outside topology for protein i.

Measurement Formula Description

Precision (%) 100 ∗ # o f correctly predicted TMHs
# o f predicted TMHs

Precision of TMH prediction

Recall (%) 100 ∗ # o f correctly predicted TMHs
# o f observed TMHs

Recall of TMH prediction

Qok (%) 100
N ∗ ∑i = 1

N xi; xi =
1, i f pi = ri = 100 %

0, else

Percentage of TMPs with correct TMH placement

Qtop (%) 100
N ∗ ∑i = 1

N yi; yi =
1, i f pi = ri = ti = 100 %

0, else

Percentage of TMPs with correct TMH placement and inside/
outside topology

FPR (%) 100 ∗ # o f incorrectly predicted TMPs
# o f soluble proteins

False positive rate of TMP prediction

Sensitivity (%) 100 ∗ # o f correctly predicted TMPs
# o f observed TMPs

Sensitivity of TMP prediction
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Table 2
Per-protein distinction between helical TMPs and other proteins

Results are provided for all 41 TMPs and 285 soluble proteins in the BlindTest dataset. Error rates are the 

sample standard deviation based on bootstrapping (cf. Methods). Listed are the TMP sensitivity (percentage of 

correctly predicted helical TMPs), the TMP FPR (percentage of non-TMP proteins incorrectly predicted as 

TMP), Topology correct (percentage of proteins for which the topology (inside/outside) was correctly 

predicted; this differs from Qtop which requires topology and all TMHs to be predicted correctly), 

Misclassified in human (estimates the number of proteins misclassfied for the entire human proteome), and 

More mistakes than TMSEG in human (estimates the number of proteins misclassfied more by the method 

than by TMSEG). The estimates for the human proteome are based on two assumptions: (i) the error estimates 

on the BlindTest dataset hold true for the human proteome, (ii) the human proteome has 20,196 proteins, 4791 

of which are TMPs (cf. Results section “Application to the human proteome”).

Method TMP sensitivity TMP FPR Topology correct Misclassified in human More mistakes than TMSEG in 
human

TMSEG 98 ± 2 3 ± 1 93 ± 4 558 -

PolyPhobius22 100 ± 0 5 ± 1 78 ± 7 770 212

MEMSAT325 100 ± 0 28 ± 2 93 ± 4 4,313 3,755

MEMSAT-SVM26 98 ± 2 14 ± 2 88 ± 5 2,253 1,695

Baseline 95 ± 3 31 ± 2 75 ± 7 5,015 4,457
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