
 Open access Journal Article DOI:10.1109/TSE.2015.2496939

To Be Optimal or Not in Test-Case Prioritization — Source link

Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang ...+2 more authors

Institutions: Peking University, University of Illinois at Urbana–Champaign

Published on: 01 May 2016 - IEEE Transactions on Software Engineering (IEEE)

Topics: Modified condition/decision coverage, Regression testing, Test case and Greedy algorithm

Related papers:

 Prioritizing test cases for regression testing

 Search Algorithms for Regression Test Case Prioritization

 Test case prioritization: a family of empirical studies

 Regression testing minimization, selection and prioritization: a survey

 Test case prioritization: an empirical study

Share this paper:

View more about this paper here: https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-
1woyj1zull

https://typeset.io/
https://www.doi.org/10.1109/TSE.2015.2496939
https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull
https://typeset.io/authors/dan-hao-4uyjyq5x4o
https://typeset.io/authors/lu-zhang-1p87plrgpe
https://typeset.io/authors/lei-zang-51cdqps4jg
https://typeset.io/authors/yanbo-wang-2mw6z7am20
https://typeset.io/institutions/peking-university-10cwb2i2
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/journals/ieee-transactions-on-software-engineering-26rjzvlm
https://typeset.io/topics/modified-condition-decision-coverage-2xhj5x22
https://typeset.io/topics/regression-testing-2zts9jez
https://typeset.io/topics/test-case-7ehjd9bt
https://typeset.io/topics/greedy-algorithm-1hlr1l7y
https://typeset.io/papers/prioritizing-test-cases-for-regression-testing-2ivvtua4s1
https://typeset.io/papers/search-algorithms-for-regression-test-case-prioritization-3bat778mq6
https://typeset.io/papers/test-case-prioritization-a-family-of-empirical-studies-5d19ow5fgj
https://typeset.io/papers/regression-testing-minimization-selection-and-prioritization-2jcw8ad6lp
https://typeset.io/papers/test-case-prioritization-an-empirical-study-59kqhlxep3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull
https://twitter.com/intent/tweet?text=To%20Be%20Optimal%20or%20Not%20in%20Test-Case%20Prioritization&url=https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull
https://typeset.io/papers/to-be-optimal-or-not-in-test-case-prioritization-1woyj1zull

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

To Be Optimal Or Not in Test-Case Prioritization

Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, Tao Xie

Abstract—Software testing aims to assure the quality of software under test. To improve the efficiency of software

testing, especially regression testing, test-case prioritization is proposed to schedule the execution order of test cases

in software testing. Among various test-case prioritization techniques, the simple additional coverage-based technique,

which is a greedy strategy, achieves surprisingly competitive empirical results. To investigate how much difference there

is between the order produced by the additional technique and the optimal order in terms of coverage, we conduct

a study on various empirical properties of optimal coverage-based test-case prioritization. To enable us to achieve the

optimal order in acceptable time for our object programs, we formulate optimal coverage-based test-case prioritization as

an integer linear programming (ILP) problem. Then we conduct an empirical study for comparing the optimal technique

with the simple additional coverage-based technique. From this empirical study, the optimal technique can only slightly

outperform the additional coverage-based technique with no statistically significant difference in terms of coverage, and

the latter significantly outperforms the former in terms of either fault detection or execution time. As the optimal technique

schedules the execution order of test cases based on their structural coverage rather than detected faults, we further

implement the ideal optimal test-case prioritization technique, which schedules the execution order of test cases based

on their detected faults. Taking this ideal technique as the upper bound of test-case prioritization, we conduct another

empirical study for comparing the optimal technique and the simple additional technique with this ideal technique. From

this empirical study, both the optimal technique and the additional technique significantly outperform the ideal technique

in terms of coverage, but the latter significantly outperforms the former two techniques in terms of fault detection. Our

findings indicate that researchers may need take cautions in pursuing the optimal techniques in test-case prioritization

with intermediate goals.

Index Terms—Test-Case Prioritization, Integer Linear Programming, Greedy Algorithm, Empirical Study.

✦

1 INTRODUCTION

Regression testing is an expensive task in soft-
ware maintenance. For example, the industrial
collaborators of Elbaum et al. [1], [2] reported
that it costs seven weeks to execute the entire
test suite of one of their products. Test-case
prioritization [3], [4], [5], [6], [7], [8], whose aim
is to maximize a certain goal of regression test-
ing via re-ordering test cases, is an intensively
investigated approach for reducing the cost of
regression testing.

As the main goal of regression testing is
to assure the quality of the software under

• Dan Hao, Lei Zang, Yanbo Wang, Lu Zhang, and Xingxia
Wu are with the Key Laboratory of High Confidence Software
Technologies, Ministry of Education and with the Institute
of Software, School of Electronics Engineering and Computer
Science, Peking University, Beijing, 100871, P. R. China; Tao Xie
is with the Department of Computer Science, University of Illinois
at Urbana-Champaign. E-mail:{haodan, zhanglucs, zanglei,
wangyanbo}@pku.edu.cn;juvensummer@126.com;taoxie@illinois.edu

regression testing, most techniques for test-
case prioritization aim at maximizing the fault-
detection capability of the prioritized set of
test cases. As whether a test case can detect a
fault is unknown before running the software
under test, the fault-detection capability can
hardly be used to guide scheduling the exe-
cution order of the test cases directly. Since a
test case cannot detect a fault if the test case
does not execute (or cover) the corresponding
faulty structural unit, most techniques for test-
case prioritization (e.g., [9], [10], [6], [11]) use
structural coverage as the substitutive goal (i.e.,
intermediate goal) for test-case prioritization.
However, these techniques can be only sub-
optimal if measured based on the intermediate
goal. Moreover, the simple additional coverage-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

based technique1, which is proposed in an early
paper on test-case prioritization by Rothermel
et al. [6], remains very competitive among all
the existing techniques for test-case prioriti-
zation [4], [10]. In particular, with regard to
the intermediate goal, the additional coverage-
based technique is by far the most effective
technique [4].

Considering the surprisingly good empirical
results of the additional coverage-based tech-
nique, we are curious about how much dif-
ference there would be between the order of
test cases achieved by the additional coverage-
based technique and the order of test cases with
the optimal value on the intermediate goal.
Furthermore, as it may be very costly to guar-
antee optimality due to the NP-hardness of the
test-case prioritization problem, it is also inter-
esting to investigate other empirical properties
of the optimal order to understand whether it
is cost-effective to achieve the optimal order.

To learn the cost and effectiveness differ-
ence between the additional coverage-based
technique and the optimal order, we conduct
an empirical study on ten non-trivial object
projects, systematically investigating empirical
properties of optimal coverage-based test-case
prioritization in comparison with the additional

coverage-based test-case prioritization. To en-
able our study, we model optimal coverage-
based test-case prioritization2 as an Integer
Linear Programming (ILP) [12] problem and
thus are able to achieve the optimal order in
terms of coverage in acceptable time using
an existing ILP solver for many non-trivial
programs. In particular, our empirical study
evaluates the effectiveness and efficiency of the
two techniques using three metrics. Consid-
ering the impact of coverage granularity, our
empirical study further considers two types of
coverage for both the optimal technique and

1. The additional coverage-based technique is a greedy al-
gorithm that always orders the test case covering the most
structural units (e.g., statements or methods) not yet covered
by previously executed test cases before any other previously
unexecuted test cases.

2. Rothermel et al. [6] used an optimal technique as a control
technique to evaluate the effectiveness of some techniques for
test-case prioritization. However, their optimal technique is a
technique with the knowledge of which test case detects which
fault but still using the additional strategy to order test cases.

the additional technique: statement coverage
and method (function) coverage.

Furthermore, to learn the upper bound of
test-case prioritization, we also implement the
ideal optimal test-case prioritization technique,
which schedules the execution order of test
cases based on the number of detected faults.
Although this ideal optimal technique is not
practical, it may serve as a control technique.
Then we conduct an empirical study on an-
other five non-trivial object projects, system-
atically investigating the effectiveness of the
optimal technique and the additional technique
compared with the ideal technique.

According to our empirical results, the op-
timal technique is slightly better than the
additional technique with ignorable difference
for achieving optimal coverage. However, the
optimal technique is significantly worse than
the additional technique for most target pro-
grams in terms of fault detection. Moreover,
although both the optimal technique and the
additional technique significantly outperform
the ideal technique in terms of coverage, the
latter significantly outperforms the former two
techniques in terms of fault detection. There-
fore, in test-case prioritization, it is not worth-
while to pursue optimality by taking the cov-
erage as an intermediate goal.

This article makes the following main contri-
butions:

• To our knowledge, the first empirical study
on the optimal coverage-based test-case
prioritization, demonstrating that the op-
timal technique may be inferior to the ad-
ditional technique in practice.

• A formulation of optimal coverage-based
test-case prioritization as an integer linear
programming problem, which enables us
to obtain the execution order of test cases
to achieve optimal coverage.

The remaining of this article is organized as
follows. Section 2 presents some background
of test-case prioritization. Section 3 presents
a formulation of optimal coverage-based test-
case prioritization as an ILP problem. Section 4
and Section 5 present the design, results, and
analysis of our two empirical studies. Section 6
discusses some issues in this article. Section 7

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

briefly presents related work and Section 8
concludes this article.

2 BACKGROUND

In this section, we present background on test-
case prioritization along with optimal test-case
prioritization.

2.1 Test-Case Prioritization

Test-case prioritization [3], [4], [5], [6], [7], [8]
is a typical software-engineering task in regres-
sion testing, which is formally defined [1] as
follows. Given a test suite T and its set of
permutation on the test cases denoted PT , test-
case prioritization aims to find a permutation
PS in PT such that for any permutation T ′

of PT , f(PS) ≥ f(T ′), where f is a function
from PT to a real number that represents the
fault-detection capability. That is, the ultimate
goal of test-case prioritization is to maximize
the early fault-detection capability of the prior-
itized list of test cases.

Researchers proposed APFD3 [6], which is
the abbreviation of average percentage of faults
detected, to measure the effectiveness of the
prioritized list of test cases on detecting faults.
Formula 1 gives the definition of APFD.

APFD = 1−

∑m
j=1

TFj

nm
+

1

2n
(1)

In Formula 1, m denotes the number of faults
detected by the test suite T , n denotes the
number of test cases in T , and TFj denotes the
first test case in the T ′ (which is a permutation
of T) that exposes the fault j. As n and m

are fixed for any given test suite and faulty
program, higher APFD values imply higher
fault-detection rates.

For ease of representation, we use an exam-
ple program with 5 faults and a test suite with 5
test cases to explain test-case prioritization. Ta-
ble 1 shows the fault-detection capability (from
the second column to the sixth column) and
statement coverage (from the seventh column

3. Researchers also extended the APFD metric to consider
other concerns (e.g., fault-severity and cost) in software testing,
and proposed metrics such as APFDc [13] and Normalized
APFD [14].

TABLE 1
Example Test Suite

Test Fault Statement
1 2 3 4 5 1 2 3 4 5 6 7 8 9

A ∗ ∗ • • • • •

B ∗ ∗ ∗ ∗ • • • •

C ∗ ∗ ∗ • • •

D ∗ • • • • • •

E ∗ • • • • •

to the last column) of these test cases. In partic-
ular, we use ∗ to represent that the correspond-
ing fault is detected by the corresponding test
case and • to represent that the corresponding
statement is covered by the corresponding test
case. If the test suite is executed in the order
A-B-C-D-E, the corresponding APFD value is
0.74.

2.2 Optimal Test-Case Prioritization

As whether a test case can detect a fault is
unknown before running the software under
test, the fault-detection capability (measured
by APFD), which can be viewed as an ul-
timate goal of test-case prioritization, cannot
be used to guide scheduling the execution or-
der of the test cases directly. Therefore, most
techniques for test-case prioritization (e.g., [9],
[10], [6], [11]) use structural coverage as the
intermediate goal for test-case prioritization.
Taking structural coverage as an intermediate
goal, analogous to the APFD metric, Li et
al. [4] proposed three coverage-based metrics,
which are average percentage of branch cov-
erage (APBC), average percentage of decision
coverage (APDC), and average percentage of
statement coverage (APSC), to measure the ef-
fectiveness of the prioritized set of test cases to
achieve structural coverage. For the simplicity
of presentation, we use a generic term (i.e.,
APxC) to represent the three coverage-based
metrics and any other coverage-based metrics.
Formula 2 gives the definition of APxC.

APxC = 1−

∑u
j=1

TSj

nu
+

1

2n
(2)

In Formula 2, u denotes the number of struc-
tural units (e.g., branches, statements, or meth-
ods), n denotes the number of test cases in T ,
and TSj denotes the first test case in T ′ (which

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

is a permutation of T) that covers the structural
unit j. Note that given a different type of
coverage, APxC denotes a different metric. For
example, APxC denotes APSC for statement
coverage but APMC for method (function) cov-
erage4.

In regression testing, a test case has been ex-
ecuted on the previous version of the software
under test, and thus the structural coverage
of a test case is known and can be used to
directly guide scheduling the execution order
of the test cases on the current version of
the software under test. In particular, the sim-
ple additional coverage-based technique is pro-
posed [6], which schedules the execution order
of test cases based on the number of struc-
tural units uncovered by previously selected
test cases. Given a test suite T , we use T ′′ to
represent the set of selected test cases and then
T −T ′′ represent the set of unselected test cases
in the process of test-case prioritization. In
this process, each time the additional coverage-
based technique selects a test case t from T−T ′′

so as to maximize f(T ′′ ∪ t), which represents
the number of structural units covered by T ′′

and t. Applying the additional coverage-based
technique to the test suite in Table 1, we get
another execution order of this test suite D-A-
E-B-C, D-A-E-C-B, D-E-A-B-C, D-E-A-C-B, D-
E-C-A-B, or D-E-C-B-A.

Furthermore, taking the structure coverage
as a goal, it is possible to produce an optimal
order of test cases for maximizing the early
structural coverage (e.g., branch coverage, de-
cision coverage, or statement coverage). In this
article, we view this process as optimal test-
case prioritization, which schedules the execu-
tion order of test cases in order to maximize
APxC rather than APFD. Li et al. [4] have
demonstrated that the problem of achieving
optimal APxC values for test-case prioritization
is NP-hard. In other words, it may be very
costly to achieve optimality.

Applying this optimal technique to the test
suite in Table 1, we find that test cases A and E
are the first two test cases to be executed in the
optimal order because only these two test cases

4. Method coverage is for object-oriented programs, whereas
function coverage is for procedural programs. However, both
coverage criteria are very similar in nature.

can achieve 100% statement coverage. That is,
in all the permutations of the five test cases,
such an execution order achieves the maxi-
mized APSC, which is 0.77. However, such
optimality does not refer to optimal APFD.
Using this optimal order, executing the first
two test cases A and E, only three faults are
detected. Suppose that test cases B and C are
executed as the first two test cases, and then
all the faults can be detected. That is, using the
test cases B and C as the first two test cases
in the execution order may produce larger
APFD values. In summary, optimal test-case
prioritization mentioned in this article does
not refer to the traditional optimal test-case
prioritization [15], which prioritizes test cases
based on the number of faults that they actually
detect given that such information is known. To
avoid misunderstanding, we use ideal optimal
test-case prioritization to refer to traditional
optimal test-case prioritization in this article.
Note that ideal optimal test-case prioritization
is not a practical technique because the number
of faults that each test case detects is unknown
before testing.

3 OPTIMAL COVERAGE-BASED TEST-

CASE PRIORITIZATION USING ILP

As our study focuses on empirical properties of
optimal coverage-based test-case prioritization,
a precondition is to implement a technique for
optimal coverage-based test-case prioritization
to enable us to achieve optimal APxC val-
ues for at least some middle-sized programs.
Inspired by our previous work [11] on test-
case prioritization, we model optimal coverage-
based test-case prioritization by an integer lin-
ear programming model. Using this model, we
are able to achieve an optimal order of test
cases for all the programs used in our study.

For ease of presentation, we present the opti-
mal coverage-based technique in terms of state-
ment coverage. Analogously, the technique can
be easily extended to other coverage criteria
(e.g., method coverage, block coverage, and
decision coverage) in test-case prioritization.

Let us consider a program containing
m statements (denoted as ST =
{st1, st2, st3, ...stm}) and a test suite containing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

n test cases (denoted as T = {t1, t2, t3, ...tn}).
Let T ′ be a permutation of T . In the following,
Sections 3.1, 3.2, and 3.3 present decision
variables, constraints, and the objective
function in the ILP model, respectively.
Section 3.4 presents the optimization to further
reduce the size of the ILP model.

3.1 Decision Variables

The ILP model uses two groups of decision
variables. Section 3.1.1 presents the first group
of variables representing in what order the test
cases are executed. Section 3.1.2 presents the
second group of variables representing which
statements are covered after the execution of
each test case.

3.1.1 Variables for Execution Order

To represent in what position each test case is
executed, the ILP model uses n ∗ n Boolean
decision variables (denoted as xij , where 1 ≤
i, j ≤ n). Formally, xij is defined in Formula 3
as follows.

xij =

{

1, if the j-th test case in T ′ is ti (1 ≤ i, j ≤ n);
0, otherwise.

(3)
Note that Section 3.2.1 presents a group of

constraints to ensure that the set of values for
xij corresponds to a permutation of T .

3.1.2 Variables for Statement Coverage

To represent which statements are covered af-
ter executing each test case (i.e., accumula-
tive statement coverage), the ILP model uses
n ∗ m Boolean decision variables (denoted as
yjk, where 1 ≤ j ≤ n and 1 ≤ k ≤ m). Formally,
yjk is defined in Formula 4 as follows.

yjk =

1, if the first j test cases in T ′ covers stk
(1 ≤ j ≤ n and 1 ≤ k ≤ m);

0, otherwise.
(4)

Similarly, a group of constraints (presented
in Section 3.2.2) are needed to ensure that the
coverage information represented by yjk (1 ≤
j ≤ n and 1 ≤ k ≤ m) is in accordance with the
execution order represented by xij (1 ≤ i, j ≤
n).

3.2 Constraints

The ILP model uses two groups of constraints.
Section 3.2.1 presents the first group of con-
straints to ensure that values of variables in
Section 3.1.1 represent a possible execution or-
der of test cases. Constraints in Section 3.2.1
ensure that values of variables in Section 3.1.2
are consistent with values of variables in Sec-
tion 3.1.1.

3.2.1 Constraints for Execution Order

There are two sets of constraints in the ILP
model to ensure that values of xij (1 ≤ i, j ≤ n)
represent a possible execution order of test
cases. First, the constraints in Formula 5 can
ensure that each position in the permutation of
T holds one and only one test case. Second, the
constraints in Formula 6 can ensure that each
test case appears in the permutation of T once
and only once.

n
∑

i=1

xij = 1 (1 ≤ j ≤ n) (5)

n
∑

j=1

xij = 1 (1 ≤ i ≤ n) (6)

3.2.2 Constraints for Statement Coverage

There are also a group of constraints in the
ILP model to ensure that the values of yjk
(1 ≤ j ≤ n and 1 ≤ k ≤ m) are in accordance
with the values of xij (1 ≤ i, j ≤ n). The
definition of these constraints is involved with
the coverage information of the test cases. In
particular, for a test suite (denoted as T =
{t1, t2, ...tn}) and a set of statements (denoted
as ST = {st1, st2, ...stm}), Formula 7 is used
to represent whether a test case covers a state-
ment.

cik =

{

1, if ti covers stk;
0, otherwise.

(7)

Note that cik (1 ≤ i ≤ n and 1 ≤ k ≤ m)
are not variables and their values can be ob-
tained before test-case prioritization. Based on
the coverage information, the ILP model uses
the constraints in Formula 8 to ensure that the
values of y1k (1 ≤ k ≤ m) are in accordance

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

with the statements covered by the first test
case in T ′.

n
∑

i=1

cik ∗ xi1 = y1k (1 ≤ k ≤ m) (8)

First, in Formula 8,
∑n

i=1
cik ∗ xi1 (1 ≤ k ≤ m)

represents whether stk is covered by the first
test case in the permutation of T . The reason
is as follows. Only one test case appears as
the first test case in T ′, and thus only one
variable among xi1 (1 ≤ i ≤ n) is 1 according
to Formula 5. As a result, for any stk (1 ≤
k ≤ m), if the first test case in T ′ covers stk,
∑n

i=1
cik ∗ xi1 is 1; otherwise,

∑n
i=1

cik ∗ xi1 is
0. Second, based on the preceding meaning of
∑n

i=1
cik ∗ xi1 (1 ≤ k ≤ m), Formula 8 ensures

that, for any 1 ≤ k ≤ m, y1k is 1 if and only if
the first test case in T ′ covers stk.

Similarly,
∑n

i=1
cik ∗ xij (2 ≤ j ≤ n, 1 ≤ k ≤

m) represents whether the j-th test case in T ′

covers stk. Thus, Formulae 9, 10, and 11 ensure
that, for any 2 ≤ j ≤ n and any 1 ≤ k ≤ m, yjk
is 1 if and only if the j-th test case in T ′ covers
stk or at least one test case before the j-th test
case in T ′ covers stk.

yjk ≥
n
∑

i=1

cik ∗ xij (2 ≤ j ≤ n, 1 ≤ k ≤ m) (9)

yjk ≥ yj−1,k (2 ≤ j ≤ n, 1 ≤ k ≤ m) (10)

n
∑

i=1

cik ∗xij + yj−1,k ≥ yjk (2 ≤ j ≤ n, 1 ≤ k ≤ m)

(11)
That is to say, the constraints in Formulae 8,

9, 10, and 11 ensure that the values of yjk (1 ≤
j ≤ n and 1 ≤ k ≤ m) are in accordance with
the accumulated statement coverage for all the
n test cases in T ′. Note that the variable yjk is
a boolean variable whose value is either 0 or 1.

3.3 Objective Function

The objective function is to maximize the APSC
metric, which is an instance of APxC (defined
in Formula 2). In fact, the definition of APSC
using Formula 2 is equivalent to that in For-
mula 12, in which m denotes the number of
statements, n denotes the number of test cases

in T , and Ni denotes the number of statements
covered by at least one test case among the first
i test cases in T ′ (which is a permutation of T).

APSC =

∑n−1

i=1
Ni

nm
+

1

2n
(12)

Based on this definition, maximizing the
APSC value is thus equivalent to maximizing
∑n−1

i=1
Ni. As yjk (1 ≤ j ≤ n and 1 ≤ k ≤ m)

denotes whether stk is covered after executing
the first j test cases in T ′,

∑m
k=1

yjk (1 ≤ j ≤ n)
is then the number of statements covered by at
least one test case among the first j test cases in
T ′. Thus, Formula 13 can serve as the objective
function in the ILP model for optimal coverage-
based test-case prioritization.

maximize
n−1
∑

j=1

m
∑

k=1

yjk (13)

3.4 Optimization

In the preceding ILP model, the number of
decision variables is |T | ∗ |T | + |ST | ∗ |T | and
the number of constraints is 3 ∗ |ST | ∗ |T |+ 2 ∗
|T | − 2 ∗ |ST |, where |T | denotes the number
of test cases to be prioritized and |ST | denotes
the number of statements of the program. As it
is usually costly to solve ILP problems, it may
be necessary to further reduce the size of the
ILP model through optimization.

The basic idea of the optimization is to re-
duce statements covered by exactly the same
set of test cases into one super statement. For
any given test suite T and a program P , a
super statement is formally defined as a set of
statements that are executed by the same test
cases in T . For any statement si and sj , if there
exists a test case in T that executes one but only
one of these two statements, the two statements
must belong to different super statements.
Based on the concept of super statements, the
statements of P may be divided into several
sets of statements, each of which is a super

statement. Moreover, these super statements

have no common statements. Let us use the
example in Table 1 to explain the concept of
super statements. The five test cases (including
A, B, C, D, and E) divide the nine statements
into the following eight super statements: {s1},
{s2}, {s3,s6}, {s4},{s5},{s7},{s8}, and {s9}.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Note that the notion of super statements is
similar to that of blocks. However, statements
belonging to one block also belong to one
super statement, but statements from one super

statement may belong to more than one block.
In particular, one super statement (which
represents the set of statements executed by
the same set of test cases) can be denoted as
a tuple (sstk, numk), where sstk (1 ≤ k ≤ m)
denotes the k-th super statement and numk

(1 ≤ numk ≤ m) denotes that the k-th super

statement actually contains numk statements.
Thus, program ST can be denoted as a set
of super statements: ST = {(sst1, num1),
(sst2, num2), . . . , (sstm′ , numm′)}, where
1 ≤ m′ ≤ m and

∑m′

k=1
numk = m. That

is, the eight super statements in Table 1
can be denoted as ST = {(sst1, 1), (sst2, 1),
(sst3, 2),(sst4, 1),(sst5, 1),(sst6, 1),(sst7, 1),
(sst8, 1)}.

Based on the preceding representation of
the program ST , decision variables in For-
mula 4 can be redefined on the basis of super

statements. That is to say, yjk (1 ≤ j ≤ n

and 1 ≤ k ≤ m′) is 1 if and only if the first
j test cases in T ′ covers the super statement

(sstk, numk). Furthermore, m in Formulae 7,
8, 9, 10, and 11 should be replaced by m′.
The object function should be redefined as
Formula 14, as the number of statements in
each super statement also impacts the APSC
value.

maximize
n−1
∑

j=1

m′

∑

k=1

yjk ∗ numk (14)

Utilizing the notion of super statements

rather than statements, the number of variables
and the number of constraints decrease so that
it becomes less costly to solve the ILP model for
optimal test-case prioritization. On the other
side, the optimization process does not change
the functionality of the ILP model presented
from Section 3.1 to Section 3.3 because super

statements can be viewed as another way to
represent statements. That is, the optimization
introduced in this subsection changes only rep-
resentation of the preceding ILP model. For
example, using the statement coverage directly,
we have the following 45 variables c11, c12,

. . ., c19, . . ., c51, c52, . . ., c59, each of whose
values represents whether the corresponding
test case in Table 1 covers the corresponding
statement. For statements s3 and s6, they are
covered by the same test cases (i.e., A, B,
and D), and thus ci3 is always equal to ci6
where i = 1 . . . 5. Based on the observation that
ci3 = ci5, we transform the ILP model by using
the notion of super statement. In particular, we
use the following 40 variables for statement
coverage, which are c11, c12, . . ., c18, . . ., c51,
c52, . . ., c58, each of whose values represents
whether the corresponding test case covers the
corresponding super statement and statements
s3 and s6 belong to the same super statement.
That is, using the notion of super statements,
some statements are combined into one (which
is actually super statement) because test cases
in T cannot distinguish them. Moreover, the
optimal technique based on other structural
coverage (e.g., method/function coverage) can
be optimized in the same way. Furthermore,
this notion can also be used to improve existing
test-case prioritization techniques.

4 STUDY I

In this study, we investigate empirical proper-
ties of optimal coverage-based test-case prior-
itization by answering the following research
questions.

• RQ1: How do optimal coverage-based
test-case prioritization and additional
coverage-based test-case prioritization
perform differently in terms of structural
coverage (using the APxC metric)?

• RQ2: How do optimal coverage-based
test-case prioritization and additional
coverage-based test-case prioritization
perform differently in terms of fault
detection (using the APFD metric)?

• RQ3: What is the difference in exe-
cution time between optimal coverage-
based test-case prioritization and addi-
tional coverage-based test-case prioritiza-
tion?

The first research question intends to inves-
tigate whether the optimal technique can be
superior to the additional technique in terms of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE 2
Studied Programs

Abb. Program LOC #Method #Groups of #Test
mutants

pt print tokens 203 20 2,356 4,072
pt2 print tokens2 203 21 2,036 4,057
rep replace 289 23 760 5,542
sch schedule 162 20 829 2,627

sch2 schedule2 144 18 1,310 2,683
tca tcas 67 11 987 1,592
tot tot info 136 9 1,790 1,026
sp space 6,218 136 9,657 13,585

jtopas-v0 1,831 267 56 95
jt jtopas-v1 1,871 269 63 126

jtopas-v2 1,912 274 84 128
siena-v0 2,225 196 50 567
siena-v1 2,206 187 53 567
siena-v2 2,207 187 53 567

sie siena-v3 2,242 197 54 567
siena-v4 2,255 198 57 567
siena-v5 2,255 198 57 567
siena-v6 2,246 198 57 567
siena-v7 2,232 194 59 567

structural coverage. The second research ques-
tion intends to investigate whether the optimal
technique can be superior to the additional
technique in terms of fault detection. The third
research question intends to investigate how
much more cost in terms of execution time
the optimal technique has than the additional
technique.

In the remaining of this section, we present
the independent and dependent variables in
Sections 4.1 and 4.2, the target programs, faults,
and test suites used in our experiment in Sec-
tion 4.3, the experimental procedure in Sec-
tion 4.4, the threats to validity in Section 4.5,
the results in Section 4.6, and the findings of
our empirical study in Section 4.7.

4.1 Independent Variables

This empirical study focuses on comparing
optimal coverage-based test-case prioritization
and additional coverage-based test-case prior-
itization. To control the impact of coverage
criteria, we consider two intensively investi-
gated coverage criteria: statement coverage and
method (function) coverage. Therefore, our em-
pirical study uses the following four indepen-
dent variables: (1) the optimal test-case pri-
oritization technique based on statement cov-
erage, (2) the optimal test-case prioritization
technique based on method (function) cover-
age, (3) the additional test-case prioritization

technique based on statement coverage, and (4)
the additional test-case prioritization technique
based on method (function) coverage.

Note that Section 3 presents only the optimal
test-case prioritization technique using state-
ment coverage. However, it is straightforward
to extend this technique for test-case prioriti-
zation using method (function) coverage. That
is, the optimal test-case prioritization technique
based on either statement coverage or method
(function) coverage is implemented following
the same ways as described in Section 3, whose
difference lies in only the coverage granularity.

Furthermore, in the test-case prioritization
process of the additional technique, it is pos-
sible that some earlier selected test cases of the
test suite T have achieved the same statement
coverage as the whole test suite. In such sce-
nario, we repeat the prioritization strategy by
assuming that no test cases have been selected
and scheduling the remaining unselected test
cases. That is, we implement the additional
test-case prioritization technique by applying
the additional strategy again to the remaining
unselected test cases. Note that we repeat the
additional greedy strategy more than once be-
cause prior work on test case prioritization [2],
[16], [17], [15] usually implements the addi-
tional technique in the same way5.

4.2 Dependent Variables

According to our research questions, we con-
sider the following three dependent variables.

• Values for the APxC metric. The APxC
metric (defined in Formula 2) is to mea-
sure the effectiveness of the preceding four
techniques for structural coverage. Note
that the APxC metric becomes APSC for
statement coverage and APMC for method
(function) coverage.

• Values for the APFD metric. The APFD
metric (defined in Formula 1) is to mea-
sure the effectiveness of the preceding four
techniques for fault detection.

• Execution time. The execution time is for
measuring the time efficiency of the pre-
ceding four techniques.

5. Whether the additional greedy strategy repeats more than
once in the implementation of the additional technique, does
not affect APxC values, but may affect APFD values.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

4.3 Programs, Faults, and Test Suites

In this study, we used eight C programs
and eleven versions of two Java programs
that have been widely used in previous stud-
ies of test-case prioritization [2], [4]. These
target programs are all available from the
Software-Infrastructure Repository (SIR6). Ta-
ble 2 presents the statistics of these target pro-
grams, where the last two columns present the
number of mutant groups (each mutant group
consists of five mutants) injected into the target
programs and the total number of test cases in
the test pool. The former eight programs are
written in C, whereas the latter programs are
written in Java.

As SIR provides a large number of test cases
in the test pool for each C program, in our
empirical study, we created a series of test
suites for each C program based on random
selection using a strategy similar to Rothermel
et al. [6], Elbaum et al. [1], [2], and Li et al. [4].
In particular, for each program, we created 100
test suites each containing 10 test cases, 100
test suites each containing 20 test cases, 100
test suites each containing 30 test cases, and
100 test suites each containing 40 test cases.
When creating a test suite, we employed one
or more rounds. The aim of using more than
one round in our study was to control the
sizes of created test suites. In one round, we
adopted the same strategy used by Rothermel
et al. [6], Elbaum et al. [1], [2], and Li et
al. [4], which is to repeatedly select one test case
randomly that can increase statement coverage
of previously selected test cases in this round.
Given a number n (n=10, 20, 30, or 40), while
the total number of selected test cases is smaller
than n, we continuously employed another
round. When the total number of selected test
cases is larger than n, we stopped and used
the first n selected test cases to form the test
suite. As the Java programs in our empirical
study do not have a large number of test cases
available at SIR considering the scale of these
Java programs, similar to prior studies on these
Java programs, we used all the test cases of
each Java program as a test suite.

6. http://sir.unl.edu/portal/index.php.

As these target programs have only a small
number of manually injected faults available
in SIR, we generated faulty versions for each
program using program mutation, following
the procedure similar to prior research [18]. In
particular, for each program, we used mutation
testing tools (i.e., MuJava [19] for Java pro-
grams, and Proteum [20] for C programs using
their default setting) to generate all mutants,
randomly selected five unselected mutants and
constructed a faulty version by grouping these
mutants. Following this procedure, we con-
structed a lot of mutant groups, each of which
is viewed as a program with multiple faults.
As some mutants cannot be killed7 by any test
cases of a test suite, we view these mutants as
unqualified mutants8. As each mutant group
consists of five randomly selected mutants,
each group in our empirical study consists of 1-
5 qualified mutants by removing those unqual-
ified mutants. Furthermore, we excluded such
pair of a test suite (denoted as T) and a mutant
group (denoted as M) that any test case in T

cannot kill any mutant in M , because such a
pair would always produce 0 APFD values for
any execution order of the test cases and cannot
be used in the comparison of any test-case
prioritization techniques. Table 3 summarizes
the number of used mutant groups containing
various numbers of qualified mutants. Accord-
ing to this table, for each program, many of its
mutant groups consist of more than one fault.

4.4 Experimental Procedure

For each program, we executed the program
with a constructed test suite, recording the cov-
erage information (i.e., which statements and
methods have been executed by each test case).
Based on the coverage information, we applied
the optimal test-case prioritization techniques
and the additional test-case prioritization tech-
niques, recording the prioritized test cases. In
particular, we used IBM’s integer linear pro-

7. If a test case reveals the fault injected by mutation, the test
case is said to kill the corresponding mutant [21].

8. Among these unqualified mutants, some are equivalent
mutants that always behave as the original program, whereas
some are not equivalent mutants but they behave as the
original program for the given test suite.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE 3
Statistics on Faults

Program Number of qualified mutants
One Two Three Four Five

print tokens 1,9680 88,680 259,432 373,140 199,804
print tokens2 4,928 33,806 140,900 311,854 322,296

replace 51,756 228,981 539,970 691,612 386,804
schedule 737 9,043 41,081 116,861 163,866

schedule2 15,008 68,013 172,410 185,415 82,140
tcas 30,661 81,495 122,487 112,896 42,546

tot info 1,813 15,623 99,226 284,285 315,052
space 547 7,253 55,432 296,833 3,502,718

jtopas-v0 18 16 13 2 1
jtopas-v1 13 20 17 11 1
jtopas-v2 10 29 17 18 6
siena-v0 0 1 3 16 30
siena-v1 0 0 5 25 23
siena-v2 0 1 4 28 20
siena-v3 0 1 10 20 23
siena-v4 0 1 7 24 25
siena-v5 0 0 9 21 27
siena-v6 1 0 10 19 27
siena-v7 0 1 7 26 25

gramming tool ILOG CPLEX9 in implementing
the optimal test-case prioritization techniques.
Moreover, to speedup test-case prioritization
and reduce the cost in solving the ILP model,
we use the notion of super statements in im-
plementing the optimal test-case prioritization
techniques and the additional test-case prioriti-
zation techniques. That is, for test-case prioriti-
zation based on statement coverage, including
the optimal techniques and the additional tech-
niques, we use the notion of super statements

to represent statement coverage and similar
super methods to represent method coverage.

Then we calculated the APSC values for the
prioritized test suite of each test-case prioriti-
zation technique based on statement coverage,
and the APMC values for the prioritized test
suite of each test-case prioritization technique
based on method (function) coverage. Further-
more, we calculated the APFD value of each
prioritized test suite for each mutant group.

All the first study was conducted on a PC
with an Intel E5530 16-Core Processor 2.40GHz,
and the operating system is Ubuntu 9.10.

4.5 Threats to Validity

The threat to internal validity lies in the im-
plementation of the optimal test-case priori-
tization technique. To reduce this threat, we

9. http://www.ibm.com/software/webphere/ilog.

used IBM’s ILOG CPLEX to solve the ILP
model and reviewed all the code of the test-
case prioritization techniques before conduct-
ing the experimental study. Furthermore, in the
empirical study we implemented two prioriti-
zation techniques on two types of widely used
coverage and tended to generalize the con-
clusions to prioritization techniques based on
other types of coverage (e.g., branch coverage
and MC/DC coverage). To reduce this threat,
we will conduct more experiments on other
types of coverage in future. The threats to exter-
nal validity mainly lie in the target programs,
faults, and test suites. All the programs used
in our study are intensively used in previous
studies on test-case prioritization [15], although
the programs may not be sufficiently represen-
tative. This threat can be further reduced by
using more programs in various programming
languages (e.g., C, C++, Java and C#). Similar
to prior research [18], the faults are generated
by using some mutation tool, not real faults
from practice. However, according to the ex-
perimental study conducted by Do and Rother-
mel [21], mutation-generated faults are suitable
to be used in studies of test-case prioritization
to replace hand-seeded faults. To reduce the
threat from test suites, we constructed a large
number of test suites based on the collected test
cases in the test pool. Further reduction of this
threat also relies on using more real test suites.

4.6 Results

To answer the three research questions, we use
three subsections (each corresponding to one
research question) to present the results of the
first study10.

4.6.1 RQ1: Results on APxC Metric

Figures 1 and 2 present the column graphs
of the mean APxC values (including APMC
and APSC) of the optimal coverage-based tech-
niques and the additional coverage-based tech-
niques using method (function) coverage and
statement coverage. Table 5 shows the standard

10. The complete experimental data (including the imple-
mentation of the optimal technique and the additional tech-
nique) are accessible at https://github.com/ybwang1989/On-
Optimal-Coverage-Based-Test-Case-Prioritization/wiki.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Fig. 1. Mean of APMC Results for Techniques
on Method Coverage

Fig. 2. Mean of APSC Results for Techniques
on Statement Coverage

deviations of the APxC values, where the opti-
mal technique is abbreviated as “Opt.” and the
additional technique is abbreviated as “Add.”.
To allow us to perform statistical analysis, sim-
ilar to previous work [15], we group the results
of the three versions of jtopas. That is, although
jtopas has three versions jtopas−v0, jtopas−v1,
and jtopas − v2, we put all the APxC results
of the three versions into one group without
considering the difference between these ver-
sions and take all these APxC results as the
results for jtopas. Similarly, we do this kind
of grouping when presenting other results (i.e.,
APFD and execution time) of jtopas and siena.
From Figures 1 and 2, we make the following
observations.

First, for each program, the mean APxC
value of the additional technique is no larger
than that of the optimal technique, considering
either statement coverage or method (function)
coverage. This observation is as expected since
the optimal technique is designed to maximize
the APxC values. However, except for a few
programs (e.g., space and jtopas), the mean of
APxC values of the additional technique are
actually the same as those of the optimal tech-

Fig. 3. Comparison on APMC Results between
the Optimal Technique and the Additional Tech-
nique on Method Coverage

nique. Moreover, even when the optimal tech-
nique outperforms the additional technique,
their differences on the mean APxC results
are ignorable. Second, the APSC values on
statement coverage are smaller than the APMC
values on method coverage. This observation
is also as expected because it is easier to pro-
duce a prioritized test suite with high coarse-
granularity coverage (e.g., method coverage)
than with high fine-granularity coverage (e.g.,
statement coverage). Third, we compare the
standard deviations of the APxC values and
find that there are no significant differences be-
tween the two techniques for either statement
coverage or method (function) coverage.

Furthermore, for each program, we calcu-
lated the percentage of cases on comparing the
APxC values of the optimal technique and the
APxC values of the additional technique. In
particular, Opt. > Add. denotes the cases that
the optimal technique outperforms the addi-
tional technique, Opt. = Add. denotes the cases
that the optimal technique and the additional
technique produce exactly the same APxC re-
sults, and Opt. < Add. denotes the cases that
the additional technique outperforms the opti-
mal technique. Figures 3 and 4 summary these
results.

From Figures 3 and 4, the number of cases
for Opt. < Add. is always 0, and the number
of cases for Opt. = Add. is typically larger
than that for Opt. > Add. (except for space and
jtopas). This observation again demonstrates
that the differences in APxC values between
the two techniques are ignorable.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Fig. 4. Comparison on APSC Results between
the Optimal Technique and the Additional Tech-
nique on Statement Coverage

We further performed a one-way ANOVA11

analysis on the APxC values. The analysis re-
sults are shown by Table 4, where the signifi-
cance level α is set to be 0.05. Moreover, the
last row shows whether the hypothesis that
there is no significant difference between the
compared two techniques is rejected (denoted
as R) or not rejected (denoted as N). According
to this table, for either program and either
coverage, the p-values are close to 1 and thus
there are no significant differences between
the two techniques. Furthermore, the F-values
on method (function) coverage are no larger
than those on statement coverage and the p-
values on method coverage are no smaller than
those on method coverage, demonstrating that
the differences on method (function) coverage
may be even smaller than those on statement
coverage.

Note that for jtopas the optimal techniques
seem better than the additional techniques
from Figure 3, Figure 4, and Table 5. However,
from Table 4 there is no significant difference
between the two techniques because jtopas

has only three APSC results and three APMC
results.

4.6.2 RQ2: Results on APFD Metric

Figures 5 and 6 present the column graphs of
the mean of the APFD values of the optimal
coverage-based technique and the additional
coverage-based technique using method (func-
tion) coverage and statement coverage. Table 6

11. The one-way ANOVA analysis was performed using
SPSS 15.0, which is an analytical software and accessible at
http://www.spss.com.

Fig. 5. Mean of APFD Results for Techniques
on Method Coverage

Fig. 6. Mean of APFD Results for Techniques
on Statement Coverage

presents the standard deviations of these APFD
values. Unlike the APxC values given by Fig-
ure 1, Figure 2, and Table 5, Figure 5, Figure 6,
and Table 6 demonstrate that, for each pro-
gram, the mean APFD value of the additional
technique is larger than that of the optimal
technique, whereas the standard deviations on
the APFD values also indicate the superiority
of the additional technique.

Figures 7 and 8 present the statistics on cases
where the additional technique outperforms
the optimal technique, is equal to the optimal
technique, and is inferior to the optimal tech-
nique, respectively. These two figures can con-
firm the superiority of the additional technique
in general.

To check whether the differences are sig-
nificant, we also perform a one-way ANOVA
analysis for the APFD value, where significance
level is also set to be 0.05. The analysis re-
sults are shown by Table 7. From this table,
the differences between the two techniques are
usually significant, except for the two Java
programs. Note that the number of pairs of
test suites and mutant groups for the Java
programs are much smaller than that for the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

TABLE 4
ANOVA Analysis on APxC Results between the Optimal Technique and the Additional Technique

Test-case prioritization on method coverage Test-case prioritization on statement coverage
pt pt2 rep sch sch2 tca tot sp jt sie pt pt2 rep sch sch2 tca tot sp jt sie

F-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.04 0.01 0.00
p-value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.94 1.00 0.96 0.92 0.88 0.98 1.00 1.00 0.95 0.84 0.94 1.00
Result N

TABLE 5
Standard Deviations of APxC Results

Test-case prioritization on method coverage Test-case prioritization on statement coverage
pt pt2 rep sch sch2 tca tot sp jt sie pt pt2 rep sch sch2 tca tot sp jt sie

Opt. 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.00 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.06 0.00 0.00
Add. 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.00 0.05 0.04 0.04 0.02 0.02 0.02 0.02 0.06 0.00 0.00

TABLE 6
Standard Deviations of APFD Results

Test-case prioritization on method coverage Test-case prioritization on statement coverage
pt pt2 rep sch sch2 tca tot sp jt sie pt pt2 rep sch sch2 tca tot sp jt sie

Opt. 0.10 0.11 0.13 0.08 0.08 0.18 0.08 0.07 0.09 0.02 0.06 0.07 0.11 0.07 0.07 0.15 0.07 0.07 0.06 0.01
Add. 0.09 0.09 0.10 0.08 0.06 0.15 0.06 0.07 0.10 0.02 0.05 0.06 0.10 0.05 0.05 0.13 0.05 0.07 0.07 0.01

TABLE 7
ANOVA Analysis on APFD Results between the Optimal Technique and the Additional Technique

Test-case prioritization on method coverage
pt pt2 rep sch sch2 tca tot sp jt sie

F-value 15023.15 34628.46 89936.39 2165.38 11823.49 22870.44 41503.49 595.42 0.61 0.07
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.80
Result R R R R R R R R N N

Test-case prioritization on statement coverage
pt pt2 rep sch sch2 tca tot sp jt sie

F-value 1236.95 410.25 2366.23 4184.84 6559.60 487.55 3624.29 386.60 0.08 1.94
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.16
Result R R R R R R R R N N

Fig. 7. Comparison on APFD Results between
the Optimal Technique and the Additional Tech-
nique on Method Coverage

C programs. The insignificance may be due to
the insufficient sampling space.

Fig. 8. Comparison on APFD Results between
the Optimal Technique and the Additional Tech-
nique on Statement Coverage

4.6.3 RQ3: Results on Execution Time

Table 8 presents the average execution time
(in seconds) of the optimal technique and the
additional technique for each program using ei-
ther method (function) coverage and statement

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

TABLE 8
Average Execution Time (second)

Tech. Method Coverage Statement Coverage
10 20 30 40 10 20 30 40

pt Opt. 3.42 3.90 3.73 3.71 3.35 4.29 5.02 5.51
Add. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

pt2 Opt. 3.29 3.74 3.53 3.68 3.38 4.39 5.03 6.91
Add. 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.02

rep Opt. 3.28 3.68 3.64 3.74 3.58 4.67 5.03 7.55
Add. 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01

sch Opt. 3.29 3.62 3.71 3.94 3.24 3.75 4.25 4.22
Add. 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.04

sch2 Opt. 3.25 3.46 3.83 3.94 3.55 3.81 3.80 4.22
Add. 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.03

tca Opt. 3.29 3.50 3.48 3.79 4.35 4.18 4.40 4.88
Add. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

tot Opt. 3.27 3.39 3.80 3.76 3.62 3.53 4.41 5.75
Add. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02

sp Opt. 3.50 4.90 5.46 6.55 3.67 6.49 9.57 19.84
Add. 0.00 0.00 0.00 0.01 0.01 0.03 0.05 0.07

jt Opt. 206.22 163.39
Add. 0.19 0.75

sie Opt. 3,344.45 2,418.80
Add. 2.82 6.61

coverage12. As the execution time consists of
only the time used in test-case prioritization,
the execution time is dependent on the number
of prioritized test cases and thus for each pro-
gram we list the prioritization time for the test
suites of the same size. In particular, we use 10,
20, 30, and 40 to represent test suites with the
corresponding sizes. As different versions of
each Java program are of similar sizes and have
test suites of similar sizes, we group results
on these versions into one row. Note that each
version of Java programs has only one test
suite.

From Table 8, we can observe that the pri-
oritization time of the optimal technique is
typically tens of or even hundreds of more
times than that of the additional technique,
although the prioritization time of the optimal
technique is still acceptable.

4.7 Summary

We summarize the main findings of the first
empirical study as follows. First, the optimal

12. The execution time of the compared techniques as well
as the analysis on the execution time is specific to our imple-
mentation of the compared techniques in this empirical study.
Therefore, the optimal technique and the additional technique
may be more faster in other implementations. However, as this
article does not target at speedup these techniques, these tech-
niques are implemented in a standard way without considering
optimization.

coverage-based technique is ignorably better
than the additional coverage-based technique
for coverage (i.e., in terms of APxC). Second,
the optimal coverage-based technique is sig-
nificantly worse than the additional coverage-
based technique for fault detection (i.e., in
terms of APFD). Third, the optimal coverage-
based technique is much less time-efficient than
the additional coverage-based technique.

As the optimal technique is designed to guar-
antee the maximum APxC values, it is expected
to be more effective on the APxC metric than
the additional technique, which is a simple
greedy algorithm to produce sub-optimal so-
lutions. It might be somewhat surprising that
the difference on the APxC metric between
the two techniques is so small. However, this
finding confirms the observation made by Li et
al. [4] that optimization techniques can achieve
APxC values similar to the additional tech-
nique but are difficult to outperform the ad-
ditional technique. It is also interesting to see
that the additional technique can outperform
the optimal technique on the APFD metric. A
probable reason is that covering a structural
unit may not guarantee the detection of faults
in the unit. In fact, our previous work [22]
has demonstrated that some techniques less
competitive than the additional technique for
coverage can in turn outperform the additional
strategy for fault detection. Furthermore, it is
of no surprise to see that the additional tech-
nique is more time-efficient than the optimal
technique. Therefore, we may draw a general
conclusion that additional coverage-based test-
case prioritization should actually be superior
to optimal coverage-based test-case prioritiza-
tion in practice.

5 STUDY II

As optimal coverage-based test-case prioritiza-
tion takes structural coverage as the interme-
diate goal and cannot guarantee to achieve the
optimal APFD results, it is interesting to learn
how good this technique is by comparing with
the ideal order of test cases, which has the
largest APFD results. Therefore, we conduct
another study to investigate how good optimal

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

TABLE 10
Statistics on Faults

Program Number of qualified mutants
One Two Three Four Five

gzip-v0 0 0 0 0 1,997
gzip-v1 0 0 0 0 2,004
gzip-v2 0 0 0 0 2,276
grep-v0 173 138 179 180 193
grep-v1 166 150 168 183 202
grep-v2 178 144 178 194 211

xmlsecurity-v0 160 118 119 127 286
xmlsecurity-v1 148 132 119 138 273
xmlsecurity-v2 147 131 134 135 276

time&money-v0 5 17 28 59 80
time&money-v1 10 26 40 73 129

jgrapht-v0 15 30 36 58 55
jgrapht-v1 19 44 64 86 79

coverage-based test-case prioritization and ad-
ditional coverage-based test-case prioritization
are by comparing with the ideal optimal test-
case prioritization.

To answer this research question, we imple-
mented the ideal optimal test-case prioritiza-
tion technique, which schedules the execution
order of test cases based on their detected
faults. This ideal optimal test-case prioritiza-
tion technique serves as the control technique
to show the upper bound of test-case prioriti-
zation, because this technique assumes that it is
known which faults each test case detects and
is not applicable in practice.

5.1 Setup

In this study, we used six versions of two
C projects and seven versions of three Java
projects that have also been used in previous
studies of test-case prioritization [23]. Table 9
presents the statistics of these programs. The
first six programs are written in C, whereas
the latter seven programs are written in Java.
Following the same procedure as Section 4,
we constructed faulty versions for C programs
by grouping mutants generated by a muta-
tion testing tool MutGen [24] and constructed
faulty versions for Java programs by grouping
mutants generated by a mutation testing tool
Javalanche [25]. Table 10 summarizes the num-
ber of used mutant groups containing various
numbers of qualified mutants.

Similar to the first study in Section 4, for
each program, we constructed test suites for C
programs and used the existing test suites for

Java programs. Based on the coverage informa-
tion of each test suite, we applied the optimal
test-case prioritization technique implemented
using GUROBI13 and the additional test-case
prioritization technique, recording the priori-
tized test cases.

To learn the upper bound of test-case pri-
oritization, we implemented the ideal optimal
test-case prioritization technique as a control
technique. To generate the optimal order of test
cases, it is necessary to consider all possible
orders, and thus the worst-case runtime of the
ideal optimal algorithm may be exponential in
test suite size [6]. Therefore, Rothermel et al. [6]
proposed to use an additional greedy strategy
instead and called it an optimal technique,
although the additional greedy strategy may
not always produce the optimal order. In this
article, we follow this work and implement the
ideal optimal technique in the same way [6].
In particular, for each program with multiple
faults (i.e., a mutant group), we prioritized test
cases based on their number of detected faults
that have been not detected by existing selected
test cases. This ideal technique produces an
ideal execution order of test cases. However,
this ideal optimal technique is not practical
because whether a fault is detected by a test
case is not known before testing.

Then we calculated the APSC values for the
prioritized test suite of each test-case prioriti-
zation technique based on statement coverage,
and the APMC values for the prioritized test
suite of each test-case prioritization technique
based on method (function) coverage. Further-
more, we calculated the APFD value of each
prioritized test suite for each mutant group. All
this study was conducted on a PC with a Core
i7-3770 Processor 3.4GHz whose operating sys-
tem is Windows 7.

5.2 Results

The optimal technique proposed in this arti-
cle takes the intermediate goal (i.e., structural
coverage) as a goal in scheduling test cases,

13. http://www.gurobi.com/. Note that although Study I
and Study II use different tools in implementing the optimal
coverage based test-case prioritization technique, they are im-
plemented following the same way as described in Section 3.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

TABLE 9
Studied Programs

Abb. Program LOC #Method #Groups of #Test
mutants

gz gzip-v0 7,050 89 1,997 214
gzip-v1 7,266 88 2,004 214
gzip-v2 7,975 104 2,276 214

gp grep-v0 10,929 133 11,114 470
grep-v1 12,555 149 12,472 470
grep-v2 13,128 155 12,959 470

xml xmlsecurity-v0 35,579 1,231 810 97
xmlsecurity-v1 35,622 1,234 810 97
xmlsecurity-v2 33,523 1,146 823 95

tm time&money-v0 1,589 212 189 104
time&money-v1 2,124 212 278 146

jg jgrapht-v0 8,605 310 194 48
jgrapht-v1 11,251 377 292 63

whereas the ideal optimal technique takes the
ultimate goal (i.e., detected faults) as a goal
in scheduling test cases. Thus, the ideal opti-
mal technique is expected to produce an ideal
execution order of test cases, although the
ideal technique is not practical. To learn the
difference between the optimal technique and
the ideal technique, we perform a one-way
ANOVA analysis for the APxC results and the
APFD results between the optimal technique
and the ideal optimal technique, whose analy-
sis results are shown by Table 11 and Table 12.
As there are a huge number of APFD results
(over 1,000,000) for each C subject, we cannot
conduct the one-way ANOVA analysis using
SPSS on our PC. Therefore, for each C program
(i.e., gzip-v0, gzip-v1, gzip-v2, grep-v0, grep-
v1, and grep-v2), we conducted the one-way
ANOVA analysis on the results of all test suites
consisting of the same number of test cases
separately, and recorded their analysis results.
Then for each C subject (i.e., gzip and grep)
we listed the range of their analysis results in
Table 12. From this table, the optimal technique
significantly outperforms the ideal technique
in terms of APxC results, but the latter sig-
nificantly outperforms the former in terms of
APFD results.

Similarly, we perform a one-way ANOVA
analysis for the APxC results and the APFD
results between the additional technique and
the ideal optimal technique, whose analysis re-
sults are shown by Table 13 and Table 14. From
this table, we got the similar conclusion as
the comparison between the optimal technique

TABLE 11
ANOVA Analysis on APxC Results between the

Optimal Technique and the Ideal Technique

Test-case prioritization on method coverage
gz gp xml tm jg

F-value 12151.32 9721.26 19.81 456.15 7.51
p-value 0.00 0.00 0.00 0.00 0.01
Result R R R R R

Test-case prioritization on statement coverage
gz gp xml tm jg

F-value 19306.51 7880.10 35.91 218.34 7.38
p-value 0.00 0.00 0.00 0.00 0.01
Result R R R R R

TABLE 12
ANOVA Analysis on APFD Results between the

Optimal Technique and the Ideal Technique

Test-case prioritization on method coverage
gz gp xml tm jg

F-value 82.89-
1111065.00

23747.13-
31228.53

598.97 300.95 376.66

p-value 0.00 0.00 0.00 0.00 0.00
Result R R R R R

Test-case prioritization on statement coverage
gz gp xml tm jg

F-value 22.28-
1066038.00

13998.26-
30333.62

516.58 339.68 391.00

p-value 0.00 0.00 0.00 0.00 0.00
Result R R R R R

and the ideal technique. That is, the additional
technique significantly outperforms the ideal
technique in terms of APxC results, but the
latter significantly outperforms the former in
terms of APFD results.

From this study, the ideal optimal test-case
prioritization achieves the best APFD results
but the worst APxC results. This observation
also consolidates our findings in the first study.
That is, it is not worthwhile to purse optimality

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

TABLE 13
ANOVA Analysis on APxC Results between the
Additional Technique and the Ideal Technique

Test-case prioritization on method coverage
gz gp xml tm jg

F-value 10944.93 9325.92 19.66 455.86 7.51
p-value 0.00 0.00 0.00 0.00 0.01
Result R R R R R

Test-case prioritization on statement coverage
gz gp xml tm jg

F-value 16341.50 6724.87 35.77 218.25 7.38
p-value 0.00 0.00 0.00 0.00 0.01
Result R R R R R

TABLE 14
ANOVA Analysis on APFD Results between the
Additional Technique and the Ideal Technique

Test-case prioritization on method coverage
gz gp xml tm jg

F-value 68.63-
17492.00

24618.58-
30140.31

600.42 253.92 438.16

p-value 0.00 0.00 0.00 0.00 0.00
Result R R R R R

Test-case prioritization on statement coverage
gz gp xml tm jg

F-value 26.28-
20885.99

13818.13-
28622.88

525.88 263.44 382.03

p-value 0.00 0.00 0.00 0.00 0.00
Result R R R R R

by taking the coverage as an intermediate goal
in test-case prioritization.

6 DISCUSSION

In this section, we discuss some related issues.
First, due to the difference between the ul-

timate goal (i.e., APFD) and the intermediate
goal (i.e., APxC), when pursing the maximum
APxC values, the optimal coverage-based test-
case prioritization technique generates some
scheduled test suites that overfit for the APxC
values and have smaller APFD values than
the simple additional coverage-based test-case
prioritization technique. As the fault-detection
capability of test cases is unknown without
running test cases, it is impossible to use the
ultimate goal to guide test-case prioritization
and thus it is necessary to use an intermediate
goal instead. To bridge the gap between the
ultimate goal and the intermediate goal and
overcome the overfitting problem in optimal
test-case prioritization, researchers may tune
the intermediate goal slightly. For example, in

our previous work [22], we unified the two typ-
ical greedy test-case prioritization techniques
(i.e., the total test-case prioritization and the
additional test-case prioritization techniques)
by using a parameter p on APxC.

Second, although our empirical study is on
test-case prioritization, its conclusions may be
generalized to other software-testing tasks [26],
[27] (e.g., test-suite reduction [28]). Test-
case prioritization is only one of the typical
software-testing tasks with the characteristics
that pursing the intermediate-goal optimal-
ity may become overfit for the intermediate
goal and thus become less effective than some
heuristic or greedy techniques for the ultimate
goal. Other software-testing tasks share the
same characteristics. Test-suite reduction is pro-
posed in regression testing, whose aim is to
find the minimal set of the existing test suite
so that the minimal subset has the same fault-
detection capability as the whole test suite.
As it is impossible to know the fault-detection
capability of test cases without running test
cases, researchers in test-suite reduction also
tend to use intermediate goals (e.g., structural
coverage) to replace the ultimate goal (i.e.,
fault-detection capability). When pursing the
optimality, existing test-suite reduction based
on ultimate goals may also become less ef-
fective when measured on the ultimate goal.
In this article, we have investigated this prob-
lem based on the empirical study of test-
case prioritization due to effort limit; a similar
problem occurs in many other software-testing
tasks and the conclusions from the empirical
study may be generalized. In other words, re-
searchers should take precautions in pursuing
optimal solutions using the intermediate goal.

7 RELATED WORK

Test-case prioritization is an optimization prob-
lem, similar to test-suite reduction, which is
conceptually related to the set cover problem
and the hitting set problem. For ease of presen-
tation, we classify existing research on test-case
prioritization into four groups.

The first group focuses on investigating
various coverage criteria for test-case
prioritization [29]. Besides statement

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

coverage, researchers have also investigated
function/method coverage [1], branch
coverage [30], definition-use association
coverage, modified condition/decision
coverage [31], specification coverage [32],
the ordered sequence of program entities [33].
Furthermore, Korel et al. [3], [34] proposed
model-based test-case prioritization, which
first maps the change on the source code to
model elements and then schedules the order
of test cases based on their relevance to these
model elements. As our research focuses on
prioritization strategies, we adopt two typical
coverage criteria in our empirical study:
statement coverage and function/method
coverage. Different from these coverage-based
techniques, Ledru et al. [35] do not assume
the existence of code or specification and thus
proposed a prioritization technique based on
the string distances on the text of test cases,
which may be useful for initial testing.

The second group focuses on strategies for
test-case prioritization. Besides the additional
strategy, researchers have also widely investi-
gated the random strategy and the total strat-
egy. Li et al. [4] investigated some optimization
techniques based on genetic algorithms and
hill climbing for test-case prioritization. Their
APxC results show that the additional strategy
outperforms both the strategy based on a ge-
netic algorithm and the strategy based on hill
climbing, but the differences are insignificant.
Different from their work, in this article, we
formalize optimal coverage-based test-case pri-
oritization as an ILP problem. Furthermore, Li
et al. [36] conducted a simulation experiment to
study five search algorithms for test-case prior-
itization, including the total greedy algorithm,
the additional greedy algorithm, the 2-optimal
greedy algorithm, the hill climbing algorithm,
and the genetic algorithm. Their results show
that the additional greedy algorithm and the
2-optimal greedy algorithm are both preferable
and outperform the others. Jiang et al. [10] in-
vestigated a random adaptive strategy for test-
case prioritization. According to their results,
the random adaptive strategy is less effective
in terms of APFD but also less costly than the
additional strategy. Hao et al. [37] combined
the output of test cases to improve test-case pri-

oritization and this technique sometimes out-
performs the total and the additional strategies
in terms of APFD. Zhang et al. [22], [23] in-
vestigated strategies with mixed flavor of the
additional strategy and the total strategy. Their
results demonstrate that there are mixed strate-
gies that can significantly outperform both the
additional strategy and the total strategy in
terms of APFD.

Our research focuses on investigating empir-
ical properties of the optimal strategy in terms
of APxC. To our knowledge, our research is the
first study on the optimal strategy.

The third group focuses on practical con-
straints (e.g., fault severity [38] and time bud-
get [11]) in test-case prioritization. For example,
as time constraints may strongly affect the be-
havior of test-case prioritization, Suri and Sing-
hal [39] proposed an ant colony optimization
based technique to prioritize test cases with
time constraints. Do et al. [40] conducted a
series of experiments to evaluate the effects
of time constraints on the costs and benefits
of test-case prioritization. Marijan et al. [41]
proposed to use the test execution time as a
constraint and scheduled the execution order of
test cases based on historical failure data, test
execution time, and domain-specific heuristics
for industrial conferencing software in continu-
ous regression testing. As the cost of test cases
and severity of faults vary, Huang et al. [42]
proposed a cost-cognizant technique using his-
torical records from the latest regression test-
ing, which determines the execution order with
a genetic algorithm. Zhang et al. [43] proposed
to prioritize test cases based on varying test
requirement priorities and test case costs by
adapting existing test-case prioritization tech-
niques. Note that the ILP model proposed by
Zhang et al. [11] is for selecting test cases under
the time constraint, but not a prioritization
strategy like the ILP model presented in this
article. Our research reported in this article
focuses on investigating the optimal strategy in
the context without these practical constraints.
However, it should be interesting to further in-
vestigate the optimal strategy in contexts with
one or more practical constraints.

The fourth group focuses on empirical stud-
ies on test-case prioritization [1], [2], [6]. Exist-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

ing empirical studies investigate various fac-
tors (e.g., programming languages [44], cover-
age granularity [2], fault type [18], [21]) that
may influence the effectiveness of existing test-
case prioritization techniques, whereas our em-
pirical study investigates empirical differences
between the additional strategy and the opti-
mal strategy. However, it may also be interest-
ing to further investigate the influencing factors
for the optimal strategy.

Furthermore, some researchers apply test-
case prioritization to solve other software-
engineering problems, e.g., mutation testing,
fault localization. Zhang et al. [45] proposed
to prioritize test cases based on the order that
a test case killing the mutant is run earlier to
reduce the cost of mutation testing. Sánchez
et al. [46] proposed to apply test-case priori-
tization to testing software product lines. Yoo
et al. [47] proposed a cluster-based test-case
prioritization technique, which first clusters
test cases using the agglomerative hierarchical
clustering technique and then prioritizes these
clusters to reduce human involvement in test-
case prioritization.

8 CONCLUSION

As the additional strategy for coverage-based
test-case prioritization is surprisingly compet-
itive according to some prior work, we are
curious about how the optimal strategy for
coverage-based test-case prioritization would
perform differently from the additional strat-
egy for coverage-based test-case prioritization.
Therefore, we have conducted an empirical
study on comparing these two strategies (us-
ing APxC, APFD, and execution time) with
statement coverage and method coverage. Ac-
cording to our empirical results, the optimal
strategy is only slightly more effective than the
additional strategy with regard to APxC, but
significantly less effective than the additional
strategy with regard to both APFD and the
execution time, demonstrating the inferiority of
the optimal strategy in practice. Furthermore,
we have implemented the ideal optimal strat-
egy. Taking this strategy as the upper bound
of test-case prioritization, we have conducted

another empirical study on comparing the ef-
fectiveness of the optimal and the additional
strategies. From this empirical study, the ideal
strategy significantly outperforms the optimal
and additional strategies in terms of APFD, but
significantly worse in terms of APxC.

Therefore, when pursing the optimality in
test-case prioritization using the intermediate
goal (i.e., APxC), the produced solutions are
overfit for this goal and less effective than
solutions produced by the greedy technique
in terms of the ultimate goal (i.e., APFD).
This conclusion indicates that it may not be
worthwhile to pursue the optimality in test-
case prioritization by taking coverage as an
intermediate goal considering the efforts. In
future work, we plan to further investigate the
optimality issue in other software-testing tasks
(e.g., test-case generation or test-suite reduc-
tion).

ACKNOWLEDGMENTS

This work is supported by the National 973
Program of China No. 2015CB352201, the Na-
tional Natural Science Foundation of China
under Grants No.61421091, 61225007, 61529201,
61522201, and 61272157. This work is also
supported by the National Science Foun-
dation of the United States under grants
No. CCF-1349666, CCF-1409423, CNS-1434582,
CCF-1434590, CCF-1434596, CNS-1439481, and
CNS-1513939. Besides, we would like to thank
Shanshan Hou, Xinyi Wan, and Chao Guo.
They contributed to the early discussion of this
work.

REFERENCES

[1] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritiz-
ing test cases for regression testing,” in Proceedings of the
International Symposium on Software Testing and Analysis,
2000, pp. 102–112.

[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test
case prioritization: A family of empirical studies,” IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp. 159–
182, 2002.

[3] B. Korel, L. H. Tahat, and M. Harman, “Test prioritization
using system models,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance, 2005, pp.
559–568.

[4] Z. Li, M. Harman, and R. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Transactions
on Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 20

[5] C. D. Nguyen, A. Marchetto, and P. Tonella, “Test case
prioritization for audit testing of evolving Web services
using information retrieval techniques,” in Proceedings of
the 9th International Conference on Web Services, 2011, pp.
636–643.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 10, pp. 929–948,
2001.

[7] W. Wong, J. Horgan, S. London, and H. Agrawal, “A
study of effective regression testing in practice,” in Pro-
ceedings of the International Symposium on Software Reliabil-
ity Engineering, 1997, pp. 230–238.

[8] S. Yoo and M. Harman, “Regression testing minimisation,
selection and prioritisation: A survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[9] S. Hou, L. Zhang, T. Xie, and J. Sun, “Quota-constrained
test-case prioritization for regression testing of service-
centric systems,” in Proceedings of the International Confer-
ence on Software Maintenance, 2008, pp. 257–266.

[10] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive
random test case prioritization,” in Proceedings of the 24th
IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 257–266.

[11] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-
aware test-case prioritization using integer linear pro-
gramming,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2009, pp. 213–224.

[12] H. Williams, Model Building in Mathematical Programming.
New York: John Wiley, 1993.

[13] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incor-
porating varying test costs and fault severities into test
case prioritization,” in Proceedings of the 23rd International
Conference on Software Engineering, 2001, pp. 329–338.

[14] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial
interaction regression testing: A study of test case gener-
ation and prioritization,” in Proceedings of the 23rd IEEE
International Conference on Software Maintenance, 2007, pp.
255–264.

[15] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel, “A static approach to prioritizing JUnit test
cases,” IEEE Transactions on Software Engineering, vol. 38,
no. 6, pp. 1258–1275, 2012.

[16] B. Jiang and W. K. Chan, “Input-based adaptive ran-
domized test case prioritization: A local beam search
approach,” Journal of Systems and Software, vol. 105, pp.
91–106, 2015.

[17] L. Mei, Y. Cai, C. Jia, B. Jiang, W. K. Chan, Z. Zhang,
and T. H. Tse, “A subsumption hierarchy of test case
prioritization for composite services,” IEEE Transactions
on Services Computing, vol. 8, no. 5, pp. 658–673, 2015.

[18] H. Do and G. Rothermel, “A controlled experiment as-
sessing test case prioritization techniques via mutation
faults,” in Proceedings of the 21st International Conference
on Software Maintenance, 2005, pp. 411–420.

[19] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: An auto-
mated class mutation system,” Software Testing, Verification
and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

[20] M.E.Delamaro and J. C. Maldonado, “Proteum - A tool
for the assessment of test adequacy for C programs,” in
Proceedings of the International Conference on Performability
in Computing Systems, 1996, pp. 79–95.

[21] H. Do and G. Rothermel, “On the use of mutation faults
in empirical assessments of test case prioritization tech-

niques,” IEEE Transactions on Software Engineering, vol. 32,
no. 9, pp. 733–752, 2006.

[22] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei,
“Bridging the gap between the total and additional test-
case prioritization strategies,” in Proceedings of the 35th
International Conference on Software Engineering, 2013, pp.
192–201.

[23] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei,
“A unified test case prioritization approach,” ACM Trans-
actions on Software Engineering and Methodology, vol. 24,
no. 2, p. 10, 2014.

[24] J. Andrews, L. Briand, and Y. Labiche, “An empirical com-
parison of test suite reduction techniques for user-session-
based testing of Web applications,” in Proceedings of the
27th IEEE International Conference on Software Engineering,
2005, pp. 402–411.

[25] D. Schuler and A. Zeller, “Javalanche: Efficient mutation
testing for Java,” in Proceedings of the ACM Symposium on
Foundations of Software Engineering, 2009, pp. 297–298.

[26] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Zhou, “A revisit
of the tree studies related to random testing,” SCIENCE
CHINA Information Sciences, vol. 58, no. 5, 2015.

[27] W. TSAI, X. Bai, and Y. Huang, “Software-as-a-service
(SaaS): Perspectives and challenges,” SCIENCE CHINA
Information Sciences, vol. 57, no. 5, 2014.

[28] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel,
“On-demand test suite reduction,” in Proceedings of 34th
International Conference on Software Engineering, 2012, pp.
738–748.

[29] C. Fang, Z. Chen, and B. Xu, “Comparing logic cover-
age criteria on test case prioritization,” SCIENCE CHINA
Information Sciences, vol. 55, no. 12, 2012.

[30] M. Baluda, P. Braione, G. Denaro, and M. Pezz, “En-
hancing structural software coverage by incrementally
computing branch executability,” Software Quality Journal,
vol. 19, no. 4, pp. 725–751, 2011.

[31] J. A. Jones and M. J. Harrold, “Test-suite reduction and
prioritization for modified condition/decision coverage,”
IEEE Transactions on Software Engineering, vol. 29, no. 3,
pp. 195–209, 2003.

[32] G. Kovacs, G. A. Nemeth, M. Subramaniam, and Z. Pap,
“Optimal string edit distance based test suite reduction
for SDL specifications,” in Proceedings of the 14th Interna-
tional SDL Conference on Design for Motes and Mobiles, 2009,
pp. 82–97.

[33] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-
based test case prioritization using ordered sequences of
program entities,” Software Quality Journal, vol. 22, pp.
335–361, 2014.

[34] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Applica-
tion of system models in regression test suite prioritiza-
tion,” in Proceedings of the IEEE International Conference on
Software Maintenance, 2008, pp. 247–256.

[35] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran,
“Prioritizing test cases with string distances,” Automated
Software Engineering, vol. 19, no. 1, pp. 65–95, 2012.

[36] S. Li, N. Bian, Z. Chen, D. You, and Y. He, “A simula-
tion study on some search algorithms for regression test
case prioritization,” in Proceedings of the 10th International
Conference on Quality Software, 2010, pp. 72–81.

[37] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case
prioritization guided by output inspectation,” in Proceed-
ings of the 37th Annual International Computer Software and
Applications Conference, 2013, pp. 169–179.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 21

[38] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos, “Time-aware test suite prioritization,” in Proceed-
ings of the International Symposium on Software Testing and
Analysis, 2006, pp. 1–11.

[39] B. Suri and S. Singhal, “Analyzing test case selection
& prioritization using ACO,” ACM SIGSOFT Software
Engineering Notes, vol. 36, no. 6, pp. 1–5, 2011.

[40] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The
effects of time constraints on test case prioritization: A
series of controlled experiments,” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 593–617, 2010.

[41] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioriti-
zation for continuous regression testing: An industrial
case study,” in Proceedings of the 29th IEEE International
Conference on Software Maintenance, 2013, pp. 540–543.

[42] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-
based cost-cognizant test case prioritization technique in
regression testing,” Journal of Systems and Software, vol. 85,
no. 3, pp. 626–637, 2012.

[43] X. Zhang, C. Nie, B. Xu, and B. Qu, “Test case prioritiza-
tion based on varying test requirement priorities and test
case costs,” in Proceedings of the 7th International Conference
on Quality Software, 2007, pp. 15–24.

[44] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing JU-
nit test cases: An empirical assessment and cost-benefits
analysis,” Empirical Software Engineering, vol. 11, no. 1, pp.
33–70, 2006.

[45] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation
testing inspired by test prioritization and reduction,” in
Proceedings of the 2013 International Symposium on Software
Testing and Analysis, 2013, pp. 235–245.

[46] S. S. Ana B. Sánchez and A. Ruiz-Cortés, “A comparison
of test case prioritization criteria for software product
lines,” in Proceedings of the 7th IEEE International Conference
on Software Testing, 2014, pp. 41–50.

[47] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering
test cases to achieve effective & scalable prioritisation
incorporating expert knowledge,” in Proceedings of the 18th
International Symposium on Software Testing and Analysis,
2009, pp. 201–211.

Dan Hao is an Associate professor at
the School of Electronics Engineering and
Computer Science, Peking University, P.R.
China. She received her Ph.D. in Computer
Science from Peking University in 2008,
and the B.S. in Computer Science from the
Harbin Institute of Technology in 2002. Her
current research interests include software
testing and debugging. She is a senior

member of ACM.

Lu Zhang is a professor at the School
of Electronics Engineering and Computer
Science, Peking University, P.R. China. He
received both PhD and BSc in Computer
Science from Peking University in 2000
and 1995 respectively. He was a postdoc-
toral researcher in Oxford Brookes Uni-
versity and University of Liverpool, UK.
He served on the program committees of

many prestigious conferences, such FSE, ISSTA, and ASE. He
was a program co-chair of SCAM2008 and will be a program
co-chair of ICSM17. He has been on the editorial boards of
Journal of Software Maintenance and Evolution: Research and
Practice and Software Testing, Verification and Reliability. His
current research interests include software testing and analysis,
program comprehension, software maintenance and evolution,
software reuse and component-based software development,
and service computing.

Lei Zang is a third-year Computer Science
Master student from Software Engineering
Institute, Peking University. He will gradu-
ate in the July of 2016 and become a soft-
ware engineer. His current research inter-
ests include software testing and analysis.

Yanbo Wang is a PhD student in the De-
partment of Regional Economics, School
of Government, Peking University. He re-
ceived his B.S. in software engineering
from Huazhong University of Science and
Technology, Wuhan, China, in 2012. His
major interests are in the areas of complex
system, complex dynamics and economic
computation.

Xingxia Wu is a software engineer at a re-
gional bank, China. She received both the
BS and MS degrees in computer science
from Peking University. Her research inter-
ests include software testing and analysis.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 22

Tao Xie is an Associate Professor in the
Department of Computer Science at the
University of Illinois at Urbana-Champaign,
USA. His research interests are software
testing, program analysis, software analyt-
ics, software security, and educational soft-
ware engineering. He is a senior member
of IEEE.

