

To BLISS-B or not to be : attacking strong Swan's
implementation of post-quantum signatures
Citation for published version (APA):
Pessl, P., Groot Bruinderink, L., & Yarom, Y. (2017). To BLISS-B or not to be : attacking strong Swan's
implementation of post-quantum signatures. In B. M. Thuraisingham, D. Evans, T. Malkin, & D. Xu (Eds.), CCS
2017 - Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp.
1843-1855). Association for Computing Machinery, Inc. https://doi.org/10.1145/3133956.3134023

DOI:
10.1145/3133956.3134023

Document status and date:
Published: 01/01/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3133956.3134023
https://research.tue.nl/en/publications/148660e3-7328-40c7-a98c-2de850ccd1f7

To BLISS-B or not to be - Attacking strongSwan's
Implementation of Post-Quantum Signatures
Pessl, Peter; Groot Bruinderink, L.; Yarom, Yuval

DOI:
10.1145/3133956.3134023

Published: 01/01/2017

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Pessl, P., Bruinderink, L. G., & Yarom, Y. To BLISS-B or not to be - Attacking strongSwan's Implementation of
Post-Quantum Signatures DOI: 10.1145/3133956.3134023

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Feb. 2018

http://dx.doi.org/10.1145/3133956.3134023
https://research.tue.nl/en/publications/to-blissb-or-not-to-be--attacking-strongswans-implementation-of-postquantum-signatures(323a68b7-9a34-4f8e-9b79-e8b1b6c3b46d).html

To BLISS-B or not to be - A�acking strongSwan’s
Implementation of Post-�antum Signatures

Peter Pessl
Graz University of Technology

peter.pessl@iaik.tugraz.at

Leon Groot Bruinderink
Technische Universiteit Eindhoven

l.groot.bruinderink@tue.nl

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

ABSTRACT

In the search for post-quantum secure alternatives to RSA and ECC,
lattice-based cryptography appears to be an attractive and e�cient
option. A particularly interesting lattice-based signature scheme is
BLISS, o�ering key and signature sizes in the range of RSA moduli.
A range of works on e�cient implementations of BLISS is available,
and the scheme has seen a �rst real-world adoption in strongSwan,
an IPsec-based VPN suite. In contrast, the implementation-security
aspects of BLISS, and lattice-based cryptography in general, are
still largely unexplored.

At CHES 2016, Groot Bruinderink et al. presented the �rst side-
channel attack on BLISS, thus proving that this topic cannot be
neglected. Nevertheless, their attack has some limitations. First, the
technique is demonstrated via a proof-of-concept experiment that
was not performed under realistic attack settings. Furthermore, the
attack does not apply to BLISS-B, an improved variant of BLISS and
also the default option in strongSwan. This problem also applies to
later works on implementation security of BLISS.

In this work, we solve both of the above problems. We present a
new side-channel key-recovery algorithm against both the original
BLISS and the BLISS-B variant. Our key-recovery algorithm draws
on a wide array of techniques, including learning-parity with noise,
integer programs, maximimum likelihood tests, and a lattice-basis
reduction. With each application of a technique, we reveal addi-
tional information on the secret key culminating in a complete key
recovery.

Finally, we show that cache attacks on post-quantum cryptogra-
phy are not only possible, but also practical. We mount an asynchro-
nous cache attack on the production-grade BLISS-B implementation
of strongSwan. The attack recovers the secret signing key after ob-
serving roughly 6 000 signature generations.

KEYWORDS

lattice-based cryptography; side-channel analysis; signatures; cache
attacks; learning parity with noise; lattice reduction

1 INTRODUCTION

Quantum computing might eventually break all widespread public-
key cryptosystems. A recent estimate [26] states that quantum
computers able to factor currently-used RSA moduli could be avail-
able as early as 2030. This outlook causes serious concerns and
has lead to increased e�orts in the search for post-quantum secure
alternatives. Recently, the NSA issued an advisory stating that a
shift to quantum-resistent cryptography is likely in the near fu-
ture [30] and standardization bodies also started to look into this
matter, as demonstrated by NIST’s current call for proposals [28].
Modern post-quantum cryptography has also already seen (limited)
real-world evaluation, e.g., the experiments with the NewHope [2]
key-exchange by Google in their Chrome browser [11, 22].

Cryptography based on lattices has proven to be a particularly
e�cient candidate. For example, the Bimodal Lattice Signature
Scheme (BLISS), which was proposed by Ducas, Durmus, Lepoint,
and Lyubashevsky [14], o�ers key sizes in the range of current RSA
moduli, with similar security levels. Additionally, it o�ers favorable
runtime on a large set of platforms, ranging from FPGAs [39] to
microcontrollers [29]. It has also seen adoption in the strongSwan
IPsec-based VPN suite [45].

In contrast to the emerging real-world adoption and the large
body of work targeting e�cient implementation of lattice-based
primitives, the implementation-security aspect is still a very open
and under-explored topic. In 2016, Groot Bruinderink et al. [19]
presented the �rst side-channel attack on BLISS. Their attack tar-
gets a noise vector which is sampled from the discrete Gaussian
distribution and used to hide any information on the secret key in
the signature. Dedicated algorithms, e.g., those proposed by the
authors of BLISS, are used to sample from this distribution. By
means of a cache attack on these samplers, Groot Bruinderink et
al. are able to retrieve estimations of some elements of the noise
vector. Using the signature and recovered noise elements of many
signing operations, they then recover the secret key by means of a
lattice reduction.

However, their attack has some shortcomings. First, in their
proof-of-concept cache attack they target the “research-oriented”
reference implementation of BLISS 1. They also modi�ed its code
in order to achieve perfect synchronization of the attacker with
the calls to the sampler. While this method demonstrates the exis-
tence and exploitability of the side-channel, it is not a realistic and
practical setting.

Second, and maybe more importantly, their attack does not apply
to BLISS-B, an improved version of BLISS proposed by Ducas [13]

1The reference implementation is available at http://bliss.di.ens.fr/

http://bliss.di.ens.fr/

that accelerates the signing operation by a factor of up to 2.8, de-
pending on the used parameter set. Due to its better performance,
this new variant is used in strongSwan per default.

The attack target. The main operation in BLISS is to multiply the
secret key swith a binary challenge vector c and add a noise vector y
which is sampled at random from a discrete Gaussian distribution.
The result z = y + (−1)b (s · c), where b is a random bit, together
with the challenge vector c form the signature. Using the recovered
values of y over many signatures, Groot Bruinderink et al. [19]
construct a lattice from the challenge vectors such that s is part
of the solution to the shortest vector problem in that lattice. This
short vector is found using a lattice-basis reduction.

In BLISS-B, however, the secret s is multiplied with a ternary
polynomial c′ ∈ {−1, 0, 1}n for which c′ ≡ c mod 2. Still, only
the binary version c is part of the signature and c′ is undisclosed.
Thus, the signs of the coe�cients of the used challenge vectors
are unknown and constructing the appropriate lattice to �nd s is
infeasible for secure parameters. Note that this problem (or similar
ones) are also present in other works on implementation attacks
on the original BLISS, both for side-channel attacks [35] as well
as fault attacks [9, 16]. Hence, one might be tempted to think of
BLISS-B as a “free” side-channel countermeasure.

Our contributions. In this work we show that this is not the case.
First, we present a new key-recovery attack that can, given side-
channel information on the Gaussian samples in y, recover the
secret key s. Apart from being applicable to BLISS-B, this new key
recovery approach can also increase the e�ciency (in the number
of required side-channel measurements) of earlier attacks on the
original BLISS [19, 35]. And second, we use this new key-recovery
approach to mount an asynchronous cache attack on the BLISS
implementation provided by strongSwan. Hence, we attack a real-
world implementation under realistic settings.

Our key-recovery method consists of four steps:

• In the �rst step, we use side channels to gather information
on the noise vector. We use these leaked values, together
with known challenge vector elements, to construct a linear
system of equations. However, the signs in this system are
unknown. (Section 4.1)

• In the second step, we solve the above system. We circum-
navigate the problem of unknown signs by using the fact
that −1 ≡ 1 mod 2. That is, we �rst solve the linear system
over the bits, i.e., in GF(2), instead of over the integers.
Due to errors in the side channel the linear system may
include some errors. Solving such a system is known as
the Learning Parity with Noise (LPN) problem. We use an
LPN solving algorithm to learn the parity of the secret key
elements, i.e. to �nd s mod 2 (Section 4.2).

• In some parameter sets (cf. Section 2.2), the key s ∈ {0,±1}n
and thus the above already uniquely determines the magni-
tude of the coe�cients. In others, however, the secret key
can also have some coe�cients with ±2, which have parity
zero. In the third step, we employ one of two heuristics
(depending on the parameter set) to identify those, both
exploit the magnitude of the coe�cients of s · c′. The �rst
heuristic uses an Integer Programming solver. The second
uses a Maximum Likelihood estimate. (Section 4.3)

• At this stage we know the magnitude of each of the coef-
�cients of the secret key s. In the fourth step, we �nalize
the attack and extract s. We construct a Shortest Vector
Problem (SVP) based on the public key and the known
information about the secret key. We solve this problem
using the BKZ lattice-reduction algorithm. (Section 4.4)

When using the idealized cache-attack presented by Groot Bruin-
derink et al. [19] and the BLISS-I parameter set, our new method
can reduce the number of required signatures from 450 to 325. Fur-
thermore, we also apply the key-recovery technique to an attack
on the shu�ing countermeasure by Pessl [35]. There, our attack
reduces the number of required signatures by a factor of up to 22.

We then perform a cache attack on the BLISS-B implementation
which is deployed as part of the strongSwan VPN software. Unlike
Groot Bruinderink et al. [19], our adversary is asynchronous and
runs in a di�erent process than the victim. The adversary uses
the Flush+Reload attack by Yarom and Falkner [49], combined
with the ampli�cation attack of Allan et al. [3]. Furthermore, we
target a real-world implementation and not a research-oriented
reference implementation. Consequently, our attack scenario is
much more realistic. While strongSwan does not claim any side-
channel security, our results still show that practical attacks on the
BLISS family are feasible.

Outline. In Section 2, we recall BLISS, discrete Gaussians and sam-
pling methods. Then, in Section 3 we discuss previous work on side
channel analysis and countermeasures on BLISS. We then show our
improved key-recovery attack in Section 4. We evaluate our new
method in Section 5 by comparing it to earlier work. In Section 6,
we perform a full attack on the BLISS implementation provided by
strongSwan. Finally, we conclude in Section 7.

2 PRELIMINARIES

In this section, we brie�y describe background concepts required
for the rest of the paper. These include lattices, the BLISS signature
scheme [13, 14], the discrete Gaussian distribution and methods to
sample from this distribution, and the Learning Parity with Noise
(LPN) problem.

2.1 Lattices

A lattice Λ is a discrete subgroup of Rn . When given m linearly
independent vectors b1, . . . , bm ∈ Rn , the lattice Λ(b1, . . . , bm)
contains all of the points that are integer linear combinations of
the basis vectors:

Λ(b1, . . . , bm) =
{

m
∑

i=1

bixi |xi ∈ Z
}

We call B = (b1, . . . , bm) the basis matrix of the lattice, with n

the dimension andm the rank of the lattice. Lattice bases are not
unique: for each full-rank basis B ∈ Rn×n of Λ, one can apply a
unimodular matrix U ∈ Zn×n , such that UB is also a basis of Λ.
There exist lattice-basis reduction algorithms that are aimed at
�nding a good basis, which consists of short and nearly orthogonal
vectors. The most important of these algorithms are the LLL [23]
as well as BKZ and its improved versions [12]. These algorithms
output a new basis B′ which satis�es certain conditions. Besides

2

outputting B′, LLL and BKZ implementations (such as [43]) can
also output U such that B′ = UB.

For cryptographic purposes one often uses q-ary lattices. Simply
speaking, for a vector v ∈ Λ, all vectors u with u ≡ v mod q are
also in the lattice. In order to save memory and decrease execution
time, the most e�cient lattice-based cryptographic constructions
introduce additional structure into the lattices they use. That is, they
work with the polynomial ring Rq = Zq [x]/⟨xn + 1⟩, with q being
a prime and n a power of 2. An element a ∈ Rq can be described by
its coe�cient vector a = (a0, . . . ,an−1). Note that we will use bold-
face to interchangeably denote polynomials and their coe�cient
vectors. Addition of two polynomials a, b is simply the component-
wise addition mod q. Multiplication of two polynomials a, b ∈ Rq
will be denoted by a · b, and can be represented as a matrix-vector
product, i.e., a · b = aB = bA, where the columns of A,B ∈ Zn×nq

are negacyclic rotations of a and b, respectively. The computation
of the i-th coe�cient of the product a · b can be written as ⟨a, bi ⟩,
with bi the i-th column of matrix B.

2.2 Bimodal Lattice Signature Scheme (BLISS)

The most e�cient instantiation of BLISS operates over the ring Rq .
Key generation for the improved version BLISS-B [13] is shown
in Algorithm 1. During key generation, two polynomials f , g with
exactly d1 = δ1n coe�cients in {±1}, d2 = δ2n coe�cients in {±2},
and all remaining elements being 0, are sampled. n, δ1, δ2, and q
are part of the parameter set.

Algorithm 1 BLISS-B Key Generation Algorithm

Output: Public key A ∈ R22q , private key S ∈ R22q
1: Choose random polynomials f , g with d1 entries in {±1} and
d2 entries in {±2} until f is invertible

2: S = (s1, s2) = (f , 2g + 1)
3: aq = s2/s1 mod q

4: return (A, S), with A = (2aq ,q − 2) mod 2q

The BLISS-B signing procedure is given in Algorithm 2. In the
�rst step, two polynomials y1, y2 are sampled from a discrete Gauss-
ian distribution Dσ . The challenge vector c, used in the Fiat-Shamir
transform [17], is computed by invoking a hash function H. This
function returns a binary vector of length n and a Hamming weight
of exactly κ. GreedySC (Algorithm 3) then computes the product
Sc′ for some ternary vector c′ (this means c′ ∈ {−1, 0,+1}n) that
satis�es c′ ≡ c mod 2. Note that for the speci�c BLISS input
S = (s1, s2) ∈ R22q in GreedySC, we have m = 2n and si = S1i

for 0 ≤ i < n and si = S2i for n ≤ i < 2n where S1i and S2i are
the negacyclic rotations of s1 and s2, respectively. The generated c′

contains information on the secret key, hence it is kept secret and
not output as part of the signature. GreedySC is not part of the �rst
version of BLISS, which we will denote with BLISS-A. Instead, the
product Sc is used directly in BLISS-A, i.e., v1 = s1 · c. Depending
on a secret bit b, the outcome is then either added to or subtracted
from the noise polynomials y1, y2. A �nal rejection-sampling step
prevents any leakage of secret information. Parameters ζ , d , and
p, are used for signature compression, but they are not relevant in
the rest of this paper. The one exception is the following: due to

Algorithm 2 BLISS-B Signature Algorithm

Input: Message µ, public key A = (a1,q − 2), private key S =

(s1, s2)
Output: A signature (z1, z†2, c)
1: y1 ← Dn

σ , y2 ← Dn
σ

2: u = ζ · a1 · y1 + y2 mod 2q

3: c = H(⌊u⌉d mod p | |µ)
4: (v1, v2) = GreedySC(S, c)
5: Sample a uniformly random bit b
6: (z1, z2) = (y1, y2) + (−1)b (v1, v2)
7: Continue with some probability f (v, z), restart otherwise (de-

tails in [13])

8: z
†
2 = (⌊u⌉d − ⌊u − z2⌉d) mod p

9: return (z1, z†2, c)

Algorithm 3 GreedySC

Input: a matrix S ∈ Zm×n and a binary vector c ∈ Zn
Output: v = Sc′ for some c′ ≡ c mod 2

1: v = 0 ∈ Zn
2: for i ∈ Ic do
3: ζi = sgn(⟨v, si ⟩)
4: v = v − ζi si
5: return v

rounding of the second signature vector z†2 (Line 8 of Algorithm 2)
and the resulting loss of information on s2 · c, the attack in this
paper, like previous works, only concentrates on y1. We will omit
the index 1 of of z1, y1, and s1 in the next sections, and always
imply it if not mentioned otherwise.

For completeness, we also present the veri�cation algorithm in
Algorithm 4. The veri�cation algorithm is the same for both BLISS-
A and BLISS-B. For a more thorough explanation, we refer to the
original publications [13, 14].

Algorithm 4 BLISS Veri�cation Algorithm

Input: Message µ, public key A = (a1,q − 2) ∈ R22q , signature
(z1, z†2, c)

Output: Accept or reject the signature

1: if z1, z
†
2 violate certain bounds (details in [14]) then reject

2: accept i� c = H (⌊ζ · a1 · z1 + ζ · q · c⌉d + z†2 mod p, µ)

Ducas et al. [14] propose several parameter sets for di�erent
security levels. These remain unchanged for BLISS-B. We present
the parameters relevant to this paper in Table 1.

2.3 Discrete Gaussians

The discrete Gaussian distribution with standard deviation σ and
mean zero is denoted by Dσ . We denote a variable y sampled
from this distribution Dσ with y ← Dσ . The probability of sam-
pling a value x is given by Dσ (x) = ρσ (x)/ρσ (Z), with ρσ (x) =
exp(−x2/(2σ 2)) and the normalization constant ρσ (Z). Dn

σ denotes
an n-dimensional vector with elements independently sampled

3

Table 1: BLISS Parameter Sets

Parameter Set n q σ δ1,δ2 κ

BLISS-0 (Toy) 256 7681 100 0.55, 0.15 12

BLISS-I 512 12289 215 0.3, 0 23

BLISS-II 512 12289 107 0.3, 0 23

BLISS-III 512 12289 250 0.42, 0.03 30

BLISS-IV 512 12289 271 0.45, 0.03 39

from Dσ . Compared to lattice-based public-key encryption [25],
the standard deviation required for BLISS is relatively high. This
makes the e�cient implementation of samplers an especially taxing
task.

CDT sampler. The inversion method (or CDT sampling) appears
to be particularly e�cient. In this method, one �rst precomputes
and stores the (absolute value) cumulative distribution table (CDT),
i.e., a table T [y] = Pr(|x | < y |x ← Dσ) for y ∈ {0, . . . ,τσ } for
some tail-cut τ . Then, a uniformly random r ∈ [0, 1) is generated
and the y satisfying T [y] ≤ r < T [y + 1] is returned. Typically,
a binary search is used to �nd the correct index in the table. A
common method to speed up this search is to use so-called guide-

tables, which narrow down the initial search range based on, e.g.,
the �rst byte of r . A byte-oriented version of this entire method is
given in Algorithm 5, there Tj [i] denotes the j-th byte of the entry
at index i . For more details see, e.g., [39].

Algorithm 5 CDT Sampler using Guide Tables

Input: Guide table I , (absolute value) cumulative distribution table
T

Output: A value y′ sampled according to Dσ

1: Sample a uniformly random byte r0
2: [min,max] = I [r0]
3: i = (min +max)/2, j = 0, k = 0

4: while max-min > 1 do

5: if Tj [i] > r j then

6: min = i , i = (i +max)/2, j = 0

7: else if Tj [i] < r j then

8: max = i , i = (min + i)/2, j = 0

9: else

10: j = j + 1

11: if k < j then

12: Sample uniformly random byte r j , k = j

13: Sample a uniformly random bit s
14: if s = 1 then return −i
15: else return i

Bernoulli sampler (rejection sampling). The basic idea behind
rejection sampling is to sample a uniformly random integer y ∈
[−τσ ,τσ] and accept this sample with probability ρσ (y)/ρσ (Z).
For this, a uniformly random value r ∈ [0, 1) is sampled and y is
accepted if r ≤ ρσ (y).

For the case of the discrete Gaussian distribution with high
standard deviation, Ducas et al. [14] introduce a more e�cient

method called Bernoulli sampler. It uses the subroutine described in
Algorithm 6 to sample a bit b from B(exp(−x/f)), i.e., the Bernoulli
distribution B parametrized such that Pr(b = 1) = exp(−x/f). The
constant f depends on the standard deviation σ , while x varies.
Pseudocode for the Bernoulli sampler appears in Algorithm 7.

Algorithm 6 Sampling a bit from B(exp(−x/(2σ 2))) for x ∈ [0, 2ℓ)

Input: x ∈ [0, 2ℓ) an integer in binary form x = xℓ−1 . . . x0. Pre-
computed table E with E[i] = exp(−2i/(2σ 2)) for 0 ≤ i < ℓ

Output: A bit b from B(exp(−x/(2σ 2)))
1: for i = ℓ − 1 downto 0 do

2: if xi = 1 then

3: sample bit Ai from B(E[i])
4: if Ai = 0 then return 0

5: return 1

Algorithm 7 Bernoulli Sampler

Input: Standard deviation σ , integer K = ⌊ σσ2 + 1⌋ with σ
2
2 =

1
2 ln 2

Output: A value y′ sampled according to Dσ

1: Sample x ∈ Z according to D+σ2 (details in [14])
2: Sample z ∈ Z uniformly in {0, . . . ,K − 1}
3: Set y = Kx + z

4: sample b from B(exp(−z(z + 2Kx)/(2σ 2))) using Algorithm 6
5: if b = 0 then restart
6: if y = 0 then restart with probability 1/2
7: Sample uniformly random bit s and return (−1)sy

2.4 Learning Parity with Noise (LPN)

Wenow recall the Learning Parity with Noise (LPN) problem, whose
search version appears in De�nition 2.1.

De�nition 2.1 (Learning Parity with Noise). Let k ∈ GF(2n) and
ϵ ∈ (0, 0.5) be a constant noise rate. Then, given ν vectors ai ∈
GF(2n) and noisy observations bi = ⟨ai , k⟩ + ei , the ai sampled
uniformly, and the ei sampled from the Bernoulli distribution with
parameter ϵ , �nd k.

The most e�cient algorithms aimed at solving this problem are
based on the work of Blum, Kalai, and Wasserman [10]. Later work
then modi�ed and improved the BKW algorithm [20, 24]. While
these algorithms run in sub-exponential time, they tend to require a
large number of LPN samples as well as a lot of memory. A di�erent
approach is to view LPN as decoding a random linear code over the
binary �eld GF(2). While this second approach runs in exponential
time, it typically o�ers a negligible memory consumption and lower
sample requirements.

LPN is a well-researched problem and is used as a basis for cryp-
tographic constructions [37]. Furthermore, LPN solving algorithms
have also been used in side-channel attacks on binary-�eld multi-
plication [4, 5, 36]. The extension of this problem from the binary
�eld GF(2) to a prime �eld GF(q) is known as Learning with Errors
(LWE) [41] and is a major cornerstone in lattice-based cryptogra-
phy.

4

3 SIDE-CHANNEL ATTACKS ON BLISS

In this section, we brie�y describe previous work on side-channel
attacks on BLISS. We start with an introduction to cache-based
side channel attacks. We then discuss the attack of Groot Bruin-
derink et al. [19] on the BLISS algorithm, followed by the technique
Pessl [35] uses to overcome the shu�ing protection of Saarinen [42].

3.1 Cache Attacks

To bridge the speed gap between the faster processor and the slower
memory, modern processor architectures employ multiple caches
which store data that the processor predicts a program might use in
the future. While the cache does not change the logical behavior of
programs, it does a�ect their execution time. For the past 15 years,
it has been known that timing variations due to the cache state can
leak secret information about the execution of the program [7, 32,
46]. Over the years, many attacks that exploit the cache state have
been designed. For a survey of cache and other microarchitectural
attacks, see Ge et al. [18].

The Flush+Reload Attack. In this work we use the Flush+Reload
attack by Yarom and Falkner [49]. Flush+Reload exploits read-only
memory sharing, which is commonly used for sharing library code
in modern operating systems. The attack consists of two phases.
In the �ush phase, the attacker evicts the contents of a monitored
address from the cache. On Intel processors this is typically achieved
using the clflush instruction. The attacker then waits a bit before
performing the reload phase of the attack. In the reload phase, the
attacker reads the contents of the monitored memory address, while
measuring the time it takes to perform the read. If the victim has
accessed the monitored memory between the �ush and the reload
phases, the contents of the address will be cached and the attacker’s
read will be fast. Otherwise, the memory address will not be in the
cache and the read will be slow.

By repeatedly interleaving the �ush and the reload phases of
multiple locations, the attacker can create a trace of the victim uses
of the monitored locations over time. When the victim access pat-
terns depend on secret data, the attacker can use the trace to recover
the data. Flush+Reload has been used to attack RSA [49], AES [21],
ECDSA [6, 38, 48], as well as non-cryptographic software [31, 50].

Side-Channel Ampli�cation. Because Flush+Reload only moni-
tors victim accesses between the �ush and the reload phases, ac-
cesses that occur during these phases may be missed, resulting in
false negatives. The timing of victim accesses is mostly independent
of the attacker’s activity. Consequently, increasing the wait between
these phases reduces the probability of false negatives, albeit at the
cost of reduced temporal resolution. To mitigate the e�ects of the
reduced temporal resolution, Allan et al. [3] suggest slowing down
the victim. They demonstrate that by repeatedly evicting frequently-
used code from the cache, they are able to slow programs down
by a factor of up to 150. The combination of Flush+Reload and the
Allen et al. attack has been used for attacks on ECDSA [3, 33] and
DSA [34]

3.2 A Cache Attack on BLISS

At CHES 2016, Groot Bruinderink et al. [19] presented the �rst
side-channel attack on BLISS. Their cache attack targets the Gauss-
ian sampling component, they describe attacks on both the CDT
sampler (using Guide Tables) and the Bernoulli sampler described
in the previous section. Remember that we are omitting the index of
the vectors, as the attack only uses knowledge on z1 and y1. Recall
also that the i’th coe�cient of a signature vector can be written
as zi = yi + (−1)b ⟨s, ci ⟩. The vectors y and bit b are unknown to
the attacker, as is the secret vector s. Note that in this section we
consider previous work on the original BLISS scheme (BLISS-A), so
c ∈ {0, 1}n .

The core idea of the cache-attack of Groot Bruinderink et al. is
to exploit knowledge learned through cache-timing to gather infor-
mation on the table lookups performed during Gaussian sampling.
From this information, it is possible to derive a precise estimate of
some of the coe�cientsyi of y, and consequently recover the secret
key. For both previously mentioned samplers, they performed an
evaluation using ideal adversaries and practical experiments using
the Flush+Reload attack technique. We now describe their attacks
on the two samplers.

Attacking the CDT sampler. The CDT sampler uses two tables
(CDT table T and interval table I). Accessing these tables can leak
the accessed cache-line. This information, in turn, leaks a range
of possible values for yi . Groot Bruinderink et al. describe two ap-
proaches to estimate yi more precisely than naively using these
leaked ranges. The �rst approach is to intersect the ranges of possi-
ble values learned from each table. The second approach is to track
down the binary search steps done in the sampling procedure by
looking at multiple accesses in table T .

As the search step in table T is a binary search, one of two
adjacent values is returned after the last table-lookup. This means
that a sample yi can only be determined up to an uncertainty of ±1.
However, in general there is a bias in the value that is returned, as
the targeted distribution is a discrete Gaussian and not uniform. If
this bias is large enough, Groot Bruinderink et al. guess the returned
value to be the more likely one.

Another obstacle is that they do not get the sign of yi , but only
know |yi | from the accessed cache-lines. However, they use the
knowledge of the corresponding coe�cient zi of the signature
vector z. It is possible to derive the sign from zi , as ⟨s, ci ⟩ is small
and thus the sign of yi will most likely be the sign of zi .

After the above procedure, they have approximate knowledge
on yi . However, bit b of the signature is still unknown. Instead
of guessing or recovering the value of this bit for each signature,
they only uses samples where, with a high probability, zi = yi .
In these samples one has that ⟨s, ci ⟩ = 0 (w.h.p.). After collecting
enough samples, they use the challenge vectors ci that satisfy the
above restrictions to construct a matrix L such that sL ≈ 0 is a
small vector in the lattice spanned by L. They then use the LLL
lattice-reduction algorithm [23] on L to �nd a small lattice basis.
With a high probability, the secret key s is part of the unimodular
transformation matrix retrieved from LLL. The correctness of the
key can be veri�ed by matching against the known public key.

5

Attacking the Bernoulli sampler. The Bernoulli sampler uses
the table E which stores (high precision) exponential values re-
quired to do rejection steps. As this table is only accessed for every
set bit of input x (Line 2 in Algorithm 6), no table access is done
in the case that input x = 0. This only happens when input z to
the Bernoulli sampler (Line 4 in Algorithm 7) is zero, leading to
a small subset of possible values yi ∈ {0,±K ,±2K , . . .}. As K is
in general large, this can lead to a complete retrieval of yi by also
using knowledge of the corresponding signature coe�cient zi . By
again restricting to the cases when yi = zi , Groot Bruinderink et
al. used the challenge vectors ci to construct a matrix L such that
sL = 0. The secret vector s can then be found by calculating the
(integer left) kernel of L.

3.3 The Shu�ling Countermeasure and
Analysis

Saarinen [42] proposed to use shu�ing to protect implementations
of BLISS against the above attack. Instead of (fully) protecting the
sampler itself, he proposes to sample a vector and to randomly
permute it. This breaks the connection between sampling time and
index in the signature and hence prevents the above attack. Con-
cretely, he proposes to generatem Gaussian vectors with smaller
standard deviation σ ′ = σ/

√
m, to shu�e all vectors independently,

and to add them to get a vector from the desired distribution. Al-
ternatively, one can also combine this idea with the sampler of

Pöppelmann et al. [39], i.e., choose some k , set σ ′ = σ/
√
1 + k2,

and then compute y′, y′′ ← Dn
σ ′ , y = k · Shu�e(y′) + Shu�e(y′′).

Due to the smaller σ ′, this sampling approach also drastically re-
duces the size of lookup tables required for (more e�cient) CDT
sampling.

Pessl [35] later analyzed this countermeasure. He found that
due to the vastly di�erent distributions of the added variables in
z = y + (−1)b (s · c) (y distributed according to Dn

σ and large σ > 0,
s · c as the product of two small polynomials) one can say that z ≈ y

and thus it is possible to reassign some Gaussian samples. Namely,
if one is given a Gaussian sample y ∈ y, then it is possible to check
for proximity to all zi . If only one zi is close to y, then it is possible
to reassign y to index i . Note that this approach works mostly for
outliers, i.e., for samples that are in the tail of the discrete Gaussian
distribution.

After having reassigned a su�cient number of samples that
match with high probability, e.g., Pr(zi ∼ y) > 0.99, it is possible
to perform the key-recovery of Groot Bruinderink et al. Under the
assumption that bit b (Line 5 of Algorithm 2) is recoverable with
SCA, Pessl needs to observe 260 000 signatures for key recovery. If
this assumption is not met, then only samples that ful�ll zi = yi
can be used, which increases the number of signatures to 1 550 000.

3.4 Limitations of Previous Attacks

Both previous side-channel attacks on BLISS have certain limita-
tions and caveats. As already stated above, due to the unknown bitb,
which is potentially di�erent for each signature, Groot Bruinderink
et al. [19] only use samples where zi = yi and thus ⟨s, ci ⟩ = 0 (with
high probability). This, however, only holds in roughly 15% of all
samples (cf. Figure 4) and thus a lot of information is discarded. As
the attack on shu�ing by Pessl [35] uses the same method for key

recovery, this limitation holds there as well. By �nding a method
to use all samples for the attack, the number of required signatures
could drop drastically.

A second and more severe limitation is that the previous at-
tacks do not apply to the improved BLISS-B signature scheme.
Groot Bruinderink et al. recover the key by solving a (possibly erro-
neous) linear system sL ≈ 0, where L consists of the used challenge
vectors ci . However, the GreedySC algorithm, which was added
with BLISS-B, performs a multiplication of s with some unknown
ternary c′ ≡ c mod 2, with c′ ∈ {−1, 0, 1}n . In simple terms, the
signs of the coe�cients in c′ (and thus also in the resulting lattice
basis L′) are unknown. Hence, a straight-forward solving of sL′ ≈ 0

is not possible anymore.

On the practicality of previous attacks.A third limitation of the
attack of Groot Bruinderink et al. [19] is the question of practicality.
The attack targets an academic implementation that is not used in
any “real-world” applications. Furthermore, the attack is synchro-
nous. To achieve this, Groot Bruinderink et al. modify the code of
the BLISS implementation in order to interleave the phases of the
Flush+Reload attack with the Gaussian sampler. In practice, it is
not clear if an attacker can achieve such a level of synchronization
without modifying the source, and an adversary that can modify
the source can access the secret key directly without needing to
resort to side channel attacks. Consequently, while Groot Bruin-
derink et al. show a proof-of-concept, their attack falls short of
being practical.

We now present a new key-recovery technique that resolves the
issues discussed in this section. That is, it works even in the case of
BLISS-B and can reduce the number of required signatures by using
all recovered samples. Furthermore, in Section 6 we give results on
our improvements on the practicality of previous attack, i.e. the
asynchronous attack on strongSwans’s implementation of BLISS-B.

4 AN IMPROVED SIDE-CHANNEL
KEY-RECOVERY TECHNIQUE

In this section, we present our new and improved side-channel
attack on BLISS, that also works for BLISS-B. Our method consists
of four major steps, each step reveals additional information on the
secret signing key s.

The �rst step is equivalent to previous works. That is, the at-
tacker performs a side-channel attack, e.g., a cache attack or power
analysis, on the Gaussian-sampler component to recover some of
the drawn samples yi of y. With this information we can construct
a (possibly erroneous) system of linear equations over the integers,
using knowledge on zi − yi = (−1)b (s · c′). (Section 4.1)

Due to the previously mentioned sign-uncertainty in BLISS-B
(the recovered terms s · c′ instead of s · c), the solution cannot be
found with simple linear algebra in Z. Instead, in Step 2 we solve
this system over the bits, i.e., in GF(2). For error correction, we
employ an LPN algorithm that is based on a decoding approach
and can incorporate di�ering error probabilities. (Section 4.2)

This does not give us the full key, but instead s∗ = s mod 2. For
some parameter sets however, there are some coe�cients ±2 (i.e.,
BLISS-0, BLISS-III and BLISS-IV have δ2 > 0). In Step 3, we retrieve
their positions. We use the current knowledge on the secret key s∗

to derive ⟨s∗, ci ⟩, and compare this with zi − yi = ⟨s, c′i ⟩ (obtained
6

from the side channel). Based on that, we give two di�erent methods
in Section 4.3 to determine the positions of the ±2 coe�cients and
derive |s| ∈ {0, 1, 2}n .

In the fourth step, we �nally recover the full signing key. We use
|s| to reduce the size of the public key. We then perform a lattice
reduction and search for s2 as a short vector in the lattice spanned
by this reduced key. Linear algebra then allows recovery of the full
private key (s1, s2). (Section 4.4)

We now give a more detailed description of these steps.

4.1 Step 1: Gathering Samples

Akin to previous attacks (cf. Section 3), we need to observe the
generation of multiple signatures and use a side-channel to infer
some of the elements of the corresponding noise vector y = y1. In
previous works, the exploited side channels were based on cache
attacks (in [19]) or on power analysis (in [35]). If shu�ing is used,
then these samples �rst need to be reassigned to their index in the
signature (cf. Section 3.3).

Side-channel analysis has to deal with noise and other uncertain-
ties. Due to these e�ects a recovered sampleyi might not be correct.
In our scenario, the probability ϵ of such an error is known (or can
be estimated to a certain extent) and can possibly be di�erent for
each sample. We will later use these probabilities to optimize our
attack.

For each recovered (and reassigned) sample yi , we can write an
equation zi = yi + (−1)b ⟨s, c′i ⟩, which holds with probability 1-ϵ .
As the signs of coe�cients of c′i are unknown, we can simply ignore

the multiplication with (−1)b and instead implicitly include this
factor into c′i . Unlike Groot Bruinderink et al., we do not require that
⟨s1, ci ⟩ = 0 and thus can use all recovered samples. We compute the
di�erence ti = zi − yi and rearrange all gathered c′i into a matrix
L′ to get sL′ = t.

This system is de�ned over Z. However, due to the unknown
signs in the c′ it cannot be directly solved using straight-forward
linear algebra, even in the case that all recovered samples are correct.
Instead, a di�erent technique is required.

4.2 Step 2: Finding s1 mod 2

In the second attack step, we solve the above system by using the
following observation. Line 6 of Algorithm 2, i.e., z1 = y1 + s1 · c′,
is de�ned over Z. That is, there is no reduction mod q involved2.
Such an equivalence relation in Z obviously also holds mod 2, i.e.,
in GF(2), whereas the reverse is not true.

In GF(2), we have that −1 ≡ 1 mod 2. This resolves the uncer-
tainty in L′ and we can, at least when assuming no errors in the
recovered samples, solve the system s∗L′ = t∗ in GF(2). Here s∗ and
t∗ denote s mod 2 and t mod 2, respectively. In the BLISS-I param-
eter set (Table 1), we have that δ2 = 0. Thus, s∗ reveals the position
of all ⌈δ1n⌉ = 154 nonzero, i.e., (±1), coe�cients. However, a simple
enumeration of all 2154 possibilities for s is still not feasible. Before
we discuss a method to recover the signs of s and thus the full key,
we show how errors in t∗ can be corrected.

2In fact, due to the parameter choices and the tailcut required by a real Gaussian
sampler, |y1 + s1 · c′ | can never exceed q .

Error Correction mod 2. As stated in Section 4.1, a recovered
Gaussian sample yi might not be correct. Hence, the right-hand-
side of the system s∗L′ = t∗ is possibly erroneous. For instance, in
the cache attack on CDT sampling algorithm of Groot Bruinderink
et al., errors cannot be avoided. For the attack on the shu�ing coun-
termeasure, the error probability can be made arbitrarily low by
only keeping samples that have a matching probability ≈ 1. How-
ever, the need for such an aggressive �ltering increases the number
of required signatures. Hence, the capability of error correction is
crucial.

We can rewrite the above equations in GF(2) as s∗L′ = t∗ + e.
Here, t∗ is errorless and the error is instead modeled as vector
e. Solving this system is exactly the LPN problem described in
Section 2.4, thus we employ an LPN solving algorithm to recover
s∗. The most time-e�cient algorithms to solve LPN are based on
the work of Blum, Kalai, and Wasserman [10]. A caveat of this and
improved versions [20, 24] are the large memory and LPN-sample
requirement. For instance, withn = 512 and an error probability ϵ of
just 0.01, the often quoted LF1 algorithm by Levieil and Fouque [24]
requires 252 bytes of memory. Thus, for BLISS and the already
somewhat high dimension of n = 512 this class of algorithms is not
ideal for the problem at hand.

Also, note that in the de�nition of the LPN problem (De�ni-
tion 2.1) the error probability ϵ is constant for all samples. This,
however, does not re�ect the reality of our side-channel attack.
There, each recovered Gaussian sample can be assigned a poten-
tially di�erent error probability ϵi . By making use of this additional
knowledge, the solving process can potentially be sped up.

An LPN-solving algorithm that can utilize such di�ering proba-
bilities and that does not require an extensive amount of memory
was presented by Pessl and Mangard [36]. First, they perform a
�ltering, i.e., only keep the samples with the lowest error probabil-
ities. All other samples are discarded. Then, they use a decoding
approach, i.e., solving LPN by decoding a random linear code, on the
remaining samples. They tweaked Stern’s decoding algorithm [44]
such that it can utilize di�ering error probabilities. They use their
method in context of a side-channel attack on polynomial multipli-
cation in GF(2).

We use their algorithm for our attack. It is easy to see that due
to the initial �ltering of highly reliable equations, there exists a
possible trade-o� between gathered samples and computational
runtime. That is, with more equations one can expect a lower error
probability of the few best samples, which decreases the runtime
of decoding. We will explore this trade-o� in Section 5.

Determining error probabilities. Thus far, we did not discuss
how the error probabilities of the samples are computed. They
mainly depend on the used side-channel attack. Groot Bruinderink
et al. [19] attack two di�erent samplers using a cache attack. In
their (idealized) attack on a Bernoulli sampler, they can recover
samples perfectly. Hence, no error correction is required. The attack
on a CDT sampler, however, cannot exclude errors. There, the error
probability depends on the used cache weakness3.

In the case of the attack on the shu�ing countermeasure by
Pessl [35], we reuse the assumption that all recovered samples are
correct. Hence, errors are introduced by incorrect reassignments of

3The error probabilities are speci�ed in Appendix B of the full version of [19].

7

samples to their respective index in the signature. The probability
of a correct match Pr(zi ∼ y) is computed during the attack and
was used to �lter for highly probable matches. While it is possible
to simply use these probabilities, there is optimization potential
that can decrease the number of required samples.

In our attack, we solve the system s∗L′ = t∗ over GF(2). Thus,
the we only require knowledge of Pr(zi − y ≡ 0 mod 2). Assume
for now that the adversary is in possession of the full, but shu�ed,
y. This y contains two large elements of values, for example values
1498 and 1502, and there is one signature coe�cient that is large,
for example one element z = 1500. Only one of the two elements
of y belong to this z, and both elements have a probability of 50 %.
However, the probability that the di�erence of z − y is even is
Pr(zi − y ≡ 0 mod 2) = 1. In general, if given full (or parts of)
shu�ed y, all these probabilities can be easily computed as:

Pr(zi − y ≡ 0 mod 2) =
∑

yj ∈y:zi−yj≡0 mod 2

Pr(zi ∼ yj)

Thus, the error probability for computation over GF(2) at least as
small as over Z, and in most cases signi�cantly smaller. Thus, less
signatures are required to gather enough samples with low-enough
error probability.

4.3 Step 3: Recovering the Position of Twos

After the above second attack step, we know s∗ ≡ s mod 2. If we
have d2 = δ2n > 0 (i.e., in BLISS-0, BLISS-III or BLISS-IV), we
denote s ∈ {0, 1}n the vector with si = 1whenever si = ±2, i.e. this
vector is non-zero at each coe�cient where vector s has coe�cient
±2.

In the third attack step, we use one of two methods to recover
s, one based on integer programming and the other based on a
maximum likelihood test. Both make use of the fact that the weight
κ of the challenge vector c (and hence also c′) is relatively small.
Thus, in any inner product ⟨s, c′i ⟩, only a small number of coe�-
cients in s are relevant. From knowledge of s∗, we can immediately
derive how many of the selected coe�cients are ±1. We de�ne this
quantity as η1 = ⟨s∗, |ci |⟩. The other κ − η1 are then either 0 or
±2. We de�ne the (unknown) number of twos as η2 = ⟨s, |ci |⟩, this
number is bound by 0 ≤ η2 ≤ min(d2,κ − η1)

Both methods then compare the output of the side-channel anal-
ysis, i.e., |zi −yi | = |⟨s, c′i ⟩|, to η1 and use this to derive information
on η2. We will now discuss both methods.

Integer Programming Method. Our �rst method recovers s by
formulating it into an Integer Program. First, suppose we perfectly
retrieved yji from a side-channel. If

|zi − yi | = |⟨s, c′i ⟩| > η1 + 1,

we know that η2 > 0, i.e. there has to be a at least one ±2 involved
making up for the di�erence in the above inequality. We save all
|ci | for which the above is true in a list M. Then, we need to �nd a
solution r for the following constraints:

Mr ≥ 1.

We also add another constraint stating that a solution must satisfy
| |r| |1 = δ2n, so that we end up with the correct number coe�cients
in the solution.

Finding the solution s can be seen as a minimal set cover prob-
lem. Here, the indices of Mi form sets and r a cover. We �nd the
smallest solution for this problem using an Integer Program solver,
namely GLPK [40]. Note that by adding more constraints, i.e., more
rows in M, the probability that the solver �nds the correct solution
increases.

The above method cannot be used if the errors in the recovered
samples y exceeds ±2. Such errors could break the Integer program
due to con�icting constraints. However, it is possible to deal with
±1 errors, as the di�erence between |zi − yi | and η1 needs to be at
least 2. Samples with an error of ±1 can be detected an discarded,
simply due to knowledge of the correct parity. Note that in the work
of Groot Bruinderink et al. [19], an (idealized) adversary targeting
the CDT sampling algorithm only makes errors of ±1. Hence, this
method can be used for this scenario.

Statistical Approach. We now give a second approach that can
recover the position of twos in the s1. It di�ers from the �rst as we
use a statistical approach rather than integer programming. Thus,
it can withstand errors more easily.

We use the following observation. The probability that a certain
zi −yi is observed clearly depends on η1 and η2. If η2 = 0, then the
probability density function is essentially a binomial distribution
picking from {±1} instead of the usual {0, 1}. If η2 , 0 but η1 = 0,
the same goes with {±2}. We compute the joint distribution for all
possible combinations of η1 and η2

We then perform a standard hypothesis testing. That is, for every
recovered sample we compute Pr(Z −Y = zi −yi |H1 = η1,H2 = η2)
for the correct η1 and for all 0 ≤ η2 ≤ min(d2,κ − η1). Note that
all distributions, and thus also the joint one, are symmetric. Thus,
the actual sign of zi − yi is not relevant. Then, we apply Bayes’
Theorem to get every Pr(H2 = η2 |Z − Y = zi − yi), compute the
expected value of H2, and divide this number by min(d2,κ − η1).
This gives us the probability that any one of the min(d2,κ − η1)
unknown but involved key coe�cients is 2.

Finally, we perform a log-likelihood testing. For each unknown
coe�cient sk in s1, we compute the mean of the logarithm of above
probability, over all recovered samples where ci is 1 at index k . We
then set the d2 coe�cients with the highest score to 2.

4.4 Step 4: Recovering s1 with the Public Key

After the above 3 steps we have recovered |s|. In the fourth and
�nal step, we recover the signs of all its nonzero coe�cients and
thereby the full signing key s.

We do so by combining all knowledge on |s| = |s1 | with the
public key. Key generation (Algorithm 1) computes a public key
A = {2aq ,q − 2}, with aq = s2/s1 = (2g + 1)/f in the ring Rq . In
case of the BLISS-I and BLISS-II parameter sets (Table 1), both f , g

have ⌈δ1n⌉ = 154 entries in {±1}, while all other elements are zero.
Thus, both these vectors are small.

When writing s1 · aq = s2, it is easy to see that s2 = 2g + 1 is a
short vector in the q-ary lattice generated by aq (or more correctly,
the rows of Aq). Obviously, the parameters of BLISS were chosen in
a way such that a straight-forward lattice-basis reduction approach
is not feasible. However, knowledge of |s| allows a reduction of the
problem size and thus the ability to recover the key.

8

With matrix-vector notation, i.e., s1Aq = s2, it becomes evident
that all rows of Aq at indices where the coe�cients of |s| (and thus
s1) are zero can be simply ignored. Thus, we discard these rows
and generate a matrix A⋆

q with size (⌈δ1n⌉ × n), i.e., (154 × 512) for
parameter sets BLISS-I and BLISS-II). Hence, the rank of the lattice,
i.e., the number of basis vectors, is decreased.

We further transform the key-recovery problem as follows. First,
we do not search for s2 directly, but instead search for the even
shorter g used in the key-generation process. We have that f · aq =
2g+1, thus f ·aq ·2−1 = g+2−1 and we simply multiply all elements
of A⋆

q with 2−1 mod q. We discard the computation of the �rst

coe�cient, which contains the added 2−1 mod q, and thus reduce
the dimension of the lattice to n − 1.

And second, we reduce the lattice dimension further to some d
with δ1n < d < n − 1 by discarding the upper n − 1 − d coe�cients.
Hence, we do not search for the full g but for the d-dimensional
sub-vector g⋆. If, on the one hand, this dimension d is too low, then
g⋆ is not the shortest vector in the q-ary lattice spanned by the
now (⌈δ1n⌉ × n) matrix A⋆

q . If, on the other hand, d is chosen too
large, then a lattice-reduction algorithm might not be able to �nd
the short g⋆. For our experiments with parameter sets BLISS-I and
BLISS-II, we set d = 250.

Finally, we feed the basis of the q-ary lattice generated by the
columns of A⋆

q into a basis-reduction, i.e, the BKZ algorithm. The

returned shortest-vector is the sought-after g⋆. We then simply
solve f⋆A⋆

q = g⋆ for f⋆ ∈ Z ⌈δ1n ⌉ . This f⋆ will only consist of
elements in ±1, which are the signs of the nonzero coe�cients of
the full f . By simply putting the elements of f⋆ into the nonzero
coe�cients of s′1, we can fully recover the �rst part of the signing
key f = s1. Finally, the second part of the key is s2 = aq · s1. Thus,
the full signing key is now recovered.

5 EVALUATION OF KEY RECOVERY

In this section, we give an evaluation of our new key-recovery
technique. That is, we apply our algorithm on attacks presented
in earlier work on original BLISS and compare its performance.
Recall, however, that all previous work was unable to perform
key-recovery for BLISS-B.

In order to allow a fair comparison, we reuse the modeled and
idealized adversaries of earlier work. Concretely, we look at the
idealized cache-adversary targeting the CDT sampling algorithm
of Groot Bruinderink et al. [19] and the modeled adversaries for
the attack on shu�ing by Pessl [35]. Thus, for the evaluation our
Step 1 is identical to theirs.

We analyze the performance of the following steps in our key
recovery. We analyze the key recovery mod 2, i.e., the LPN solving
approach (Step 2). Then, we evaluate the success rate of both two-
recovery approaches (Step 3). And �nally, we state �gures for the
full-key recovery using a lattice reduction (Step 4).

5.1 Step 2: Key-Recovery mod 2

For evaluation of the second attack step, i.e., mod-2 key recovery,
we only consider the BLISS-I parameter set.

Our used LPN approach utilizes di�ering error probabilities of
samples. Its �rst step is to �lter samples, i.e., keep only those with

lowest error probability. Evidently, this means that the success prob-
ability increases with the number of gathered LPN samples. Thus,
we tested the performance for a broad set of observed signatures.
For each test, we ran decoding on all 16 hyperthreads of a Xeon
E5-2630v3 CPU running at 2.4GHz. If this does not �nd a solution
after at most 10 minutes, then we abort and mark the experiment
as failed.

Shu�ling. Figure 1 shows the success rate for the attack on shuf-
�ing. It was already shown that shu�ing once cannot increase se-
curity [35]. Thus, we focus solely on the shu�ing-twice approach,
i.e., y = k · Shu�e(y′) + Shu�e(y′′). For the analysis, we reused
previously proposed attacker models [35]. The idealized attacker A1
is given the full y′, y′′ but in a random order. Attacker A2 models a
pro�led side-channel adversary and can classify samples that have
some minimum value. Attacker A3 is non-pro�led and only detects
samples that are uniquely determined with the control �ow of the
sampling algorithm.

We give results for BLISS-AI (Figure 1a) and BLISS-BI (Figure 1b)
separately, as the introduction of the GreedySC algorithm leads
to di�erent results and slightly better performance for BLISS-B4.
For A1, one needs approximately 70 000 signatures in order to
achieve a success rate larger than 0.9. A2 needs 90 000 signatures,
A3 200 000. Compared to [35], the number of required signatures
is cut by a factor of around 3. Note that their numbers require the
recoverability of the secret bit b, which we do not need. If this is
not given, then their numbers increase by a factor of 6.6. Then, our
attack only needs about 1/20th of their signatures.

Cache attack on CDT sampling. Figure 2 shows the results of
the idealized cache-attack on a CDT sampler by Groot Bruinderink
et al. [19]. We did not perceive any signi�cant di�erences between
BLISS-A and BLISS-B here, so we performed experiments for both
versions and give the average. We reach a success rate of about
0.9 when using 325 signatures. This is roughly 28% less than the
450 signatures required in previous work. These savings can be
explained as follows. We can now use all recovered samples, and
not only those where z = y. However, this is somewhat o�set by
the fact that our LPN-based approach is not as error-tolerant as
their lattice-based method which is not applicable in our setting.

5.2 Step 3: Recovery of Twos

For evaluation of the third attack step, we analyzed the success rate
of both twos-recovery procedures (Section 4.3) with the idealized
CDT adversary. We consider all parameter sets with δ2 > 0, i.e.,
BLISS-0, BLISS-III, and BLISS-IV.

We show the success rate as a function of the number of recov-
ered samples in Figure 3. Please note that this is not equal to the
number of required signatures (see [19]). As seen in Figure 3a, the
linear-programming approach requires 30 000 samples for BLISS-0
and 400 000 samples for BLISS-III, respectively. Here we did not
evaluate the performance with BLISS-IV due to even higher sample
requirements. The second approach, which is based on statistical
methods, requires more samples for BLISS-0 (45 000) but performs
better for BLISS-III (35 000) and BLISS-IV (130 000).

4GreedySC aims at minimizing the norm of s · c′, thus the di�erence z − y is, on
average, smaller. The attack on shu�ing bene�ts from this, as it tests this di�erence.

9

50 100 150 200 250

10 3

0

0.2

0.4

0.6

0.8

1

A1

A2

A3

(a) BLISS-AI

50 100 150 200 250

10 3

0

0.2

0.4

0.6

0.8

1

A1

A2

A3

(b) BLISS-BI

Figure 1: Success rate of LPN decoding for the attack on shuf-

�ing

100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Figure 2: Success rate of LPNdecoding for an idealized attack

on CDT sampling

5.3 Step 4: Key-Recovery using Lattice
Reduction

In the last step, i.e., recovery of the full signing key s from |s| (Sec-
tion 4.4), we use the BKZ lattice-reduction algorithm. Concretely,
we use the implementation provided by Shoup’s Number Theory
Library NTL [43]. We set the BKZ block size to 25 and abort the re-
duction algorithm as soon as a �tting, i.e., short enough, candidate
for the d-dimensional vector g⋆ is found. Such a candidate vector
must have a Hamming weight of at most ⌈δ1n⌉ and must consist
solely of elements in {±1}.

We evaluated the correctness and performance of this method by
running over 250 key-recovery experiments for both BLISS-AI and
BLISS-BI. In each experiment, we generated a new key, performed a

0 100 200 300 400 500

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0

BLISS-BIII

(a) Linear Programming

0 50 100 150

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0

BLISS-BIII

BLISS-BIV

(b) Statistical

Figure 3: Success rate for Twos recovery

key recovery mod 2 (assuming a perfect and errorless side-channel),
and �nally performed a lattice reduction. All our experiments were
successful, hence we can assume that once s∗ = s1 mod 2 is known,
the full signing key can always be recovered. The average runtime
of lattice reduction (with early abort) was roughly 4-5 minutes on
an Intel Xeon E5-2660 v3 running at 2.6GHz.

Other parameter sets. For parameter sets BLISS-0, BLISS-III, and
BLISS-IV, we were not able to perform full key-recovery using the
above method. In case of BLISS-I and BLISS-II, the Hamming weight
of s1 and hence the rank of the reduced q-ary lattice is δ1n = 154.
For BLISS-III and BLISS-IV, this quantity increases to 232 and 262,
respectively. Due to the resulting increased rank of the lattice, we
were not able to recover the key using BKZ.

6 ATTACKING STRONGSWANS BLISS-B

In this section, we perform a cache attack on the BLISS-B implemen-
tation of the strongSwan IPsec-based VPN suite [45]. Concretely,
we use the parameter set BLISS-I. We describe the setup and the
execution of the cache attack in Section 6.1. Our adversary is not
synchronized with the victim, thus we perform synchronization
based on the signature output (Section 6.2). This corresponds to the
�rst step of our key-recovery method. Finally, we apply the other
three steps and describe the outcome.

10

6.1 Asynchronous Cache Attack

We carry out the experiment on a server featuring an 8 core Intel
Xeon E5-2618L v3 2.3GHz processor and 8GB of memory, run-
ning a CentOS 6.8 Linux, with gcc 4.4.7. We use strongSwan ver-
sion 5.5.2, which is the current version at the time of writing. We
build strongSwan from the sources with BLISS enabled and with C
compile options -g -falign-functions=64. To validate the side-
channel results against the ground-truth, we collect a trace of key
operations executed as part of the signature generation. The trace
only has a negligible e�ect on the timing behaviour of the code and
is not used for key extraction.

For the side channel atack, we use the FR-trace tool of the
Mastik toolkit version 0.02 [47]. FR-trace is a command line utility
that allows mounting the Flush+Reload attack with ampli�cation.
We set FR-trace to perform the Flush+Reload attack every 30000
cycles. We describe the locations we monitor below. We set an
ampli�cation attack against the function pos_binary, which is used
as part of Line 1 of Algorithm 7. This slows the average running
time of the function from 500 to 233000 cycles, creating a temporal
separation between calls to Algorithm 7. However, this slowdown
is not uniform and 26% of the calls take less than 30000 cycles, i.e.
below the temporal resolution of our attack.

strongSwans implementation of BLISS uses the Bernoulli-sampling
approach described in Section 2.3. Thus, we reuse the exploit of
Groot Bruinderink et al. [19] and detect if the input to Algorithm 6
was 0. Our cache adversary is asynchronous. Thus, to detect the
zero input we have to keep track of several events. First, we detect
calls to the Gaussian sampler (Algorithm 7). Second, strongSwan
interleaves the sampling of the two noise vectors y1 and y2, i.e.,
it calls the sampler twice in each of the 512 iterations of a loop.
As we only target the generation of y1, we detect the end of each
iteration and only use the �rst call to the Gaussian sampler in each
iteration. Third, we track the entry to Algorithm 6 and only use the
last entry per sampled value. Other calls to this function correspond
to rejections (Lines 5 and 6 of Algorithm 7) and thus cannot be used.
Finally, if we detect that Line 3 of Algorithm 6 was not executed,
we know that x = 0. In this case, the sampled value y is a multiple
of K = 254.

For BLISS-I, the above events, which we will dub zero events from
now on, happen on average twice per signature. In order to mini-
mize the error rate, we apply aggressive �ltering. Also, we found
that possibly due to prefetching, access to Line 3 of Algorithm 6 is
often detected although x = 0. As a result, we detect zero events
on average 0.74 times per signature. 92% of these detections were
correct, the other 8% were false positives in which the access to
Line 3 was missed by the cache attack.

6.2 Resynchronization

Even though zero events can be detected by an adversary, due
to the asynchronous nature of the attack it is not obvious which
of the 512 samples corresponds to this detection. In other words,
we can detect (with high probability) that there exists a sample
y ∈ {0,±K ,±2K , . . .}, but we do not know which sample.

We recover the index i of a detected zero event as follows. First,
we locate the �rst and the last call to the Gaussian sampler in the
cache trace. We then estimate the positions of the other 510 calls by

placing them evenly in between. Note that Algorithm 7 does not run
in constant time, hence this can only give a rough approximation.
However, we found that run-time di�erences average out and that
the estimated positions are relatively close to the real calls. In
fact, this method gives better results than counting the calls to
Algorithm 7 in the trace, as some calls are missed and counting
errors accumulate. We also found that the error, i.e., the di�erence
from the estimated index of an event to its real index in the signature,
roughly follows a Gaussian distribution with standard deviation 3.5.
We then compute the time span between the detected event and the
estimated calls to the sampler, match it against the above Gaussian
distribution, and then apply Bayes theorem to derive the probability
that the detected call to the Gaussian sampler corresponds to each
index 0. . . 511 in the signature.

This alone, however, does not allow a su�cient resynchroniza-
tion. We use the signature output z in order to further narrow down
the index i . For each coe�cient in z, we compute the distance d to
the closest multiple of parameter K used in Algorithm 7. Then we
look up the prior-probability that the sample y corresponding to
any signature coe�cient z was a multiple of K , this is simply the
probability that a coe�cient of s1 · c′ is equal to d . We estimated
this distribution using a histogram approach, it is shown in Figure 4
(for BLISS-I). As K = 254 and the coe�cient-wise probability distri-
bution of s1 · c′ is narrow, many elements of the unknown y have
a zero or very small probability of being a multiple of K . Note that
this approach is somewhat similar to the attack on the shu�ing
countermeasure described in Section 3.3.

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4: Coe�cient-wise probability distribution of s1 · c′

Finally, we combine the prior-probabilities derived from the
signature output z with the matching of the trace, which we do
by applying Bayes theorem once more. We then use only these
zero events that can be reassigned to a single signature index
with high probability, i.e., > 0.975, and where the prior-probability
Pr(⟨s1, c′i ⟩ = d) is also high, i.e., d < 3.

Roughly 1/3 of detected zero events ful�ll both criteria. Out
of these, 95% are correct, i.e., correspond to a real zero event and
were reassigned to the correct index. Recall that our key-recovery
approach only requires the value of zi − yi mod 2. Thus, 97.5% of
all recovered samples are correct in GF(2).

6.3 LPN and Results

For LPN-decoding (Section 4.2) we set the code length to 1024. With
the above detection rates, we require on average 6 000 signatures in

11

order to collect this number of samples. Note that for the selection
of used samples we again made use of probabilities. For instance,
we use only zero events that can be reassigned to a single sample
with high probability. Unlike in the case of attacking the shu�ing
countermeasure or the attack on the CDT sampling algorithm,
however, we were not able to accurately determine any di�ering
error probabilities within the selected 1024 samples. Thus, we used
a used a non-modi�ed algorithm for decoding the random linear
code. Our used decoding algorithm is based on the descriptions
in [8].

We performed 100 decoding experiments using the error distri-
bution obtained from the previous step. In the 1024 used samples
we encountered between 26 and 36 errors. We ran decoding using
64 threads on two Xeon E5-2699 v4 running at 2.2 GHz. Similar to
Section 5.1, we abort decoding after 10 minutes and then consider it
to have failed. 98 experiments were successful, 82 of them �nished
within the �rst minute.

As we used the parameter set BLISS-I and thus have s ∈ {0,±1},
the third attack step is not required. The fourth attack step, lattice
reduction, then �nally returns the secret signing key. The runtime
of this step was already stated in Section 5.3.

7 CONCLUSION

In this work we present the �rst side-channel attack against the
BLISS-B variant of the BLISS signature scheme. Apart from being
able to attack this improved version, the theoretical attack is also
more e�cient than prior attacks on the BLISS family, requiring only
325 observations by an ideal attacker. We complement the theoreti-
cal attack with the �rst asynchronous cache-based attack against
lattice-based cryptography. When using the BLISS-I parameter set,
our combined attack is able to recover the BLISS-B secret key after
observing 6 000 signatures.

We now give a brief discussion on possible future work, coun-
termeasures against our attack, and ways to avoid Gaussian noise
altogether.

Future work. The discrepancy between the low number of obser-
vations required for the theoretical attack and the much higher
number required for the actual attack is due to the high level of
noise we see in the cache channel. Reducing the noise would result
in a stronger attack. A promising direction is to combine our attack
with the work of Moghimi et al. [27], which investigates attack on
the Intel Software Guard Extension (SGX), to see if it is possible to
reduce the noise in the SGX setting.

Possible countermeasures. To protect against the side-channel
attack described in this paper, it is vital that Algorithm 6 is imple-
mented in constant-time and without secret-dependent branching.
More speci�cally, the handling of rejections and table look-ups
should not depend on the input. As shown in Algorithm 8, this can
be done by performing all ℓ steps in the loop and always sample an
Ai . The return value v is then updated according to the values of
Ai and xi in constant time. We use C-style bitwise-logic operands
to describe this update.

Alternatives toGaussiannoise.As our and previouswork clearly
shows, high-precision Gaussian samplers are a prime target for at-
tacking lattice-based schemes. Andwhile the above countermeasure

Algorithm 8 Sampling a bit fromB(exp(−x/(2σ 2))) for x ∈ [0, 2ℓ),
constant-time version

Input: x ∈ [0, 2ℓ) an integer in binary form x = xℓ−1 . . . x0. Pre-
computed table E with E[i] = exp(−2i/(2σ 2)) for 0 ≤ i < ℓ

Output: A bit b from B(exp(−x/(2σ 2)))
1: v = 1

2: for i = ℓ − 1 downto 0 do

3: sample Ai from B(E[i])
4: v = v & (Ai | ∼xi)
5: return v

can �x the exploited leak in this speci�c implementation, di�erent
attack techniques and side-channels can still allow key recovery.
Implementing thoroughly secured samplers seems to be a di�cult
task. In fact, due to their complex structure, implementing them
both correctly and e�ciently is challenging and error prone already,
even without considering implementation security.

Some cryptographers seem to have noted this, as there already
exist lattice-based schemes that avoid Gaussians for these reasons.
For instance, the NewHope key exchange [2] uses the centered bino-
mial distribution (which is trivial to sample from) as a low-precision
approximation to Gaussians. The more recently proposed signa-
ture schemes ring-Tesla [1] and Dilithium [15] also avoid discrete
Gaussians and use uniform noise instead. Both cite implementation
concerns as a motivation for this design choice.

Acknowledgements

Yuval Yarom performed part of this work as a visiting scholar at
the University of Pennsylvania.

This work was supported by the Austrian Research Promotion
Agency (FFG) under the COMET K-Project DeSSnet (grant number
862235); by an Endeavour Research Fellowship from the Australian
Department of Education and Training; and by the Commission
of the European Communities through the Horizon 2020 program
under project number 645622 (PQCRYPTO).

REFERENCES
[1] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Gior-

gia Azzurra Marson. 2016. An E�cient Lattice-Based Signature Scheme with
Provably Secure Instantiation. In AFRICACRYPT 2016. 44–60.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-
quantum Key Exchange - A New Hope. In 25th USENIX Security Symposium.
327–343.

[3] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval
Yarom. 2016. Amplifying side channels through performance degradation. In
ACSAC 2016. 422–435.

[4] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît Gérard, Jean-
Gabriel Kammerer, and Emmanuel Prou�. 2015. Improved Side-Channel Analysis
of Finite-Field Multiplication. In CHES 2015. 395–415.

[5] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. 2014. Side-Channel Anal-
ysis of Multiplications in GF(2128) - Application to AES-GCM. In ASIACRYPT
2014. 306–325.

[6] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh
Aah. . . , Just a Little Bit”: A Small Amount of Side Channel can Go a Long Way.
In CHES 2014. 75–92.

[7] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. (2005). Preprint available
at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[8] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. 2008. Attacking and
Defending the McEliece Cryptosystem. In PQCrypto 2008. 31–46.

[9] Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. 2016. Lattice-Based
Signature Schemes and Their Sensitivity to Fault Attacks. In FDTC 2016. 63–77.

[10] Avrim Blum, Adam Kalai, and Hal Wasserman. 2003. Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519.

12

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[11] Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryp-
tography. (July 2016). https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html.

[12] Yuanmi Chen and Phong Q. Nguyen. 2011. BKZ 2.0: Better Lattice Security
Estimates. In ASIACRYPT 2011. 1–20.

[13] Léo Ducas. 2014. Accelerating Bliss: the geometry of ternary polynomials. IACR
Cryptology ePrint Archive, Report 2014/874. (2014).

[14] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013.
Lattice Signatures and Bimodal Gaussians. In CRYPTO 2013. 40–56.

[15] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. 2017. CRYSTALS - Dilithium: Digital Signatures from
Module Lattices. Cryptology ePrint Archive, Report 2017/633. (2017).

[16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2016.
Loop abort Faults on Lattice-Based Fiat-Shamir & Hash’n Sign signatures. IACR
Cryptology ePrint Archive, Report 2016/449. (2016).

[17] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to
Identi�cation and Signature Problems. In CRYPTO 1986. 186–194.

[18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A Survey of
Microarchitectural Timing Attacks and Countermeasures on Contemporary
Hardware. Journal of Cryptographic Engineering (2016).

[19] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.
Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based Signature
Scheme. In CHES 2016. 323–345. Full version available at: http://ia.cr/2016/300.

[20] Qian Guo, Thomas Johansson, and Carl Löndahl. 2014. Solving LPN Using
Covering Codes. In ASIACRYPT 2014. 1–20.

[21] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a minute! A fast, Cross-VM attack on AES. In RAID 2014. 299–319.

[22] Adam Langley. 2016. CECPQ1 results. (November 2016). https://www.
imperialviolet.org/2016/11/28/cecpq1.html.

[23] A. K. Lenstra, H. W. Lenstra, and L. Lovász. 1982. Factoring polynomials with
rational coe�cients. Math. Ann. 261, 4 (1982), 515–534.

[24] Éric Levieil and Pierre-Alain Fouque. 2006. An Improved LPN Algorithm. In SCN
2006. 348–359.

[25] Richard Lindner and Chris Peikert. 2011. Better Key Sizes (and Attacks) for
LWE-Based Encryption. In CT-RSA 2011. 319–339.

[26] Matteo Mariantoni. 2014. Building a superconducting quantum computer -
Invited Talk in PQCrypto 2014. (October 2014). https://www.youtube.com/
watch?v=wWHAs--HA1c.

[27] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Ampli�es The Power of Cache Attacks. CoRR abs/1703.06986 (2017).

[28] NIST. 2016. Post-Quantum crypto standardization. (December 2016). http:
//csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html.

[29] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. 2014. Beyond ECDSA
and RSA: Lattice-based Digital Signatures on Constrained Devices. In DAC 2014.
110:1–110:6.

[30] Committee on National Security Systems. 2015. Use of Public Standards for
the Secure Sharing of Information Among National Security Systems. CNSS
Advisory Memorundum Information Assurance 02-15. (July 2015).

[31] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In 23rd CCS. 1406–1418.

[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In CT-RSA 2006. 1–20.

[33] Cesar Pereida García and Billy Bob Brumley. 2016. Constant-Time Callees
with Variable-Time Callers. IACR Cryptology ePrint Archive, Report 2016/1195.
(2016).

[34] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. 2016. "Make Sure DSA
Signing Exponentiations Really are Constant-Time". In CCS 2016. 1639–1650.

[35] Peter Pessl. 2016. Analyzing the Shu�ing Side-Channel Countermeasure for
Lattice-Based Signatures. In INDOCRYPT 2016. 153–170.

[36] Peter Pessl and Stefan Mangard. 2016. Enhancing Side-Channel Analysis of
Binary-Field Multiplication with Bit Reliability. In CT-RSA 2016. 255–270.

[37] Krzysztof Pietrzak. 2012. Cryptography from Learning Parity with Noise. In
SOFSEM 2012. 99–114.

[38] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2015. Just a Little Bit More. In
CT-RSA 2015. 3–21.

[39] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. 2014. Enhanced Lattice-
Based Signatures on Recon�gurable Hardware. In CHES 2014. 353–370.

[40] GNU Project. n.d.. GLPK (GNU Linear Programming Kit). (n.d.). https://www.
gnu.org/software/glpk/.

[41] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and
cryptography. In STOC 2005. 84–93.

[42] Markku-Juhani O. Saarinen. 2017. Arithmetic coding and blinding countermea-
sures for lattice signatures. Journal of Cryptographic Engineering (2017).

[43] Victor Shoup. n.d.. NTL: A Library for doing Number Theory. (n.d.). http:
//www.shoup.net/ntl/.

[44] Jacques Stern. 1988. A method for �nding codewords of small weight. In Coding
Theory and Applications 1988. 106–113.

[45] strongSwan. 2015. strongSwan 5.2.2 Released. https://www.strongswan.org/
blog/2015/01/05/strongswan-5.2.2-released.html. (2015).

[46] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Hiyauchi.
2002. Cryptanalysis of Block Ciphers Implemented on Computers with Cache.
In International Symposium on Information Theory and Its Applications. 803–806.

[47] Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit. http:
//cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf. (Sept. 2016).

[48] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces
Using the Flush+Reload Cache Side-channel Attack. IACR Cryptology ePrint
Archive, Report 2014/140. (2014).

[49] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium.
719–732.

[50] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In 22nd CCS. 990–1003.

13

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://ia.cr/2016/300
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.youtube.com/watch?v=wWHAs--HA1c
https://www.youtube.com/watch?v=wWHAs--HA1c
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Bimodal Lattice Signature Scheme (BLISS)
	2.3 Discrete Gaussians
	2.4 Learning Parity with Noise (LPN)

	3 Side-Channel Attacks on BLISS
	3.1 Cache Attacks
	3.2 A Cache Attack on BLISS
	3.3 The Shuffling Countermeasure and Analysis
	3.4 Limitations of Previous Attacks

	4 An Improved Side-Channel Key-Recovery Technique
	4.1 Step 1: Gathering Samples
	4.2 Step 2: Finding s1 mod 2
	4.3 Step 3: Recovering the Position of Twos
	4.4 Step 4: Recovering s1 with the Public Key

	5 Evaluation of Key Recovery
	5.1 Step 2: Key-Recovery mod 2
	5.2 Step 3: Recovery of Twos
	5.3 Step 4: Key-Recovery using Lattice Reduction

	6 Attacking strongSwans BLISS-B
	6.1 Asynchronous Cache Attack
	6.2 Resynchronization
	6.3 LPN and Results

	7 Conclusion
	References

