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ABSTRACT 13 

Aim 14 

To identify relationships between volunteer bird survey effort and motivations in order to prioritise 15 

investment in future surveying activities. 16 

Location 17 

South west Western Australia, a global biodiversity hotspot. 18 

Methods 19 

We developed nine hypotheses for volunteer motivations to predict the probability of a bird survey being 20 

undertaken anywhere in the landscape using data from the New Atlas of Australian Birds. We then 21 

established three goals for surveying in the study region: 1) equal representation of surveys across the 22 

landscape, 2) surveys stratified by habitat type, and 3) representation of surveys in protected areas. We 23 

developed a function to estimate the benefit of investing in professional surveys, given the probability of a 24 

volunteer survey taking place and the survey goal, and calculated the cost of meeting a surveying goal with 25 

and without accounting for the probability of cells not being surveyed by volunteers.  26 

Results 27 

A model combining the location of protected areas, location of previous records of threatened species, and 28 

habitat diversity, was the strongest predictor of the probability of a volunteer bird survey being conducted. 29 

Each surveying goal resulted in different areas being prioritised for future surveying, indicating the 30 

importance of setting clear objectives before undertaking broad-scale monitoring or surveying activities. If 31 

our primary goal is stratified protected area representation in surveys, there are huge cost savings if only 32 

protected areas with a 70% predicted probability of not being surveyed by volunteers were selected for 33 

professional surveys.  34 

Main conclusions 35 

Professional sampling in survey gaps is required to reduce bias in volunteer-collected datasets. Using 36 

models of volunteer behaviour we can identify areas unlikely to be surveyed.  If these areas are important 37 

for the project objective, then we can either provide incentives for volunteers or carry out professional 38 

surveying. These analyses are best done before data collection commences. 39 

Keywords: biological atlas, citizen science, conservation planning, resource allocation, species distribution 40 

modelling, volunteer monitoring41 
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(A)INTRODUCTION 42 

Biodiversity is declining worldwide, and in order to prioritise actions to mitigate threats we need to 43 

evaluate the current status and distributions of the species we are trying to recover and protect (Walsh et al. 44 

2012). Surveys across large scales (using a repeatable sampling method to estimate the number of 45 

individuals or the diversity of species) allow us to make such prioritisations. With on-going monitoring (the 46 

systematic acquisition of data over time) we can keep track of how well our recovery efforts are going. 47 

Atlas projects are broadly defined as landscape-level collections of spatially explicit data on species 48 

occurrences (Osborne & Tigar 1992), most often contributed by volunteers (Dunn & Weston 2008; 49 

Robertson et al. 2010). Volunteer-collected or ‘citizen science’ monitoring databases have now been 50 

established in many parts of the world representing both marine and terrestrial taxa (e.g. Battersby & 51 

Greenwood 2004; Schmeller et al. 2009; Silvertown 2009). The cost-savings from enlisting the support of 52 

the volunteering public in such projects are substantial. For example, in the United Kingdom it has been 53 

estimated that volunteers contribute 1.6 million hours annually to bird surveys, work that would cost over 54 

US$30 million per annum if undertaken by professionals (Danielsen et al. 2009). 55 

Globally, atlases are crucial for engaging people in monitoring and conservation as well as answering 56 

questions related to conservation, management and theoretical ecology (Underhill et al. 1991; Donald & 57 

Fuller 1998; Dunn & Weston 2008; Pomeroy et al. 2008; Robertson et al. 2010), but issues remain with 58 

data gaps and biases (Romo et al. 2006; Boakes et al. 2010; Botts et al. 2010), and with maintaining 59 

volunteer interest and objectivity (Booth et al. 2011). Species occurrence data, such as those compiled 60 

during volunteer atlases often exhibit strong spatial and temporal biases in survey effort (Osborne & Tigar 61 

1992; Romo et al. 2006; Boakes et al. 2010), meaning that some places are more likely to be surveyed than 62 

others, and surveys will not be evenly distributed in time (Bas et al. 2008; Sparks et al. 2008; Phillips et al. 63 

2009). Other problems to be dealt with in volunteer-collected datasets include observer error and 64 

heterogeneity in the ability of observers to detect species (Kery et al. 2006; Etterson et al. 2009).Without 65 

robust and unbiased monitoring systems (Yoccoz et al. 2001), inferences on species’ habitat preferences 66 

and distribution have more omission and commission errors (Barry & Elith 2006; Rondinini et al. 2006; 67 

Boakes et al. 2010), which can affect the reliability of models or conservation prioritisation analyses using 68 

that data (Rondinini et al. 2006; Moilanen et al. 2009).  69 

In order to improve the quality of atlas data, under-represented regions can be targeted by professional 70 

surveys or by encouraging and directing volunteers, or the sampling design adjusted to sample the 71 

environmental variation across the landscape (Table 1). Continued data collection incurs a cost in both 72 

resources and time (Hauser et al. 2006; Grantham et al. 2009), and due to limited budgets, planners of 73 

monitoring programs or users of the data have to prioritise future efforts. There is now a large body of 74 

literature that explores prioritising or optimising monitoring, including the selection of suitable indicator 75 

species (Fleishman & Murphy 2009; Tulloch et al. 2011), threatened taxa (Regan et al. 2008), comparing 76 

monitoring and survey protocols (e.g. Munson et al. 2010), improving survey methodology (Joseph et al. 77 

2006; Rhodes et al. 2006a), and integrating cost in survey design (e.g. Carlson & Schmiegelow 2002; 78 
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Gerber et al. 2005; Loyola et al. 2009; Tulloch et al. 2011). Understanding the factors that influence the 79 

spatial distribution of volunteer survey effort, such as the motivation for volunteers to survey particular 80 

areas, is the key to predicting where gaps are likely to occur in future surveys, and thereby prioritising 81 

future surveying efforts. Unfortunately, information on volunteer motivations is not routinely collected in 82 

citizen science datasets, and owing to the complex nature of human behaviour these types of data are 83 

difficult to infer. One way to make use of limited data is to use species distribution models, which can be 84 

parameterised with few variables. While priority areas for future surveys have been derived through species 85 

distribution models of target species (Rachlow & Svancara 2006; Rhodes et al. 2006b; Jones 2011), the 86 

likely sampling patterns of the volunteers who undertake surveys have not been explored. 87 

Substantial worldwide volunteer effort has been directed at bird atlases (over 300 atlases engaging over 88 

100,000 participants; Dunn & Weston 2008) due to the popularity of bird watching and the ease of 89 

conducting bird surveys relative to other species (e.g. bats, marine invertebrates) that often require special 90 

monitoring equipment or expertise. The New Atlas of Australian Birds (Barrett et al. 2003) is a database 91 

that relies almost entirely on volunteers. It forms the basis for national bird population estimates and 92 

provides data to inform conservation assessments by environmental consultants and policy and planning by 93 

local and state governments (Garnett et al. 2011; Szabo et al. 2011). We chose this database as one of its 94 

key aims is to involve the community in the conservation and monitoring of birds (Barrett et al. 2003). 95 

From 1997 to 2010 more than 7000 surveyors have contributed over 500,000 surveys, resulting in more 96 

than 8.5 million records. However, recent analyses of bird atlas data in Australia and elsewhere have found 97 

biases in the species surveyed by volunteers (Booth et al. 2011; Tulloch & Szabo accepted) and high 98 

spatio-temporal variability in sampling effort (Szabo et al. 2007), which has implications for applying the 99 

data to conservation or management objectives especially in under-sampled or remote areas (Yoccoz et al. 100 

2001). To fill knowledge gaps, we need to better understand the current and potential distribution of on-101 

going survey effort, to address key data deficiencies in order to increase the usefulness of atlas data for 102 

monitoring and scientific research.  103 

Limited funding for conservation worldwide means that decisions need to be made about where and how to 104 

fill gaps, and who will be collecting survey data. We present an approach that enables atlas coordinators or 105 

users to prioritise allocation of funding to address data deficiencies, by using knowledge of the motivations 106 

and biases of the data collectors to predict their future actions. Establishing explicit protocols to take into 107 

account the motivations of volunteers to conduct surveys in particular areas will allow more efficient 108 

investment in professional surveys or volunteer incentives to achieve the desired targets. The specific 109 

objectives of our study are to: 110 

1. use the geographic location of past surveys to predict the future distribution of volunteer survey 111 

effort,  112 

2. assuming that volunteer effort is spatially predictable, extract and apply models of motivational 113 

factors, to predict the probability of areas being surveyed in the future, and 114 
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3. account for the probability of an area being surveyed by volunteers to help prioritise future 115 

investment in professional surveys. 116 

(A)METHODS 117 

(B)Study area 118 

Our study focused on an extensive area (356,717 km2) of south-west Western Australia (WA), 119 

encompassing a biodiversity hotspot as defined by Conservation International (Mittermeier et al. 1998; 120 

Myers et al. 2000). The region is of conservation significance due to high plant endemism (53% of 5571 121 

species) as well as the removal of approximately 70% of native vegetation for cropping and grazing in the 122 

last 100 years (Saunders et al. 1991; Saunders et al. 1993; Hopper & Gioia 2004), which has led to declines 123 

and local extinctions of flora and fauna. For instance, 57 of the 280 native bird taxa in the region are now 124 

of conservation concern (Mittermeier et al. 1998; Garnett et al. 2011). 125 

The extent of the study area was converted to a geographical projection layer of 10 km grid cells (100 km2), 126 

resulting in 3866 grid cells for analysis. A 10 km grid cell size was chosen after preliminary analyses of the 127 

total dataset revealed a mean distribution of 1 survey per 100 km2. All spatial data processing was done 128 

using ArcGIS version 9.3 (ESRI Inc. 2008). 129 

(B)Volunteer survey data 130 

We used a subset of bird surveys from 1998 to 2011 obtained from the New Atlas of Australian Birds, an 131 

on-going project of which approximately 95% of the surveys are collected by volunteers throughout 132 

Australia (Barrett et al. 2003). Records were checked for reliability and surveys with no recorded 133 

coordinate system or less than 5-km locational accuracy were discarded. The dataset was split into three 134 

time periods: a) 1998–2002, the main atlas period during which data were collected for publication of 135 

species range maps, with an emphasis on covering as many different sites as possible (Barrett et al. 2003), 136 

b) 2003–2007, the bulk of surveys conducted after the atlas was published when volunteers were allowed to 137 

visit any site of their choosing (hereafter termed ‘post-atlas’ surveys), comprising the validation data, and 138 

c) 2008–2011, the test data for ‘the future’. The volunteer survey dataset was overlaid with a 10 km grid of 139 

the study area to calculate, for each grid cell in each time period: a) the number of surveys per year, b) the 140 

identity of species detected each year and the total number of species detected per year, and c) the identity 141 

and number of threatened species (listed as threatened fauna on the Wildlife Conservation Act 1950 in 142 

WA) detected per year. 143 

(B)Data analysis 144 

All statistical analyses were carried out in R version 2.11.1 (R Development Core Team 2010). 145 

(C)Predicting future survey distribution from past surveys 146 
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Our first aim was to determine if the spatial distribution of past surveys can predict the distribution of 147 

future surveys. To do this, we related the spatial distribution of survey effort (number of surveys per grid 148 

cell) from the post-atlas period (2003–2007; response variable) to the distribution in the main atlas 149 

collection period (1998–2002; explanatory variable). We used generalised linear modelling (GLM) with a 150 

Poisson distribution to test for the significance of the relationship and thus the ability of the distribution of 151 

past surveys to predict the future locations of volunteer surveys. The residuals of all models were tested to 152 

ensure no model assumptions were violated, including tests for over-dispersion and Moran’s I test for 153 

spatial autocorrelation. 154 

(C)Volunteer motivations 155 

Our second aim was to determine factors that motivate volunteers to survey different parts of the landscape, 156 

using a species distribution modelling approach (Guisan & Zimmermann 2000; Elith & Leathwick 2009). 157 

Human behaviour is complex, and to fully understand the reasons for volunteers to survey an area we 158 

would ideally have actual questionnaire data that the volunteers have provided, however these data have 159 

not been collected on a broad scale and are difficult to collect after the event. We therefore used coarse-160 

scale landscape surrogates to represent the factors that motivate volunteers to survey in different areas. We 161 

developed a number of hypotheses describing potential motivations for volunteers to survey different areas 162 

based on previous literature on biases in citizen science datasets, resulting in 20 models in total (see Table 163 

1). Generalised linear modelling with a Bernoulli distribution and a logit link was used to fit each model to 164 

the survey occurrence data for each grid cell in 2003–2007. The residuals of all models were again tested to 165 

ensure no model assumptions were violated, including tests for over-dispersion and spatial autocorrelation. 166 

For explanatory variables, we used 20 environmental factors describing landscape characteristics, and one 167 

variable describing the richness of threatened birds detected in the main atlas period (Table 2), as previous 168 

studies indicate that many volunteers seek out threatened bird species (Booth et al. 2011; Tulloch & Szabo 169 

accepted). Preliminary analyses found strong correlations between the potential explanatory variables of 170 

distance from Perth, distance from towns, and road density (Pearson’s product-moment correlation, r2 > 171 

0.7, P < 0.001), so models containing these variables were simplified into separate models to avoid 172 

colinearity of variables (see Table 1). In order to allow direct comparison between explanatory variables 173 

measured in different units, continuous explanatory variables were first standardised by subtracting the 174 

mean value and dividing by two standard deviations (Gelman & Hill 2007). Hypotheses were compared in 175 

an information-theoretic framework using AIC model selection (Burnham & Anderson 2002), and the best-176 

supported model was used to predict the probability of survey occurrence for every grid cell in the region. 177 

We validated the predictive performance of the best-supported model with a random selection of 10% of 178 

the survey data from the 2003–2007 dataset held back from analyses. We explored the agreement between 179 

model predictions and observations using calibration diagrams (Pearce & Ferrier 2000), and the distribution 180 

of predicted values for surveyed and unsurveyed cells (Elith & Leathwick 2009). The Area Under the 181 

Receiver Operator Curve (AUC) – as a measure of rank-correlation– was calculated to evaluate the quality 182 

of the predictions. A high AUC value indicates that high predicted scores tend to be areas of known 183 
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presence and lower model prediction scores tend to be areas in which the surveyors are known to be absent 184 

(or a random point). An AUC score of 0.5 means that the model is as good as a random guess. We also 185 

explored model refinement, which relates to the total range of predictions produced by the model. A model 186 

is well refined if predictions cover the full probability range, with predicted values near both one and zero 187 

(Pearce & Ferrier 2000).  188 

(C)Predicting survey distribution based on volunteer motivations  189 

Our third aim was to use our findings on volunteer motivations to predict the probability of areas being 190 

surveyed later. To address this aim, the best-supported model of volunteer motivations was used to predict 191 

the probability of areas being surveyed in 2008–2011, and predictive performance was evaluated as above. 192 

We compared our predicted values for our best model for 2003–2007 data with a new model that has the 193 

same explanatory variables but new data (2008–2011 surveys), to see if the same cells were predicted to be 194 

surveyed. This resulted in a new probability of survey (Ai = Actual Pi) that can be compared with the old 195 

(predicted Pi), where Pi represented the chance a cell was surveyed in the designated time period as 196 

informed by the model. If our model predicts well, we should see a strong one-to-one relationship between 197 

Ai and Pi, and we have higher confidence in predicting survey effort in later years. 198 

(C) Prioritisation of future surveying 199 

Our final aim was to develop a protocol to prioritise future surveying effort which accounts for the 200 

probability of an area being surveyed by volunteers. In order to do this we first envisaged three possible 201 

surveying goals: 202 

1) Equal representation 203 

Target: At least two surveys per grid cell (since previous studies (Cunningham et al. 1999; Field et 204 

al. 2005) show that more than one survey is needed to increase the likelihood of detecting all 205 

species). 206 

2) Stratified habitat representation 207 

Target: At least one survey per habitat per grid cell (Beard 1980a; b), so that the number of surveys 208 

per grid cell ≥ number of habitat types per grid cell. 209 

3) Stratified protected area representation 210 

Target: Surveys per grid cell ≥ number of protected areas per grid cell (WA Department of 211 

Environment and Conservation). 212 

By applying these goals to the landscape we explored the potential benefits of investing in professional 213 

sampling in survey gaps. We first calculated the number of surveys already achieved towards these goals 214 

(i.e. current status of each grid cell) by overlaying the 1998–2002 and 2003–2007 bird survey datasets on 215 

the relevant spatial layers for each goal. The number of surveys 𝑠𝑠𝑎𝑎𝑔𝑔 required in a spatial unit a to achieve 216 

each surveying goal g is the difference between the number sought after by the goal (see above definitions) 217 

and the number currently achieved, with a value of zero for a spatial unit indicating that unit has achieved 218 



8 

the goal (and negative values therefore converted to zero). We used the predicted probability of volunteer 219 

surveys for 2008–2011 to determine the probability of a survey not taking place (1 – Probability of being 220 

surveyed by a volunteer) for each grid cell. We were then able to derive benefit functions for investing in 221 

additional surveying to meet each of our goals (1–3) based on the probability of a volunteer survey not 222 

taking place, in which surveys unlikely to be conducted by volunteers, but which will contribute to our 223 

goal, will have a high benefit: 224 

Survey benefit = 𝑠𝑠𝑎𝑎𝑔𝑔 * Pr(no volunteer surveys). 225 

Finally, we calculated the cost of meeting a surveying goal with and without accounting for the probability 226 

of cells not being surveyed by volunteers. We calculated the cost of surveying using the third scenario as an 227 

example (stratified protected area representation). The cost per sampling unit was calculated using the 228 

equation: 229 

 Cost per sampling unit = ∑ xa.ca.sa 230 

Where a is the target area (here a protected area) in which sampling is required to achieve a goal, xa is the 231 

action of selecting or not selecting target a for survey (xa is 0 or 1), ca is the cost for one 20 minute 2-ha 232 

standardised survey in target a, and sa is the number of surveys required in each target a. For this study ca 233 

was set at AU$50 across all habitats and s was 1. To determine the initial cost in each sampling unit 234 

without taking into account the future efforts of volunteers, xa was set to 1 for all protected areas still 235 

unsurveyed, and 0 for all protected areas already surveyed. We targeted protected areas with a 70% chance 236 

of not being surveyed. The cost per grid cell was then re-calculated to prioritise only the protected areas 237 

with at least 70% probability of no volunteer surveys. We were therefore able to calculate the cost-saving 238 

that would result from incorporating knowledge of expected volunteer behaviour to prioritise future 239 

surveying. 240 

(A)RESULTS 241 

Our first aim was to explore the relationship between the spatial distribution of surveys from the main atlas 242 

period (1998–2002) and the post-atlas period (2003–2007) to assess the ability of past survey distribution 243 

to predict later distribution. A GLM showed that the distribution of the number of surveys per grid cell 244 

during the post-atlas period in 2003–2007 (response variable) is positively associated with the number of 245 

surveys recorded during the main atlas period in 1998–2002 (explanatory variable; deviance explained 246 

34.85%, β = 0.80, SE = 0.02; Fig. 1, Table S2).  247 

Our second aim was to test hypotheses describing volunteer motivations for surveying in different areas. 248 

We found that the best-supported model for survey occurrence in 2003–2007 was the model that described 249 

“conservation concern” motivation, with an AIC weight of 1 ranking it conclusively above all other models 250 

(Table 3, Figs. 2 and S1(a)). This model accounted for 13.09% of the deviance (Fig. 2(a, b, c); see Table 2 251 

for description of explanatory variables). The probability of survey occurrence in a grid cell increases with 252 

the number of protected areas being managed for conservation (“protected areas”: β = 0.83, SE = 0.08; 253 
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Table 4, Fig. S1(b)), the number of habitat types in that grid cell (“habitat diversity”: β = 0.54, SE = 0.08; 254 

Table 4, Fig. S1(c)) and when at least one threatened species was recorded during the main atlas period 255 

1998–2002 (“threatened species presence”: β = 1.24, SE = 0.08; Table 4, Fig. S1(d)). The mean number of 256 

protected areas per grid cell is 2.65 ± 0.14 SE (with a probability of survey of 0.22), with the predicted 257 

probability of a survey in a grid cell only 0.10 if there is less than one protected area per cell, but increasing 258 

to 0.47 when there are more than 100 protected areas (Fig. 2(a)). The mean number of habitat types per grid 259 

cell is 3.90 ± 0.03 SE (probability of survey of 0.22), and the predicted probability of a volunteer surveying 260 

is only 0.09 if there is only one habitat type per cell, increasing to 0.39 when there are more than 13 261 

habitats (Fig. 2(b)). The probability of a volunteer survey occurring if a threatened species has previously 262 

been recorded in a grid cell is 0.37, but if no threatened species has been recorded there the probability is 263 

reduced to 0.15 (Fig.2(c)).  264 

The predicted values for cells at which surveys were recorded in 2003–2007 were, on average, higher than 265 

those for unsurveyed cells, indicating a good discrimination capability of the best model (Fig. S2). This 266 

was confirmed by a plot of the Receiver Operating Curve, with an AUC of 0.83 (Fig. S2). The refinement 267 

of the values predicted by the model was also good, with predictions ranging from 0.06 to 0.88. 268 

Our third aim was to test the best-supported model (threatened species and protected areas motivation) 269 

using recently-collected (since 2008) atlas data. The discrimination ability of the model was assessed 270 

visually by comparing the distribution of predicted probabilities for occupied cells with the distribution of 271 

the predicted probabilities for unoccupied cells (Fig. S3(a)). Predicted values for cells at which the surveys 272 

were recorded between 2008 and 2011 were, again, higher than those for unsurveyed cells (Fig. S3(b)), 273 

which was confirmed by an AUC of 0.73 (Fig. S3(c)). There were strong linear relationships between Ai 274 

(applying the best-supported model to data from 2008–2011) and predicted Pi (using data from 2003–2007) 275 

for cells not visited yet (r2 = 0.995, P < 0.001) and cells visited in 2008–2011 (r2 = 0.97, P < 0.001) (Fig. 3). 276 

Our final aim was to apply different monitoring goals to an expected benefits function for undertaking 277 

professional surveys, given the distribution of volunteer efforts. We found different spatial distributions of 278 

effort allocation according to the goal (Fig. 4). To achieve a goal of equal representation across grid cells 279 

(two surveys per grid cell), benefits were distributed across the inland parts of the study area (Fig. 4(a)); 280 

these cells had lower survey counts in 2003–2007 (Fig. 1(b)). The expected benefit increased linearly with 281 

the probability of a cell not being surveyed (r2 = 1, P < 0.001; Fig. 5(a)), and the mean benefit was 1.51 ± 282 

0.34 SD. To achieve habitat stratification goals for monitoring (one survey per habitat type in each grid 283 

cell), expected monitoring benefits were scattered across the landscape but with generally low values 284 

around Perth and surrounds (Fig. 4(b)). There was a slight positive linear relationship between the expected 285 

benefit and the probability of a survey not occurring (r2 = 0.02, P < 0.001; Fig. 5(b)), with a mean benefit of 286 

2.81 ± 1.21 SD. When surveys were prioritised in protected areas (one survey per protected area in each 287 

grid cell), the highest benefits were located in the south-western corner of the study area where there is a 288 

high density of small fragmented protected areas (Fig. 4(c)), and there was a slight positive linear 289 

relationship between benefits and probability of a survey not taking place (r2 = 0.02, P < 0.001; Fig. 5(c)). 290 
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The mean benefit was 1.91 ± 4.09 SD. When converted to selection frequencies of cells over the mean 291 

value for each benefit function, there were only 131 cells (3%) selected by all three benefit functions, with 292 

the majority selected by either one (2006 cells, 52%) or two (1307 cells, 34%) functions; 422 cells (11%) 293 

were not selected by any benefit function. 294 

The costs to achieve surveying goal 3 (one survey in each protected area in each 100km2 grid cell) in each 295 

grid cell varied depending on the number of protected areas already surveyed. Protected areas cover 296 

approximately 68,000 km2 (19% of the study area) and contain 18.5% of records. This equates to 2313 grid 297 

cells containing protected areas, of which only 163 (7%) satisfied the target of one survey per protected 298 

area per cell. At least 85% of protected areas had never recorded a 2-ha survey, despite 20 of these being 299 

designated National Parks. The total budget for surveying all protected areas not yet surveyed in every grid 300 

cell was AU$643,850. Surveying in only the protected areas with more than 70% chance of not being 301 

surveyed by volunteers reduced the estimated total cost by almost 75% to AU$164,750. 302 

 303 

(A)DISCUSSION 304 

To evaluate and manage current levels of biodiversity loss we need to quantify biodiversity composition at 305 

large spatial and temporal scales (Henry et al. 2008). However, biological surveys are expensive and time 306 

consuming. The cost of managing and monitoring Australia’s 155 threatened bird taxa alone is estimated at 307 

least US$10.2 million annually, and available government funding is less than a third of this amount 308 

(Garnett et al. 2003). Although many papers discuss optimal sampling of the environment, few studies have 309 

focused on the behaviour of the people doing the monitoring. This is particularly important for large-scale 310 

datasets such as atlases, which accumulate vast quantities of data through the efforts of volunteers. This 311 

paper has shown how we can apply the concept of ‘species distribution modelling’ to humans, by 312 

developing models of volunteer motivations to optimally invest in additional surveys or modify human 313 

behaviour to achieve specific outcomes. By looking at past motivations for volunteer bird surveyors, we 314 

can predict their future behaviour and use these predictions to determine the areas that are unlikely to be 315 

visited by volunteers. We have demonstrated that defining a clear objective for monitoring is crucial as the 316 

sites selected for future investment in surveying can vary greatly depending on the specified goal (Figs. 4 317 

and S1).  318 

Broad-scale surveys (e.g. atlases) and monitoring programs (e.g. breeding bird surveys), are used 319 

increasingly to document declines in populations worldwide as well as to evaluate the efficacy and 320 

efficiency of management actions and policies (Gates & Donald 2000; Yoccoz et al. 2001; Telfer et al. 321 

2002; Kotze & O'Hara 2003). However, reviews of existing monitoring programs have highlighted a lack 322 

of well-articulated objectives (Dale & Beyeler 2001; Legg & Nagy 2006; Lindenmayer & Likens 2009; 323 

2010), which can lead to the wrong variables being measured in the wrong place at the wrong time, and 324 

result in datasets that do not have sufficient statistical power to answer important questions. Driving 325 

volunteer surveying or monitoring programs by well-formulated and tractable objectives can help to avoid 326 
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inefficient and ineffective actions and wasting of limited resources (Salzer & Salafsky 2006; Grantham et 327 

al. 2009; Lindenmayer & Likens 2009). We devised three goals for surveying the birds of the south-328 

western Australian biodiversity hotspot, which resulted in different spatial patterns of the benefits of 329 

investing in future surveys (Fig. 4). The different goals demand different management interventions. For 330 

example, ensuring that all environmental space has been covered might be important for developing 331 

accurate species distribution models that can be used to prioritise conservation planning decisions (Loiselle 332 

et al. 2003; Carvalho et al. 2010). In contrast, identifying protected areas that are unlikely to be visited due 333 

to their location or lack of publicly-available information can assist with evaluating protected area 334 

performance. In a social science context this might involve understanding the level of public knowledge of 335 

protected areas to evaluate their potential for leveraging support for conservation activities or impacting 336 

policy decisions. 337 

Knowing where people voluntarily undertake surveys helps us devise cost-effective strategies for a 338 

particular objective. For example, to achieve a goal of stratified protected area representation in our study 339 

landscape (Fig. 4(c)), there was a 75% reduction in the cost of the planned survey program if only protected 340 

areas predicted to have a 70% chance of not being surveyed by volunteers were selected for professional 341 

surveys. These results show that by setting clear objectives, and accounting for information on the benefits 342 

and costs of an action, such as monitoring of birds by volunteers, organizations wishing to implement 343 

potentially expensive surveying programs across large scales can improve the effectiveness of future efforts 344 

by investing limited funding where it is most needed. 345 

Understanding the motivations and reasons behind volunteer behaviour is crucial to enable better 346 

management of the volunteers and data generated by them. Given the complex nature of human behaviour, 347 

ideally data on motivation, collected from volunteers, would be used to investigate this. However, at 348 

present these data are not usually available at the landscape scale. An alternative methodology, as used 349 

here, is to use coarse environmental variables as correlates of volunteer distribution and infer from this the 350 

motivations for visiting particular locations. It is important to bear in mind, when interpreting our results, 351 

that the inferences are based on correlational and not mechanistic models. The benefit of this approach is 352 

that it can be applied to any atlas or other large scale survey data-set now without further data collection, 353 

and the results can be used to prioritise further survey or monitoring investment. The use of species 354 

distribution modelling with an AIC model selection framework is ideal to test these ideas with this type of 355 

data because we are able to compare multiple hypotheses and highlight the model/s best supported by the 356 

data, and where relevant, make inference across multiple models to reduce model selection uncertainty. 357 

However, it is important to stress that the ideal would be to have demographic data, and explicit data on 358 

volunteer motivations in order to better elucidate why volunteers go where they go, and in particular 359 

whether they could be incentivised to go elsewhere. For example, birdwatchers are not acting 360 

independently of one another, and indeed may travel together, visit sites recommended by friends or 361 

engage in competitive bird watching, all of which will affect the distribution of surveys in the landscape. 362 

Dependence between volunteers (e.g. travelling together) will also in some circumstances increase the 363 
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chance of achieving multiple surveys per spatial unit and would be useful to explore if the data were 364 

available. Although this information is not collected by the dataset we used, some citizen science projects 365 

already collect data on dependencies through the ability of online users to ‘share’ data with members from 366 

their survey group (e.g. eBird), which will allow more advanced kinds of modelling that incorporate 367 

volunteer dependencies to be explored. We suggest that these types of data could be routinely collected as 368 

part of citizen science projects, such as by the inclusion of a short questionnaire within the data forms that 369 

volunteers are already completing to record their data, and that this should be done as a matter of priority in 370 

order to inform future survey and monitoring efforts.  371 

That said, our analyses have highlighted that the best model of volunteer behaviour in this study described 372 

motivations to visit areas or species of conservation concern– i.e. that threatened species, habitat diversity 373 

and protected areas are the major drivers for bird surveying. This corresponds with a previous study in 374 

Australia (Weston et al. 2006), which found strong conservation motivations in a survey of volunteers for 375 

the Threatened Bird Network. Similarly, research in other parts of the world shows volunteers are attracted 376 

to areas of high diversity (Parnell et al. 2003; Romo et al. 2006) and also to rare species (Booth et al. 377 

2011). The importance of previous sightings of threatened species as a motivating variable in our model is 378 

supported by previous research that indicates that volunteers often return to the same location where they 379 

previously saw a threatened species (Booth et al. 2011; Tulloch & Szabo accepted), or share their 380 

knowledge of where they know a threatened or rare species is located (e.g. Australia: http://birding-381 

aus.org/; South Africa: http://groups.yahoo.com/group/sabirdnet; United Kingdom: 382 

http://www.birdnetinformation.co.uk). The importance of protected areas for volunteer motivation is also 383 

not surprising. In this study, grid cells with high numbers of protected areas were generally more visited 384 

than those with few (e.g. one large protected area). This might be due to accessibility issues such as road 385 

access, which has been shown to bias the distribution of volunteer surveys (Longmore 1986; Reddy & 386 

Dávalos 2003; Romo et al. 2006; Botts et al. 2010). Interestingly, the models including accessibility 387 

performed substantially worse than our “conservation concern” model (Tables 3 and S2), highlighting that 388 

focusing solely on accessibility as an explanation for the distribution of volunteers in the landscape may 389 

result in an incomplete understanding of the true motivations..  390 

The models of motivations for human behaviour that we developed in this study were contextualised 391 

through our knowledge of the study area and the bird surveyors in Australia and in other parts of the world 392 

(see Table 1). There is a large body of literature that emphasises the need to include ecological reasoning 393 

when choosing appropriate models. Different scenarios, different availability of environmental information 394 

or different landscapes might result in a different selection of explanatory variables for the same 395 

hypotheses in another region or for another species of interest. The datasets we have used in this study are 396 

generally freely available, and therefore easily accessible to both government and non-government 397 

organisations interested in prioritising actions in a cost-effective way. The models we have developed for 398 

our region can therefore be tested on other areas with similar immediate needs of filling knowledge gaps, 399 

e.g. for conservation planning. Other volunteer-collected databases for both birds and other species, in 400 
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particular in the southern hemisphere and developing regions where the areas to be covered are large, have 401 

shown data incompleteness and/or strong biases in the distribution of surveys, including in the Amazon 402 

(Williams et al. 1996), Australia (Longmore 1986; Margules et al. 1994; Szabo et al. 2007), and parts of 403 

Africa (Funk & Richardson 2002; Reddy & Dávalos 2003; Botts et al. 2010). These regions have a 404 

relatively short history of scientific research as well as lower population densities compared to Europe and 405 

the USA, resulting in fewer people potentially available for environmental volunteering (Gibbons et al. 406 

2007; Dunn & Weston 2008). For example, in the USA, the New York State Breeding Bird Atlas (Hampe 407 

2004) mobilised over 1200 volunteers, which represents 151 volunteers per 100 km2, more than 100 times 408 

the number available for the South African Frog Atlas (420 volunteers, 0.014 per 100 km2) and South 409 

African Bird Atlas Project 2 (1029 volunteers, 0.0343 per 100 km2), both of which have biased datasets 410 

with gaps in knowledge (Robertson & Barker 2006; Botts et al. 2010). However, these under-sampled 411 

regions have an equal if not greater need for standardised and representative survey datasets for 412 

conservation planning and assessment, especially for taxa other than birds that may not have such a high 413 

general appeal. Even with clear directions and communication from the data custodians it would be 414 

difficult for volunteers to cover all of the 3 million km2 of South Africa without some form of survey 415 

prioritisation. Decisions on the hypotheses to be tested for the prioritisation approach that we have 416 

developed, should be informed by knowledge of the region and its volunteers, and the choice of 417 

explanatory variables based on the best available information as well as knowledge of the study species 418 

(e.g. frog atlases will most likely require variables the describe the habitat and/or climate limitations of 419 

amphibians). In cases of low data availability, an alternative approach such as Bayesian Belief Networks 420 

informed through expert elicitation, might be more appropriate (Kuhnert et al. 2010). 421 

Systematic sampling in survey gaps is required to obtain more reliable volunteer-collected datasets that are 422 

less spatially biased (Balmford et al. 2003; Balmford et al. 2005). We have demonstrated one way of filling 423 

these gaps through professional surveys. Additional approaches to fill these gaps could include using 424 

incentives and marketing to persuade future volunteers to travel away from their preferred areas (e.g. roads, 425 

urban areas, ‘interesting’ habitats). Providing access to the accumulated data and some of its interpretation 426 

can be an important motivating tool to achieve this. A first important step for atlas coordinators is to 427 

publish maps for survey distribution to volunteers that highlight grid cells (or other target areas) with no 428 

records, or to update record maps (and data needs) regularly online similarly to the South African Bird 429 

Atlas Project 2 (http://sabap2.adu.org.za/) and eBird (http://ebird.org/content/ebird/). Some databases (e.g. 430 

eBird) have had some success encouraging volunteers to monitor unsurveyed areas using ‘patch 431 

competitions’, where volunteers compete to find the most species in their own chosen or allocated area 432 

(Sullivan et al. 2009). However, it is hard to get people to survey in places that they have no interest in 433 

visiting. In these areas, if data are urgently required (e.g. for conservation planning needs or environmental 434 

impact assessment), the only option available might be to pay for surveys. This is exactly what was done 435 

for the New Catalan Breeding Bird Atlas (Hampe 2004), albeit over a much smaller area of only 32,000 436 

km2 (a tenth of our study area). In much larger areas (e.g. Australia), it will not be feasible to fill all the 437 

gaps with expensive professional surveys, and a prioritisation approach as shown here could be appropriate. 438 

http://ebird.org/content/ebird/
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There are considerable benefits to professional surveying, namely the ability to standardize and direct 439 

surveys to the areas where they are most needed. We present a method to prioritise additional organised 440 

surveys, in which areas remaining unsurveyed are prioritised for professional surveying based on the 441 

particular needs and goals of data collection.  442 

Uneven distribution of surveys can lead to more than just gaps in space. Recent findings show that the 443 

representation of bird species in the current Atlas of Australian Birds is not even, rather it is biased towards 444 

species found in urban areas and preferred habitats (Szabo et al. 2007; Tulloch & Szabo accepted), 445 

resulting in fewer species being detected in some areas than expected. Increased sample size and a more 446 

representative spatial distribution of sampling units in surveying and monitoring programs (including 447 

atlases) can ensure that we obtain information on all species, not just those located in the areas volunteers 448 

are most interested in visiting. This should lead to more powerful predictive species distribution models 449 

(Brotons et al. 2007), more accurate species richness maps for conservation assessments, policy and 450 

planning, and more efficient use of limited resources for management and monitoring. 451 

Ultimately we have developed a basic species distribution model (SDM) that assumes that humans behave 452 

similarly to each other. We do not deny that human behaviour is too complex to analyse with simple 453 

models, but given that we do not yet have this kind of information for all of the volunteers, this is a useful 454 

‘first pass’. Uncertainty pervades in all SDMs: in the models we choose, the parameters we select, and the 455 

way we interpret them (Elith et al. 2002; Barry & Elith 2006; Pearson et al. 2006; Elith & Leathwick 456 

2009). For example, some volunteers in our models most likely are not acting independently of each other. 457 

Due to the coarse scale of our analysis we do not account for this, similarly it is difficult to account for 458 

biotic interactions in species distribution modelling (Hampe 2004; Guisan et al. 2006). Increases in 459 

technology and crowd sourcing mean that more detailed data on the volunteers themselves should become 460 

easier to collect in the future. Planners of citizen science programs such as atlases should ensure that they 461 

harness the advances in technology that allow them to collect vital demographic data, as well as 462 

information on motivations of volunteers, which will assist with understanding volunteer motivations and 463 

ultimately planning investment in to monitoring programs in to the future. 464 

(A)CONCLUSION 465 

Immediate action to address key gaps in volunteer-collected databases such as atlases will ensure that they 466 

are more powerful tools for decision-making. It is clear that the actions of volunteer bird surveyors in 467 

conjunction with organisations that fund targeted monitoring programs will play a major role in closing 468 

knowledge gaps and enabling continued monitoring of key habitats, species, and their threats. This is the 469 

first study to predict the probability of volunteer surveys occurring across a landscape, and use these 470 

probabilities to develop benefit functions for prioritising surveying efforts that explicitly account for the 471 

objective as well as the likelihood of a volunteer survey occurring there. The approach we describe uses a 472 

simple and repeatable species distribution modelling technique that can be carried out with any large-scale 473 

datasets in which volunteers choose where to survey. We have also highlighted the need to routinely collect 474 
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some demographic and motivational data as part of such datasets. We have shown that incorporating 475 

knowledge of the motivations of volunteers can assist with prioritising surveying and on-going monitoring 476 

efforts, by reducing the number of planned survey sites and their associated survey costs. Prioritising 477 

resource allocation for monitoring and directing more money to management of threatened species will 478 

deliver better conservation outcomes. 479 
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Table 1. Nine broad hypotheses of volunteer motivations for surveying in particular locations, based on 726 

previous studies of bias in citizen science collected datasets. These hypotheses resulted in 20 models. 727 

Hypothesis Description Global models Explanatory variables 

1) Accessibility  Volunteers survey in areas that are 
easy to access (Parnell et al. 2003; 
Reddy & Dávalos 2003; Romo et 

al. 2006; Szabo et al. 2007; Botts 

et al. 2010) 

Access roads  roads + intensive land use 

  Access town  towns + intensive land use 

  Access Perth Perth + intensive land use 

  Urban towns 

  Roads roads 

2) Aesthetics Volunteers survey in interesting 
landscapes (Romo et al. 2006) 

Aesthetics habitat diversity + protected 
areas+ coast + creeks 

3) Expectations  Volunteers survey where they 
expect the birds to be in nature 
(near shelter, trees and water)  

Expectations distance water + distance 
coast + remnant veg + water 

+ forestry 

  Trees remnant veg + forestry 

  Water distance water + distance 
coast + water 

4) Information Volunteers survey in areas where 
there is information provided to 
them, e.g. near visitor centres, or 
protected areas with information 
on the internet (Küper et al. 2006; 
Boakes et al. 2010) 

Info Perth + visitor centres + DEC 
web + DEC named 

5) Enjoyment/ 
Recreation 
(‘Fun’) 

Volunteers survey to have fun and 
enjoy the outdoors, e.g. picnic 
areas, waterholes, trails, parks 
(Küper et al. 2006; Boakes et al. 
2010) 

Fun protected areas + recreation + 
water land use + DEC trails 

6) Tourism Volunteers survey in popular 
tourist destinations (Boakes et al. 
2010) 

Tourism roads water + DEC trails + roads + 
visitor centres 

  Tourism towns water + DEC trails + towns + 
visitor centres 

  Tourism Perth water + DEC trails + Perth + 
visitor centres 

7) Work 
 

Bird surveys are for 
Environmental Impact 
Assessments for 
development/industry 

Work forestry + intensive land use 

  Work access forestry + intensive land use 
+ towns 

8) Threatened 
Species and 
Protected areas 

Volunteer surveyors are concerned 
about threatened species and want 
to monitor them (Weston et al. 
2003; Küper et al. 2006) 

Conservation 
concern 

protected areas + habitat 
diversity + threatened sp 

  Protected areas  protected areas 

  Threatened sp threatened sp 

9) Incentives 
 

Volunteer surveyors are motivated 
by past incentives and organised 

Incentives urban + agriculture   
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mass survey times, e.g. Birds in 
Backyards, Birds on Farms 
surveys organised by Birding 
Australia (Barrett 2000; Parsons & 
Major 2004) 

728 
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Table 2. Identity of environmental variables for each grid cell used in the modelling process (for further 729 

information on the derivation of these variables see Table S1). 730 

Variable Description Type 

roads Density of roads (km) continuous 

towns Average distance from a town (km) continuous 

Perth Average distance from the capital city Perth (km) continuous 

intensive land use Intensive land use present- residential, industrial, 

recreational, intensive animal production and horticulture 

(Department of Agriculture and Food 2006)*  

categorical (0,1) 

habitat diversity Number of different habitat types (Beard 1980a; b)** continuous 

protected areas Number of protected areas managed for conservation (by 

WA Department of Environment and Conservation) 
continuous 

coast Coastline present categorical (0,1) 

creeks Density of all watercourses (creeks and rivers) (km) continuous 

distance water Average distance from a water body (creek, ocean, lake) continuous 

distance coast Average distance from the coast (km) continuous 

remnant veg  Area of remnant vegetation (km2) continuous 

water  Water land use present (reservoir/dam, lake, estuary, or 

river) 
categorical (0,1) 

forestry  Forestry land use present (plantation or production) categorical (0,1) 

visitor centres Average distance from a tourist visitor centre (km) continuous 

DEC web At least one protected area advertised on the internet: 

http://www.dec.wa.gov.au (WA Department of 

Environment and Conservation) 

categorical (0,1) 

DEC named At least one named protected area (WA Department of 

Environment and Conservation) 
categorical (0,1) 

DEC trails At least one trail in a protected area (WA Department of 

Environment and Conservation) 
categorical (0,1) 

urban Urban land use present (Department of Agriculture and 

Food 2006)*  
categorical (0,1) 

recreation  Recreational land use present (e.g. local parks, gardens, 

cultural services) (Department of Agriculture and Food 

2006)* 

categorical (0,1) 

agriculture Area of dryland agricultural land use (grazing modified 

pastures, cropping, seasonal horticulture) (Department of 

Agriculture and Food 2006)* 

continuous 

threatened sp At least one threatened species recorded in atlas 1998 to 

2002 
categorical (0,1) 

*Land use mapped 1: 25 000 in urban areas, 1:100 000 in agricultural areas and 1:250 000 in pastoral zones 731 

** Remnant habitat type mapped at 1:250,000, describing pre-cleared Western Australian vegetation types 732 

(Beard 1980a; b) 733 

734 
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Table 3. Multi-model inference table for the multivariate analysis of survey probability in grid cells, 735 

showing number of model parameters K, deviance explained, corrected AIC (AICc), AIC differences 736 

(∆AIC) and AIC weight w 737 

Model Rank K 
Deviance 
explained 
(%) 

AICc ∆AIC w 

Conservation concern 1 4 13.09 3735.17 0 1 

Tourism roads 2 5 11.05 3824.93 89.76 0 

Access roads 3 3 10.39 3849.1 113.93 0 

Roads 4 2 9.87 3869.26 134.09 0 

Threatened sp 5 2 9.09 3902.91 167.74 0 

Aesthetics 6 5 8.87 3918.33 183.16 0 

Fun 7 5 7.91 3959.7 224.53 0 

Tourism Perth 8 5 7.05 3996.44 261.27 0 

Info 9 5 6.43 4022.87 287.7 0 

Protected areas 10 2 6.08 4032.11 296.94 0 

Tourism towns 11 4 6.12 4034.51 299.34 0 

Access towns 12 3 5.90 4041.76 306.59 0 

Work access 13 4 5.94 4042.09 306.92 0 

Access Perth 14 3 5.75 4048.2 313.03 0 

Expectations 15 6 4.82 4094.06 358.89 0 

Water 16 4 4.65 4097.32 362.15 0 

Work 17 3 4.36 4107.7 372.53 0 

Incentives 18 3 4.18 4115.69 380.52 0 

Urban 19 2 4.13 4115.79 380.62 0 

Null 20 1 0 4290.78 555.60 0 

738 



25 

Table 4.Model parameters for the optimal model, conservation concern (see Table S3 for parameters of 739 

alternative models) 740 

Covariates Estimate Std. Error z value Pr(>|z|) 

intercept -1.77 0.06 -29.84 <0.001 

protected areas (standardised) 0.83 0.08 10.58 <0.001 

habitat diversity (standardised) 0.54 0.08 6.72 <0.001 

threatened sp 1.24 0.08 14.86 <0.001 

741 
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Figure Legends 742 

Figure 1. Distribution of surveys in the study area) in (a) the main atlassing period from 1998–2002, (b) 743 

the post-atlassing period from 2003–2007 (validation dataset), and (c) the test dataset from 2008–2011, also 744 

showing the location of the capital city, Perth. 745 

Figure 2.Logistic regressions of survey probability and important explanatory variables (a) frequency of 746 

protected areas per grid cell (mean = 2.65 ± 0.14 SE), (b) number of different habitats per grid cell (mean 747 

3.90 ± 0.03 SE), and (c) detection of a threatened species during the main atlas period 1998–2002, where 748 

the bar graph elements represent the frequency distributions of the variables relative to the presence or 749 

absence of a survey in a given grid cell. 750 

Figure 3.Comparing actual Pi (applying the best-supported model to data from 2008–2011) with predicted 751 

Pi (using data from 2003–2007) to compare model predictions in different time periods and therefore assess 752 

the models predictive power for (a) sites not visited yet (y = 0.2289x + 0.0129, r2 = 0.995, P < 0.001) and 753 

(b) sites visited from 2008–2011 (y = 0.498x - 0.0235, r2 = 0.97, P < 0.001). 754 

Figure 4. Expected benefits from the best-supported model describing threatened species and protected 755 

areas motivations of volunteer bird surveyors in 2003–2007, showing different objectives of conducting 756 

bird surveys for (a) equal representation priorities, (b) habitat stratification priorities, and (c) protected area 757 

priorities. 758 

Figure 5. Expected benefits (probability of no survey * survey target) of surveying 3666 grid cells with 759 

different monitoring objectives of (a) equal representation (2 surveys per grid cell: Benefit = 2(1 – Pi), r2 = 760 

1), (b) habitat stratification (1 survey per habitat type in each grid cell: Benefit = 1.37(1 – Pi) + 1.77, r2 = 761 

0.04), and (c) protected area prioritisation (1 survey per protected area in each grid cell: Benefit = 7.59(1 – 762 

Pi) – 2.73, r2 = 0.02).  763 
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Figure 1.765 
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Figure 2.  769 
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Figure 3.  771 
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Figure 4.  773 
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Figure 5. 775 




