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Summary
Synapses, as fundamental units of the neural circuitry, enable

complex behaviors. The neuromuscular junction (NMJ) is a

synapse type that forms between motoneurons and skeletal

muscle fibers and that exhibits a high degree of subcellular

specialization. Aided by genetic techniques and suitable animal

models, studies in the past decade have brought significant

progress in identifying NMJ components and assembly

mechanisms. This review highlights recent advances in the study

of NMJ development, focusing on signaling pathways that are

activated by diffusible cues, which shed light on synaptogenesis

in the brain and contribute to a better understanding of

muscular dystrophy.
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Introduction
The brain contains billions of nerve cells, or neurons, which receive

and integrate signals from the environment, and which govern the

body’s responses. Nervous system activity is made possible by

synapses, contacts formed either between neurons or between a

neuron and a target cell. Synapses are asymmetric structures in

which neurotransmitter molecules are released from the presynaptic

membrane and activate receptors on the postsynaptic membrane,

thus establishing neuronal communication. As such, synapses are

fundamental units of neural circuitry and enable complex behaviors.

The neuromuscular junction (NMJ) is a type of synapse formed

between motoneurons and skeletal muscle fibers. Large and easily

accessed experimentally, this peripheral synapse has contributed

greatly to the understanding of the general principles of

synaptogenesis and to the development of potential therapeutic

strategies for muscular disorders. The NMJ uses different

neurotransmitters in different species; for example, acetylcholine

(ACh) in vertebrates and glutamate in Drosophila, both of which are

excitatory and cause muscle contraction. In Caenorhabditis elegans,

there are two types of NMJs: at excitatory NMJs, ACh causes muscle

contraction, whereas inhibitory NMJs release g-aminobutyric acid

(GABA) to cause muscle relaxation. Motor nerve terminals

differentiate to form presynaptic active zones, where synaptic

vesicles dock and release neurotransmitters. On the apposed

postsynaptic membranes, neurotransmitter receptors are packed at

high densities. Aided by genetic techniques and by the use of suitable

animal models, including rodents, zebrafish, Drosophila and C.

elegans, studies in the past decade have brought significant progress,

not only in identifying components present in pre- and postsynaptic

membranes, but also in understanding the mechanisms that underpin

NMJ assembly. This review highlights recent advances in the study

of NMJ development, focusing on signaling pathways that are

activated by diffusible cues from motor nerves and muscle fibers.

Readers are referred to other outstanding reviews for a broad view

of NMJ development (see Froehner, 1993; Hall and Sanes, 1993;

Kummer et al., 2006; Salpeter and Loring, 1985; Schaeffer et al.,

2001).

NMJ formation
A chicken-and-egg problem: motoneurons and muscle
fibers
A fundamental riddle in NMJ assembly is whether the motoneurons

or the muscle fibers determine where and how NMJs are formed. In

mouse aneural muscle fibers, ACh receptors (AChRs) are initially

evenly distributed and subsequently accumulate in the middle,

where innervation occurs; this happens, for example, between

embryonic day 12.5 (E12.5) and E13.5 in the diaphragm (Bevan and

Steinbach, 1977; Braithwaite and Harris, 1979; Creazzo and Sohal,

1983; Ziskind-Conhaim and Bennett, 1982). In vitro studies of

synapse formation indicated, however, that spinal neuron axons

ignore such pre-existing, primitive AChR clusters on co-cultured

muscle fibers and instead form synapses at new locations (Anderson

and Cohen, 1977), which indicates a dominant role for motoneurons

in determining where NMJs are formed. Careful in vivo studies

revealed, however, that primitive AChR clusters are located in the

central region of muscle fibers prior to the arrival of motoneuron

axons (Lin et al., 2001; Yang et al., 2001) (Fig. 1A). This

phenomenon, called prepatterning, appears to be nerve independent,

as it also occurs in mutant mice that lack phrenic or motor nerves

(Yang et al., 2000). At E13.5, nerve terminals overlap some, but not

all, AChR clusters in the middle region of muscle fibers, and at

E18.5 innervated clusters are enlarged, whereas primitive clusters

have disappeared in both synaptic and extrasynaptic regions (Lin et

al., 2001; Vock et al., 2008; Yang et al., 2001). These findings

indicate that muscle fibers might play an active role in NMJ

formation, and that some of the aneural, primitive AChR clusters are

modified to form large, nerve-induced clusters (reviewed by

Kummer et al., 2006) (Fig. 1A).

Aneural AChR clusters mark axon guidance activity and
agrin responsiveness
Recent studies challenge the importance of aneural AChR clusters

for postsynaptic differentiation. When rodent embryonic

diaphragms are cultured in vitro, primary myotubes form synapses

in regions without aneural AChR clusters (Lin et al., 2008). Mouse

embryos that lack a certain AChR subunit do not form aneural

AChR clusters, but are able to form neural AChR clusters at later

stages, although these are distributed more broadly (Liu et al., 2008).

Studies of NMJ formation in zebrafish, a model system that allows

aneural and neural AChR cluster formation to be separated

genetically (Jing et al., 2009), reached similar conclusions. Zebrafish
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aneural clusters are formed on the medial surface of adaxial muscle

cells prior to the arrival of motoneuron growth cones (Fig. 1B)

(Flanagan-Steet et al., 2005; Panzer et al., 2005; Zhang et al., 2004).

As growth cones arrive, adaxial muscle fibers migrate radially to the

lateral surface and are replaced by fast muscle fibers. Motor axons

innervate fast fibers to form neural clusters precisely where aneural

clusters used to be. The muscle-specific receptor tyrosine kinase

Musk/unplugged is required for both aneural and neural AChR

cluster formation (Zhang et al., 2004). The induction of

Musk/unplugged expression after prepatterning unexpectedly

rescued neural AChR clusters on a null mutation background:

zebrafish embryos formed normal NMJs and were fully motile (Jing

et al., 2009). These observations suggest that NMJs can form in the

absence of prepatterned AChRs. What, then, is the role of

prepatterning? First, in Musk-null mutant (Musk–/–) mice and

zebrafish, both of which lack aneural AChR clusters, nerve

terminals stray from muscle fiber central regions (DeChiara et al.,

1996; Jing et al., 2009; Lin et al., 2001; Yang et al., 2001; Zhang et

al., 2004), suggesting a role for prepatterning in the confinement or

the guidance of motoneuron terminals to the center of muscle fibers.

However, at least in zebrafish, this axon guidance activity apparently

does not require aneural AChR clusters per se, because fish with

mutations in the gene encoding rapsyn, an intracellular scaffold

protein that interacts with and aggregates AChRs (Burden et al.,

1983; Gautam et al., 1995; LaRochelle and Froehner, 1986), lack

prepatterned AChRs, but exhibit normal axon pathway finding

(Zhang et al., 2004). Second, mouse embryonic diaphragms form

AChR clusters confined to the central region in response to agrin, a

motoneuron-derived factor (see below) (Lin et al., 2008), which

suggests that the innervation of the central muscle region might

result from a spatially restricted responsiveness to agrin. Thus,

aneural AChR clusters seem to mark the middle region of muscle

fibers, which itself is important for guiding motoneuron growth

cones and for the responsiveness to neural agrin through as-yet

unknown mechanisms.

It is worth noting that fundamental species differences exist in

NMJ formation. For example, in rodents, primitive aneural and

neural AChR clusters form on the same muscle fibers (Fig. 1A).
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Fig. 1. Neuromuscular synapse formation in vertebrates. (A) In mice, muscle fibers of the diaphragm form primitive, aneural AChR clusters
prior to the arrival of phrenic nerve terminals. The clusters are distributed in a broad, poorly defined region in the middle of muscle fibers, a
phenomenon called prepatterning (a). Innervation leads to the appearance of large AChR clusters in the synaptic region and to the disappearance
of primitive clusters in non-synaptic areas (b). (B) In zebrafish, adaxial, slow muscle cells form aneural AChR clusters on the medial surface prior to
innervation (a). Subsequently, adaxial muscle cells migrate outwards, and their original position is filled with fast muscle cells that form nerve-
induced AChR clusters where the aneural clusters used to be (b).
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Motor axons in mouse rapsyn mutants, unlike those in zebrafish,

appear to be undifferentiated and grow extensively into non-synaptic

regions (Gautam et al., 1995). Currently, no evidence for any

prepatterning or aneural receptor clustering exists in Drosophila or

C. elegans. In Drosophila, motoneuron terminals seek out a target

region for projection independently of the target cells, but target cell

interactions are necessary for subsequent presynaptic differentiation

(reviewed by Keshishian et al., 1996). In C. elegans, motoneuron

axons form ‘en passant’ synapses with muscle arms (dendritic

filopodium-like structures) that appear to look actively for

presynaptic terminals, although presynaptic terminals might dictate

instead where to form synapses (reviewed by Jorgensen and Nonet,

1995). Finally, in a single zebrafish muscle, some NMJs seem to

form through aneural cluster incorporation, whereas others are

formed de novo as pre-patterned clusters disappear (Flanagan-Steet

et al., 2005; Panzer et al., 2005). These observations suggest that

both motoneurons and muscle fibers are important in NMJ

formation, but which component predominates might depend on the

species and the developmental context.

NMJ maturation
In Drosophila, a muscle fiber can be innervated by two or more

distinct axon terminals (Hoang and Chiba, 2001), whereas in C.

elegans a muscle fiber receives inputs from both excitatory and

inhibitory neurons (reviewed by Jorgensen and Nonet, 1995). In

vertebrates, a muscle fiber might be transiently innervated by two

or more motoneuron terminals at birth but, within two weeks,

each muscle fiber becomes innervated by only one motor axon

(reviewed by Lichtman and Colman, 2000). As the NMJ matures,

the postsynaptic membrane invaginates to form junctional folds,

and AChRs are concentrated only at the crests of the junctional

folds, giving the synapse a characteristic pretzel-like appearance

(reviewed by Sanes and Lichtman, 2001) (see Box 1). This

maturation appears to require the Rho guanine nucleotide

exchange factor (GEF) ephexin1 (Shi et al., 2010). The high

AChR concentration results from at least three cellular

mechanisms: AChR redistribution, expression and turnover

(Fig. 2).

Motoneuron, muscle fiber and glial cell interactions
NMJ formation appears to require interactions among motoneurons,

skeletal muscle fibers and glial cells. Factors released from

motoneurons control postsynaptic differentiation directly by

stimulating receptors on muscle cells or indirectly by promoting

glial cell differentiation and function. In Drosophila, glutamate

receptors preferentially cluster opposite to sites of high glutamate

release, suggesting a role for glutamate in synaptic receptor

clustering (Marrus and DiAntonio, 2004). However, an increase in

extracellular glutamate appears to suppress receptor clustering at

synapses through constitutive desensitization (Augustin et al., 2007).

In rodents, muscle depolarization suppresses AChR subunit gene

transcription and increases AChR degradation (Salpeter et al., 1986)

(reviewed by Schaeffer et al., 2001). Furthermore, AChR clusters

grow faster and larger in mutant mice that lack choline

acetyltransferase (ChAT), an enzyme that is crucial for ACh

biosynthesis (Brandon et al., 2003; Misgeld et al., 2002), suggesting

that ACh might negatively regulate aneural AChR clustering. Thus,

muscle activity inhibits the three key mechanisms that contribute to

the high density of AChRs at rodent NMJs (Fig. 2). Downstream

mechanisms include activation of the serine/threonine kinase cyclin-

dependent kinase 5 (Cdk5) or of Ca2+/calmodulin-dependent protein

kinase II (CaMKII; Camk2a – Mouse Genome Informatics) (Fu et

al., 2005; Lin et al., 2005; Tang et al., 2001). The negative effect of

ACh is global because ACh-mediated activation affects the entire

muscle fiber; the high AChR density at the NMJ probably results

from motoneuron-derived positive signals counteracting the

inhibitory effect (Fig. 2). One such factor, agrin, is discussed in

detail in the next section.

The importance of glial cells for NMJ formation is only

beginning to be appreciated. A recent study demonstrates that

muscle fibers express neurotrophin 3 to modulate the number of

Schwann cells, the myelinating glial cells of the peripheral

nervous system, in developing NMJs (Hess et al., 2007).

Motoneurons release neuregulin 1 to promote Schwann cell

survival and development (Hayworth et al., 2006; Trachtenberg

and Thompson, 1996) (reviewed by Fischbach and Rosen, 1997;

Lemke, 1993). Mice lacking neuregulin 1 or its receptors Erbb2

or Erbb3 lack Schwann cells (Lin et al., 2000; Morris et al., 1999;

Riethmacher et al., 1997; Woldeyesus et al., 1999; Wolpowitz et

al., 2000), and their motoneurons form transient synapses with

muscle fibers that fail to be maintained, indicating a crucial role

for Schwann cells in NMJ formation and maintenance. Although

the mechanisms involved remain unclear, experimental evidence

indicates several possibilities. For example, Schwann cells might

guide motoneuron growth cones (Reddy et al., 2003), as they

sprout and guide nerve terminal regeneration after nerve injury

(Reynolds and Woolf, 1992; Son and Thompson, 1995a; Son and

Thompson, 1995b). They have also been shown to generate

diffusible signals, one of which might be transforming growth

factor b (TGFb) (Feng and Ko, 2008), to promote NMJ

development or function (Cao and Ko, 2007). This is similar to

astrocytes, which regulate CNS synaptogenesis through diffusible

factors (Christopherson et al., 2005). In Drosophila, glial cells

have been shown to release axotactin, a neurexin-related

molecule, to control the electrical properties of target axons and

Box 1. Ultrastructure of a mature rodent NMJ

Electron micrograph of rodent NMJ that depicts three components
of the synapse: nerve terminal (N), muscle fiber (M), and peripheral
Schwann cells (SC). Muscle membranes fold up in the postjunctional
region. AChR is concentrated at the tip of the junctional folds. Nerve
terminals contain ACh-containing synaptic vesicles some of which
are docked at active zones (*) on the presynaptic membrane.
Schwann cells insulate the synapse. SBL, synaptic basal lamina. (EM
image courtesy of Dr J. Sanes, Harvard University, USA.)
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to maintain NMJ transmission by glutamate uptake (Augustin et

al., 2007; Rival et al., 2006; Yuan and Ganetzky, 1999). Finally,

recent studies in both rodents and Drosophila uncovered another

important role for glia in NMJ development: to engulf and clean

up axons that become fragmented during synapse elimination

(Bishop et al., 2004; Fuentes-Medel et al., 2009).

The agrin/Lrp4/Musk pathway regulates
vertebrate NMJ assembly
Motoneurons counteract the inhibitory effects of ACh on AChR

clustering through positive signals, of which the agrin/Lrp4/Musk

pathway is the best characterized.

Agrin induces AChR clustering
The glycoprotein agrin was originally identified in the electric

organ of stingrays for AChR clustering activity (reviewed by

McMahan, 1990). It is synthesized in motoneurons, transported

along axons and released into synaptic basal lamina, where it

induces postsynaptic differentiation, including AChR clustering

in cultured muscle cells (Campanelli et al., 1991; Godfrey et al.,

1984; Ruegg et al., 1992). Agrin is sufficient to induce ectopic

AChR clusters in adult muscles (Jones et al., 1997) and to elicit

the formation of a postsynaptic apparatus in denervated muscles

(Bezakova et al., 2001; Gesemann et al., 1995; Herbst and

Burden, 2000; Jones et al., 1997). Importantly, mice that carry a

mutation in the gene encoding agrin (agrin–/–) lack NMJs, and

synaptic proteins, including AChRs, are distributed throughout

the mutant muscle fibers (Gautam et al., 1996) (reviewed by

Ruegg and Bixby, 1998). These observations demonstrate a

pivotal role for agrin in AChR clustering and NMJ formation.

Intriguingly, agrin–/– mice are able to form aneural AChR clusters

prior to innervation, which suggests that agrin is not essential for

prepatterning (Lin et al., 2001; Yang et al., 2001). Muscle fibers

and Schwann cells also produce agrin, but neural agrin is 1000-

fold more effective in stimulating AChR clustering because it

contains certain key splice inserts at the C terminus (Gesemann et

al., 1995; Reist et al., 1992).

Musk as master organizer of NMJ development
Musk was discovered owing to its abundance in the synapse-rich

Torpedo electric organ (Jennings et al., 1993) and co-localizes

with AChRs at NMJs (Valenzuela et al., 1995). In Musk–/– mice,

muscle fibers form neither aneural clusters nor prepatterns prior

to innervation, and no NMJs are formed either (DeChiara et al.,

1996; Lin et al., 2001; Yang et al., 2001). Instead, AChRs are

evenly distributed along Musk–/– muscle fibers, suggesting a

crucial role of Musk for both prepatterning and nerve-induced

AChR clusters. Indeed, neuronal agrin is unable to induce AChR

clusters in Musk–/– muscle cells (Glass et al., 1996), but agrin

sensitivity can be restored through expressing wild-type Musk

(Herbst and Burden, 2000; Zhou et al., 1999). Thus, muscle fiber

prepatterning requires Musk, but not agrin, whereas the formation

of nerve-induced AChR clusters and NMJs requires both.

Correspondingly, ectopic Musk expression stimulates synapse

formation in the absence of agrin and rescues the lethality of

mutations in the gene that encodes agrin (Kim and Burden, 2008).

Finally, motoneuron terminals become highly branched and

innervate a broader region in Musk–/– mice, suggesting that Musk

plays a role in presynaptic differentiation (DeChiara et al., 1996;

Lin et al., 2001; Yang et al., 2001).

As a receptor tyrosine kinase, it is not surprising that Musk

interacts with a plethora of proteins that regulate its activity or

activate downstream pathways (see below; see also Fig. 3).

Interestingly, however, Musk also associates with scaffold

proteins implicated in NMJ assembly, the regulation of gene

expression and nuclear location (see Box 2). Together, these

observations suggest that Musk might form a signalosome crucial

for NMJ formation (reviewed by Luo et al., 2003a).
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Fig. 2. Coordinated action of positive and negative signals in NMJ assembly. At least three cellular mechanisms contribute to the high
density of AChRs at the NMJ. First, AChR might redistribute from primitive clusters to the synaptic area, either by lateral movement, by diffusion in
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Lrp4 as an agrin co-receptor
Although agrin and Musk are essential for NMJ formation, the two

proteins do not interact directly (Glass et al., 1996). How signals are

transmitted from agrin to Musk has, until recently, been a

fundamental gap in the understanding of NMJ formation. A

hypothetical molecule, myotube-associated specificity component

(MASC), was proposed to serve as an agrin receptor (Glass et al.,

1996), but despite extensive studies, its identity remained unknown

until recently.

Genetic studies of digit development indicated that the single-pass

transmembrane protein low-density lipoprotein receptor-related

protein 4 (Lrp4) is required for NMJ formation, as well as for the

development of limbs, lungs, kidneys and ectodermal organs

(Johnson et al., 2005; Simon-Chazottes et al., 2006; Weatherbee et

al., 2006). Mice that lack Lrp4 die at birth with NMJ defects that

resemble those of Musk–/– mutant mice (Weatherbee et al., 2006).

Recently, two independent studies reported that Lrp4 is an agrin co-

receptor (Kim et al., 2008; Zhang et al., 2008). Lrp4 binds

selectively to neural agrin (Kim et al., 2008; Zhang et al., 2008); this

interaction is of a high affinity and direct (Zhang et al., 2008).

Moreover, Lrp4 is necessary for agrin-induced Musk activation and

AChR clustering in cultured muscle cells, and is sufficient to

reconstitute Musk signaling in non-muscle cells (Kim et al., 2008;

Zhang et al., 2008). Furthermore, Lrp4 is expressed specifically in

myotubes and is concentrated at the NMJ (Zhang et al., 2008). These

findings indicate that Lrp4 is probably the missing link that couples

agrin to Musk activation.

Lrp4 is a member of the low-density lipoprotein receptor (LDLR)

family. It contains a large extracellular N-terminal region, a single

transmembrane domain and a short C-terminal region without an

identifiable catalytic domain (Johnson et al., 2005; Lu Y. et al., 2007;

Tian et al., 2006; Yamaguchi et al., 2006). How Lrp4 regulates Musk

activity remains unknown. Intriguingly, Lrp4 self-associates (Kim et

al., 2008) and can also interact with Musk through the extracellular

domains of the two proteins (Kim et al., 2008; Zhang et al., 2008), in

agreement with an earlier finding of binding activity on the myotube

surface for the Musk extracellular domain as involved in AChR

clustering (Wang, Q. et al., 2008). Therefore, Lrp4 could function in

basal Musk activation in the absence of agrin, as well as in agrin-

induced activation. Observations that Lrp4 co-expression alone is able

to increase Musk activity support this notion (Kim et al., 2008; Zhang

et al., 2008). In addition, the Lrp4 intracellular domain becomes

tyrosine phosphorylated in agrin-stimulated myotubes (Zhang et al.,

2008) and contains a typical NPxY motif and five additional tyrosine

residues that may interact with phospho-tyrosine binding (PTB) or Src

homology 2 (SH2) domains. In the related proteins Ldlr, Lrp1 and

Lrp2, the NPxY motif serves as a docking site for adapter proteins

(reviewed by Herz and Bock, 2002). The juxtamembrane domain of
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Musk contains a similar motif (Y553) that becomes tyrosine

phosphorylated in response to agrin stimulation and that is necessary

for agrin-induced AChR clustering (Adams et al., 1995; Herbst and

Burden, 2000; Zhou et al., 1999). Its interaction with the PTB domain

of the adapter protein downstream-of-tyrosine-kinase-7 (Dok7) is

required for Musk activation and downstream signaling (Okada et al.,

2006). Mice that carry a mutation in Dok7 lack NMJs, and mutant

muscle cells do not form AChR clusters in response to agrin, whereas

forced expression of Dok7 activates Musk and induces aneural AChR

clusters, indicating that Dok7 is also able to activate Musk in the

absence of agrin (Okada et al., 2006). It would be interesting to

investigate whether Lrp4 interacts with Dok7, and whether this

interaction is crucial for agrin function.

Taken together, Lrp4 could mediate or regulate Musk signaling in

three different ways: through maintaining basal activity by direct

interaction; through serving as an agrin receptor; or through

transducing signals via its intracellular domain.

Agrin/Lrp4/Musk signaling
Recent studies have shed light on the mechanisms controlling the

agrin signaling pathway (Fig. 3). As discussed above, Musk activity

is regulated by Dok7 and Lrp4. Musk also interacts with tumorous

imaginal discs (Tid1; also known as Dnaja3), which is necessary for

Dok7 binding to Musk in response to agrin (Linnoila et al., 2008).

Upon activation, Musk becomes rapidly internalized, which is

required for AChR clustering (Zhu et al., 2008). This ligand-

dependent endocytosis is regulated by the ATPase N-

ethylmaleimide sensitive fusion protein, which interacts directly

with Musk (Fig. 3; see also Box 2). Endocytosed Musk might also

undergo proteasomal degradation, probably mediated by the E3

ligases putative Ariadne-like ubiquitin ligase (Paul) and PDZ

domain containing RING finger 3 (Pdzrn3) (Bromann et al., 2004;

Lu, Z. et al., 2007). Thus, agrin-Musk signaling is tightly controlled.

The signals that lead from Musk activation to AChR clustering

have been extensively investigated in cultured muscle cells and in

Xenopus neuron-muscle co-culture, and several pathways have been

identified (Fig. 3).

First, AChR redistribution and anchoring are thought to involve

cytoskeletal reorganization (Bloch, 1986; Dai et al., 2000), and

numerous studies have investigated how Musk activation might

trigger this. The underlying mechanism probably involves the

tyrosine kinase Abl (Finn et al., 2003) and the metalloenzyme

geranylgeranyl transferase I (GGT), which activates GTPases by

prenylation (Luo et al., 2003b); both interact with Musk and are

activated in agrin-stimulated muscle cells. Subsequently, small

GTPases of the Rho family are activated (Weston et al., 2003;

Weston et al., 2000). Rho GTPases are known to be activated by

guanine-nucleotide exchange factors (GEFs) and inhibited by

GTPase-activating proteins (GAPs) in other cells, but which GEF or

GAP proteins are regulated by agrin remains unclear. However, a

recent study reports that the agrin-mediated activation of Rho

GTPases requires PI 3-kinase (Nizhynska et al., 2007).

One target of the activated Rho GTPases is the serine/threonine

kinase Pak1, which is associated with Musk through Dvl (Luo et

al., 2002). Pak1 might regulate actin dynamics by

phosphorylating cortactin (Webb et al., 2006), an actin-binding

protein present at developing NMJs (Peng et al., 1997). Pak1 also

suppresses myosin light chain kinase (MLCK) and thus reduces

the phosphorylation of myosin light chains (MLCs) and the

association of MLCs with actin filaments. In addition, Pak1

activates LIM kinase, which phosphorylates and inhibits actin

depolymerizing factor (ADF)/cofilin (Edwards et al., 1999;

REVIEW Development 137 (7)

Box 2. A Musk organizing scaffold

Musk appears to be a master organizer of postsynaptic development
at the NMJ. Mice with mutations in the gene that encodes Musk
have deficiencies in forming primitive AChR clusters or prepatterned
muscle fibers, and they do not form nerve-induced AChR clusters or
NMJs. Evidence suggests that Musk does not only act as a receptor
and tyrosine kinase for agrin, which initiates pathways leading to
postsynaptic differentiation (see Fig. 3). By interacting with additional
proteins, of which a growing number is being identified, Musk
might  also serve as a scaffold organizer that is crucial for
compartmentalized signaling. Based on their function, Musk-
interacting proteins can be classified into four groups (see figure).
The first group (orange) is necessary for Musk activity or downstream
signaling. The second group (purple) controls agrin/Musk signaling.
The function of the proteins in these two groups is discussed in Fig.
3 and its related text. The third group (blue) consists of scaffold
proteins, including rapsyn (Antolik et al., 2006; Apel et al., 1997),
ColQ [a protein for acetylcholinesterase (AChE) enrichment in the
synaptic cleft (Cartaud et al., 2004)], the MAGUK protein MAGI-1c
(Strochlic et al., 2001) and AChR (Fuhrer et al., 1997). The fourth
group (pink) includes proteins that might regulate gene expression,
including 14-3-3g, a protein thought to regulate synaptic gene
expression at the NMJ (Strochlic et al., 2004), and synaptic nuclear
envelope 1 (Syne1), a nuclear envelope protein enriched in synaptic
nuclei (Apel et al., 2000). This interaction was thought to help anchor
synaptic nuclei in the synaptic region of NMJs, but although muscle
nuclei in both synaptic and non-synaptic regions are disorganized in
Syne1-null mutant mice, their NMJs are apparently normal (Zhang X.
et al., 2007). These results indicate that the proper position of
synaptic nuclei might not be as crucial as previously thought. It is
worth pointing out that, unless otherwise discussed, the suggested
functions of many of the Musk-interacting proteins have not been
tested in vivo. See text for details.
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Soosairajah et al., 2005); this, in turn, regulates actin-dependent

vesicular AChR trafficking to the postsynaptic membrane (Lee et

al., 2009). Other targets of Rho GTPases include Wiskott-Aldrich

syndrome protein (WASP) family proteins, which activate the

actin-related protein 2 and 3 (Arp2/3) complex (reviewed by

Millard et al., 2004) (Fig. 3), and Rho-associated protein kinase

(ROCK), which increases MLC phosphorylation.

Second, rapsyn interacts with AChRs (Burden et al., 1983; Sealock

et al., 1984) and is essential for aneural and neural AChR clusters both

in vivo and in vitro (Apel et al., 1995; Gautam et al., 1996; Glass et

al., 1996). Rapsyn has recently been shown to interact with a-actinin

and b-catenin (Dobbins et al., 2008; Zhang, B. et al., 2007) (Fig. 3).

a-Actinin is an actin crosslinker whereas, in this context, b-catenin is

thought to regulate a-catenin-dependent actin polymerization.

Suppressing the expression of either protein inhibits agrin-induced

AChR clustering. Agrin regulates rapsyn function in at least two ways.

First, it stimulates the interaction of rapsyn with surface AChRs

(Moransard et al., 2003) and with a-actinin (Dobbins et al., 2008), and

could thus lead to AChR clustering. Second, rapsyn is an extremely

unstable protein (its half-life is ~6 hours in muscle cells) (Luo et al.,

2008). Its interaction with the molecular chaperone heat-shock protein

90b (Hsp90b), which is enhanced by agrin, could prevent it from

being degraded at the synapse (Luo et al., 2008). Intriguingly, Hsp90b
has been implicated in cross-linking branched actin filaments (Park et

al., 2007), establishing another link between AChR clustering and

cytoskeletal dynamics.

Third, agrin induces the association of AChRs with

adenomatous polyposis coli (Apc), which is necessary for AChR

clustering (Wang et al., 2003) (Fig. 3). Apc is crucial for cell

polarity and migration, and can bind directly to either actin

filaments or microtubules (Moseley et al., 2007), or indirectly to

microtubules via end-binding protein 1 (Eb1). Apc also associates

with the GEF Asef and the IQ-motif-containing GTPase

activation protein 1 (Iqgap1) (Kawasaki et al., 2000; Watanabe et

al., 2004) and might recruit them into the proximity of AChR

clusters, contributing to cytoskeletal reorganization.

Fourth, agrin stimulates AChR tyrosine phosphorylation and

might thus stabilize AChR clusters (Fig. 3; Box 2). This process

appears to involve Src homologous collagen D (ShcD; also

known as Shc4) (Jones et al., 2007) and several kinases, including

Src family kinases (Borges and Ferns, 2001; Mittaud et al., 2001;

Mohamed et al., 2001) and casein kinase 2 (CK2) (Cheusova et

al., 2006). Mutant mice that lack these kinases form

morphologically normal NMJs, but AChR clusters become

unstable (Cheusova et al., 2006; Smith et al., 2001).

Finally, agrin enhances the interaction of rapsyn with calpain, an

enzyme that is involved in Cdk5 activation, and thus inhibits calpain

activity (Chen et al., 2007) (Fig. 3). Considering the synaptic

localization of rapsyn, this result suggests that it acts locally to

inhibit Cdk5 activity and thus counteract ACh-mediated AChR

cluster dispersal.

Another exciting area of recent progress regarding the signaling

pathways that regulate NMJ formation is the role of Wnt ligands,

which is discussed next.

Wnt signaling in NMJ development
Wnts are a family of secreted glycoproteins that regulate diverse

cellular processes, including cell proliferation and fate

determination, cell polarity and movement, and programmed cell

death through several intracellular pathways (see Box 3). A function

for Wnt signaling in the regulation of synaptogenesis was first

discovered in the developing rodent cerebellum, where Wnt7a is

used by granule cells as a retrograde signal for axon and growth cone

remodeling (Hall et al., 2000). Recent studies in various species

provide converging evidence for a pivotal role of Wnt signaling in

NMJ development.

Wnts in the invertebrate NMJ
In Drosophila NMJs, motoneurons secrete Wnt ligands that are

necessary for both pre- and postsynaptic differentiation (Liebl et al.,

2008; Mathew et al., 2005; Packard et al., 2002) (Fig. 4A). Loss-of-

function mutations in the Drosophila Wnt gene wingless (wg)

reduce the number of synaptic boutons and disrupt synaptic

organization (Packard et al., 2002). In response to Wg stimulation,

the Drosophila Wnt receptor Frizzled 2 (Fz2) is endocytosed

postsynaptically and transported to the perinuclear area to be

cleaved. Its C-terminal fragment is translocated into the nucleus

through a mechanism that requires the adaptor protein Grip (Ataman

et al., 2006; Mathew et al., 2005). This Frizzled nuclear import (FNI)

pathway is thought to regulate the formation or stabilization of

synapses via transcriptional regulation (Fig. 4A). A recent study

reports that mutations in the genes encoding Wnt5 and Derailed (an

atypical receptor tyrosine kinase) also reduce the number of synaptic

boutons (Liebl et al., 2008). Cell type-specific rescue experiments

suggest that Wnt5 is secreted by motoneurons and activates

Derailed, which is located at the surface of muscle cells, to drive

postsynaptic differentiation (Fig. 4A).

Wg also activates Fz on the presynaptic membrane to direct

presynaptic differentiation. The disruption of Armadillo (the

Drosophila homolog of b-catenin) and Pangolin (the Drosophila

homolog of TCF) has no significant effect on synaptic phenotypes

(Miech et al., 2008), which suggests a limited role of the canonical

Armadillo/Pangolin-dependent pathway in this process. Instead, the

actions of Fz are probably mediated by the inhibition of Shaggy (the

Drosophila homolog of Gsk3b), a substrate of which is Futsch [the

Drosophila ortholog of microtubule associated protein 1B

(MAP1B)] (Franciscovich et al., 2008; Franco et al., 2004; Gogel et

al., 2006; Roos et al., 2000) (Fig. 4A). Together, these studies

indicate that Wnts might serve as both anterograde and retrograde

signals to promote NMJ formation in Drosophila. In addition, Wnt

signaling also controls target specificity by preventing synapse

formation on nontarget, neighboring muscle cells (Inaki et al., 2007).

In C. elegans, Wnt signaling determines where axons form

synapses by inhibiting NMJ formation. The DA9 motoneuron is

located near the ventral midline, and its axon first projects

posteriorly, then turns towards the dorsal region and ultimately

projects anteriorly. Interestingly, it does not form ‘en passant’

synapses until it reaches the dorsal, anteriormost region of the worm

(Fig. 4B). This anti-synaptic effect is mediated by LIN-44/Wnt,

secreted in a posterior-anterior gradient by four hypodermal cells in

the worm tail (Klassen and Shen, 2007), which appears to localize

LIN-17/Fz to the asynaptic region of the axon to inhibit presynaptic

assembly via Dvl.

Wnt acts as a Musk ligand in vertebrates
The phenotypes of Lrp4 and Musk mutant mice are more severe

than those of agrin mutant animals. In particular, prepatterning

and aneural AChR clusters disappear in Lrp4 and Musk mutant

mice, but not in agrin mutants, which suggests the existence of a

pathway that requires Musk and Lrp4, but not agrin. Vertebrate

Musk is known to have a cysteine-rich domain (CRD) that shows

homology to a crucial Wnt-binding domain of the Wnt receptor

Fz (Valenzuela et al., 1995) (Box 3). It has been hypothesized that

Musk binds and presents Wnts to motor axons to initiate NMJ D
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formation (reviewed by Burden, 2000). However, no

experimental evidence supported a role for Wnts or Wnt signaling

components in vertebrate NMJ formation, not until Luo and

colleagues showed that Musk interacts with Dvl and that

disrupting Dvl function causes both pre- and postsynaptic defects

(Luo et al., 2002) (Fig. 5). Subsequently, Apc and b-catenin have

been implicated in AChR clustering in vitro and/or in NMJ

formation in vivo (Li et al., 2008; Wang et al., 2003). Moreover,

as discussed above, Musk associates with the LDLR-family

member Lrp4 (Kim et al., 2008; Zhang et al., 2008). Other

members of the LDLR family, such as Lrp5 and Lrp6, interact

with Fz and are crucial for Wnt function (Fig. 5). Based on these

observations, it was speculated that Wnt could bind directly to

Musk and could regulate Musk activity (Zhang et al., 2008).

Indeed, a recent study indicates that the CRD domain of zebrafish

Musk (unplugged) interacts with Wnt11r, and subsequent Dvl-

dependent signaling is implicated in the formation of aneural

AChR clusters and in guiding motor axons to form NMJs (Jing et

al., 2009). Mouse Wnt11, which shows high homology to

zebrafish Wnt11r, is expressed in both the spinal cord and in

skeletal muscles and can interact with the Musk extracellular

domain (B. Zhang and L.M., unpublished). These exciting

observations lead us to propose a working model for signaling

events in postsynaptic assembly (Fig. 5). According to this model,

Wnt binds to and activates Musk prior to innervation, when neural

agrin is absent, and the resulting Wnt-Musk signaling regulates

axon guidance and aneural cluster formation. After innervation,

the Wnt-Musk complex interacts with the agrin/Lrp4/Musk

pathway to regulate agrin-induced AChR clustering (see Fig. 3).

In both scenarios, Wnts, via the Frizzled-Lrp5/Lrp6 complex,

initiate both canonical and non-canonical pathways to regulate

pre- and postsynaptic differentiation.

This model predicts that Wnt might be a Musk ligand in rodents

prior to innervation and that it can also regulate innervation-induced

AChR clustering (Fig. 5). As there are 19 different Wnt molecules

in mice and humans, the regulation of NMJ formation by Wnts in

these species is probably complex. The expression of Wnt1, Wnt4,

Wnt6 or Wnt7b in mouse muscle cells had no significant effect on

basal and agrin-induced AChR clustering (Luo et al., 2002; Zhang,

B. et al., 2007). Two recent studies reported opposite effects of Wnt

on AChR clustering in cultured mouse muscle C2C12 cells. In one

study, Wnt3a was shown to inhibit agrin-induced AChR clustering

by suppressing rapsyn expression via b-catenin-dependent signaling

(Wang, J. et al., 2008). By contrast, the other study showed that

Wnt3 induces AChR microclusters and promotes agrin-induced

clustering, with the latter effect apparently mediated by a non-

canonical pathway that requires Rac1 (Henriquez et al., 2008).

Moreover Wnt signaling could increase Musk expression (Kim et

al., 2003). These results indicate that the functions of Wnts and Wnt

signaling components in mammalian NMJ formation are probably

diverse and deserve systematic investigation.

In summary, emerging evidence supports diverse roles for Wnt

ligands and signaling molecules in NMJ development in various

species, including C. elegans, Drosophila, zebrafish and rodents.

Some Wnts appear to promote, whereas others inhibit synapse

formation, and they also differ in the intracellular responses they

REVIEW Development 137 (7)

Box 3. Wnt signaling

Wnts signal through a receptor complex that consists of the seven-transmembrane frizzled (Fz) receptor and of Lrp5 and Lrp6, two other members
of the low-density lipoprotein receptor (LDLR) family (Macdonald et al., 2007). The Wnt signal is subsequently transmitted to the adapter protein
dishevelled (Dvl, or Dsh in Drosophila), which interacts with Fz, to initiate intracellular canonical and non-canonical pathways. The Wnt signaling
pathway diverges into at least three branches downstream of Dvl. In naïve cells, free b-catenin is phosphorylated in the N-terminal region and
degraded by a complex including glycogen synthase kinase 3b (Gsk3b), adenomatous polyposis coli (Apc) and axin. In the so-called canonical
pathway (A), Dvl inhibits b-catenin phosphorylation by Gsk3b and thus increases its stability and accumulation in the cytoplasm. Subsequently,
b-catenin translocates into the nucleus to regulate gene expression by association with the transcription factor T cell factor/lymphoid enhancer
factor 1 (Tcf/Lef1). In non-canonical pathways (B), Dvl activates Rho GTPases, including Rho and Rac1, and c-Jun N-terminal kinase (JNK; also known
as Mapk8). In the Wnt/calcium pathway (C), Dvl induces calcium influx, which results in the activation of protein kinase C (PKC) and CaMKII.
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trigger. Novel non-canonical signaling mechanisms have been

identified as being important in NMJ assembly, such as the FNI

pathway and the direct interaction between Wnt and Musk. Is Wnt

binding sufficient to activate Musk? Does it initiate the same or a

distinct cascade from that triggered by agrin binding to Lrp4? If the

cascades are the same, how is differential input integrated; if they

are distinct, how do they interact with each other? Is there cross-talk

between the newly identified Wnt signaling mechanisms and the

canonical and non-canonical pathways that are initiated by Wnt

interacting with Fz and Lrp5/Lrp6? More work is necessary to

answer these questions and to assemble a complete picture from the

available and emerging puzzle pieces.

Retrograde signals for presynaptic development
After discussing how nerve-derived factors regulate post-synaptic

development, we now address a question has been studied for more

than a century: how does muscle control presynaptic differentiation?

In the 1930s, Viktor Hamburger observed hypoplasia in the spinal

cord after the removal of a limb bud, which is now known to be

caused by motoneuron apoptosis (Hamburger, 1934). This finding

provided the initial evidence for the existence of a target-derived

signal and led to the discovery of the nerve growth factor (NGF)

family of neurotrophic factors (or neurotrophins) (Levi-Montalcini,

1987). Neurotrophins, however, appear to have only a limited role

in motoneuron survival or differentiation (Lu and Je, 2003). For

example, muscle-specific ablation of brain-derived neurotrophic

factor (Bdnf) has no detectable effect on NMJ morphology or

function (X. P. Dong and L.M., unpublished). Here, we consider

additional retrograde factors that are implicated in NMJ formation,

such as TGFb, fibroblast growth factor (FGF), glial cell line-derived

neurotrophic factor (Gdnf), and proteins dependent on muscle, b-

catenin or b1 integrin.

TGFb

The TGFb family is a large family of proteins that includes TGFb,

bone morphogenetic proteins (BMPs) and activins. These proteins

stimulate type I and type II serine/threonine-kinase receptors (TbRI

and TbRII) to regulate Smad-dependent transcription and non-Smad

downstream components (Derynck and Zhang, 2003) (Box 4).

TGFb signaling is pivotal in neural development, and genetic studies

in Drosophila indicate that TGFb signaling regulates NMJ

development. Mutations in the genes that encode the TGFb ligand

Glass bottom boat (Gbb), the type I receptors Thickveins (Tkv) and

Saxophone (Sax), the type II receptor Wishful thinking (Wit) and

Smad transcription factors all result in presynaptic defects: reduced

number of NMJs; disrupted T-bars (presynaptic high density areas

where synaptic vesicles assemble); and impaired neurotransmitter

release (Marques et al., 2002; McCabe et al., 2004; McCabe et al.,

2003; Rawson et al., 2003). Moreover, postsynaptic markers, such

as Discs large (Dlg) and glutamate receptors (GluRs), appear to be

normal in Wit mutants, and NMJ phenotypes could be specifically

rescued by the transgenic expression of Wit in motoneurons (Aberle

et al., 2002). These observations provide evidence for the idea that

Gbb acts as a retrograde signal from muscle tissue that is crucial for

presynaptic development (Fig. 6A), although a recent study has

suggested a postsynaptic mechanism (Dudu et al., 2006). The

function of TGFb signaling in C. elegans NMJ formation remains

unclear, and the role of TIG-2, the C. elegans ortholog of Drosophila

Gbb, has not yet been investigated.

In mice, all three isoforms of TGFb are expressed in motoneurons,

muscle and Schwann cells (Jiang et al., 2000; McLennan and Koishi,

2002), but there is no evidence for TGFb being a retrograde signal in

mouse NMJ formation. Instead, TGFb causes Schwann cell

apoptosis during development (Awatramani et al., 2002; Paterson et

al., 2001) and might thus regulate NMJ formation indirectly. Tgfb1-
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null mutant mice die prematurely owing to defects in vasculogenesis

and angiogenesis or to wasting syndrome (Kulkarni and Karlsson,

1993; Shull et al., 1992), but whether NMJ development is impaired

is unknown. Tgfb2-null mutant newborn mice are unable to breathe

and die in cyanosis soon after birth; however, the morphology and

function of their NMJs is grossly normal (Heupel et al., 2008). Their

neonatal death is probably due to the aberrant transmission of signals

from the respiratory center in the brain. A recent study suggests that

TGFb1 might act as a Schwann cell-derived factor to promote NMJ

formation in Xenopus, probably by increasing agrin expression in

motoneurons (Feng and Ko, 2008), highlighting the complexity of

the cellular and molecular interactions in this relatively simple

structure.

FGF, laminin and collagen
Screens for a synaptic vesicle clustering activity in cultured chick

motoneurons led to the identification of novel proteins involved in

presynaptic differentiation: fibroblast growth factors (FGFs) and

signal regulatory proteins (SIRPS) isolated from mouse brains, and

collagens from the electric organ of marine rays (Umemori et al.,

2004; Umemori and Sanes, 2008) (Fig. 6B). Careful genetic studies

of mutant mice suggest that the FGF family members Fgf22, Fgf7

and Fgf10 might be involved in the induction of synaptic vesicle

clustering, but not in the maturation or maintenance of nerve

terminals (Fox et al., 2007).

The extracellular matrix (ECM) plays an important role in NMJ

formation. Once released from motoneurons, agrin is concentrated

in the ECM of the synaptic cleft. In Drosophila, the N-

glycosaminoglycan-binding protein Mind the gap (Mtg) is

synthesized in motoneurons and subsequently deposited in the ECM

to regulate the extracellular distribution of certain lectin-binding

glycans, as well as the localization of postsynaptic integrin receptors

(Rushton et al., 2009). The ECM also appears to be key in

presynaptic differentiation. Early stages of vesicle clustering are

promoted by collagen a2 (IV), a collagen isoform present

throughout the basal lamina of adult muscle fibers (Fox et al., 2007).

However, the maturation and maintenance of nerve terminals do not

require collagen a2, but instead depend on laminin b2 and on the

synaptic collagens a3 and a6 (IV) (Fox et al., 2007; Nishimune et

al., 2004; Nishimune et al., 2008; Noakes et al., 1995). How these

collagens act remains elusive, but laminin b2 probably binds directly

to and clusters the P/Q-type calcium channels that flank active

zones, which in turn recruit other presynaptic components

(Nishimune et al., 2004). This hypothesis is supported by studies in

mice that lack either laminin b2 or P/Q-type calcium channels, in

which active zones form initially but cannot be maintained (Fig. 6B).

Moreover, the disruption of the laminin b2-calcium channel

interaction in vivo reduces active zones. These results support a

model according to which muscle fibers release multiple factors to

orchestrate presynaptic development.

Gdnf
Gdnf is one of the most potent factors for motoneuron survival in

vitro (Oppenheim et al., 1995). It is expressed in muscle cells,

whereas its receptor Ret tyrosine kinase is expressed in

motoneurons (Baudet et al., 2008) (Fig. 6B). Treating frog

neuron-muscle co-cultures with Gdnf increases the frequency as

well as the amplitude of spontaneous synaptic currents (Wang et

al., 2002), which suggests that it might serve as a retrograde

factor. Indeed, the conditional ablation of Ret in mouse cranial

motoneurons leads to a severely compromised maturation of

presynaptic terminals (Baudet et al., 2008), and the number of

endplates is also reduced. In addition, Gdnf overexpression in

Myo-Gdnf transgenic mice or Gdnf injection causes multiple

innervation and slows the process of synapse elimination (Keller-

Peck et al., 2001; Nguyen et al., 1998). Together, these

observations suggest that Gdnf might be a muscle-derived factor

that regulates presynaptic differentiation.
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Muscle b-catenin- and b1 integrin-dependent retrograde
signals
Recent genetic studies have identified novel retrograde pathways

that direct presynaptic differentiation in mice. Luo and co-workers

found that the inhibition of Dvl function in muscle cells not only

attenuates AChR clustering, but also reduces the frequency of

spontaneous synaptic currents in neuromuscular synapses in culture,

which indicates that a retrograde signal downstream of muscle Dvl

is necessary for NMJ formation (Luo et al., 2002). NMJ defects in

Dvl1 mutant mice are mild, probably as a result of the redundant

function of two other Dvl isoforms (Henriquez et al., 2008) (Q.

Wang and L.M., unpublished). To overcome this redundancy, Li and

colleagues studied the role of b-catenin, which is downstream of Dvl

(see Box 3), in NMJ formation in vivo (Li et al., 2008). b-catenin

expression was specifically suppressed in skeletal muscles to avoid

embryonic lethality. Mutant mice died soon after birth with

considerable presynaptic defects. The primary branches of phrenic

nerves were no longer located in the central region of diaphragm

muscle fibers. Secondary branches were extended to innervate larger

AChR clusters, which are distributed in a wider area in the central

region. Moreover, spontaneous and evoked neurotransmitter release

were reduced (Li et al., 2008). By contrast, the NMJ appeared

morphologically and functionally normal in motoneuron-specific b-

catenin-deficient mice.

These observations provide convincing evidence that muscle, but

not neuronal, b-catenin is crucial for NMJ formation, and in

particular for presynaptic differentiation or function. The absence of

NMJ defects in motoneuron-specific b-catenin-deficient mice

indicates that b-catenin-dependent hemophilic adhesion is

dispensable. In light of the function of b-catenin in controlling gene

transcription, a role for muscle b-catenin in regulating the expression

of a signal that is required for NMJ formation seems most likely

(Fig. 6B). Intriguingly, whether this signal is downstream of Wnt,

and what signaling pathway it triggers, remains to be investigated.

Either way, it is anticipated that a powerful array analysis of genes

that are differentially expressed in the muscles of muscle-specific b-

catenin mutant mice compared with in wild-type mice will identify

such a signal.

In addition to binding to P/Q calcium channels, laminin b2 also

activates the ECM receptor b1 integrin, which increases AChR

clustering in the absence of agrin, suggesting that this mechanism is

involved in aneural AChR cluster formation and prepatterning.

However, in mice that lack b1 integrin, muscle fibers are

prepatterned, and muscle cells form AChR clusters in response to

agrin that are indistinguishable from those of wild-type control

animals (Schwander et al., 2004), indicating that the laminin b2/b1

integrin pathway is dispensable for prepatterning (Fig. 6B).

However, in muscle-specific b1 integrin mutant mice, which die

soon after birth, motoneurons branch excessively and fail to

terminate at the muscle midline, demonstrating a crucial role for

muscle b1 integrin in presynaptic development, whereas its tissue-

specific mutation in motoneurons does not cause obvious

neuromuscular phenotypes (Schwander et al., 2004). These

observations suggest a retrograde signal downstream of muscle b1

integrin that is necessary for presynaptic development. Whether this

process requires laminin b2 remains to be investigated. Notably,

however, this signal appears to be different from the one that is b-

catenin-dependent because the two mutants show distinct

presynaptic phenotypes.

Conclusions
In the past few years, much has been learned about how nerves

control NMJ formation. Numerous muscle-derived retrograde

signals that direct presynaptic differentiation have been identified.

With an increasing number of presynaptic structural and functional

proteins identified (reviewed by Jin and Garner, 2008), we anticipate

that future work will reveal more about the mechanisms by which

retrograde signals direct presynaptic differentiation. We now know

more about pathways leading to postsynaptic differentiation. At

present, however, very little is known about the signals that pass

from Schwann cells to muscle cells or motoneurons in NMJ

formation. This area of research seems set for rapid growth because

of the increasing understanding of Schwann cell development and

the availability of Schwann cell-specific markers and genetic tools.

It is worth noting that many new players in AChR clustering have

been characterized in cultured muscle cells, and that their roles in

NMJ formation are yet to be verified in vivo. This raises the question

of whether ‘AChR clustering’, a cell-biological phenomenon

observed in cultured muscle cells, is relevant to NMJ formation.

AChR concentration at the postjunctional folds is thought to be

mediated by AChR diffusing on muscle membrane (Edwards and

Frisch, 1976). Yet, the area of postjunctional folds accounts for less

than 0.1% of the entire muscle fiber surface area (reviewed by

Burden et al., 1995). It would therefore seem more economical if

synaptic proteins, including AChR, were synthesized locally or

delivered in a more efficient manner, such as by endocytosis

Box 4. TGFb signaling

TGFb family members include the TGFb themselves, bone
morphogenetic proteins (BMPs) and the growth and differentiation
factors (GDFs) (reviewed by Feng and Derynck, 2005; Gordon and
Blobe, 2008; ten Dijke et al., 2000). TGFb ligand binding to a type II
receptor leads to its heterodimerization with a type I receptor.
Activated type I receptors subsequently phosphorylate downstream
targets to initiate two pathways. In the Smad-dependent pathway
(A), phosphorylated R-Smads interact with Co-Smads to transduce
the signal into the nucleus for gene expression. In non-Smad
signaling pathways (B), TGFb activated kinase 1 (Tak1), RhoA, Ras
and PI3K are activated and induce or repress target gene expression.
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(Akaaboune et al., 1999; Bruneau et al., 2005). Indeed, AChR

mRNA is enriched at the NMJ, and the transcription of genes

encoding synaptic proteins is active in synaptic, but not in extra-

synaptic, nuclei (Merlie and Sanes, 1985) (reviewed by Schaeffer et

al., 2001). This transcription was thought to be mediated by

neuregulin 1 (reviewed by Fischbach and Rosen, 1997), but recent

evidence suggests that neuregulin 1 regulates NMJ formation

indirectly by promoting Schwann cell differentiation (Escher et al.,

2005). The question then becomes: what signals direct synapse-

specific transcription? This awaits further investigation.

Interestingly, the mRNA-binding proteins Nanos and Pumilio have

recently been found to regulate glutamate receptor expression and

thus NMJ development in Drosophila (Menon et al., 2009). Finally,

unlike intracellular scaffolds, less is known about the extracellular

counterparts. Yet, some proteins essential for NMJ formation or

function, in particular the ACh hydrolase AChE, are enriched in

synaptic basal lamina in the synaptic cleft. This localization appears

to be mediated by a mechanism distinct from AChR clustering

(Cartaud et al., 2004; Peng et al., 1999). Mice lacking perlecan form

normal AChR clusters, but lack AChE counterparts (Arikawa-

Hirasawa et al., 2002). How AChE localization correlates to pre- and

postsynaptic differentiation remains unknown. AChR clustering at

the C. elegans NMJ requires its interaction with the extracellular

region of LEV-10, a transmembrane protein that contains an LDLR

domain, and LEV-9, a secreted complement-control-related protein

(Gendrel et al., 2009).

Although our review focuses on the molecular mechanisms of

diffusible signals, this does not mean that non-diffusible

molecules are less important; NMJ assembly might also be

regulated by cell-contact-dependent mechanisms. Motoneuron

neurite-muscle adhesion increases for a few minutes after

synaptic contact (Evers et al., 1989). Direct interactions between

nerve terminals and muscle fibers might be mediated by adhesion

molecules, including neural cell adhesion molecule [NCAM

(Polo-Parada et al., 2004)], CD24 [a glycosylphosphatidylinositol

(GPI)-linked protein (Jevsek et al., 2006)], the immunoglobin

proteins Syg1 and Syg2 (Shen and Bargmann, 2003; Shen et al.,

2004), and embigin (Lain et al., 2009). However, the mechanisms

by which NMJ development is regulated by cell adhesion remain

to be elucidated.

Finally, recent studies have identified several genes the mutation

of which leads to NMJ development defects, including the neuron-

specific splicing factors Nova1 and Nova2 (Ruggiu et al., 2009),

amyloid precursor protein (APP) (Wang et al., 2005), dystrophin-

associated proteins (Adams et al., 2004; Banks et al., 2009; Grady

et al., 2000; Grady et al., 2003), the glycosyltransferase Large

(Herbst et al., 2009), the protein degradation components Fbxo45,

Nedd4, Usp14 and Uchl1 (Chen et al., 2009; Chen et al., 2010; Liu

et al., 2009; Saiga et al., 2009), the chromatin organization protein

HP1 (Aucott et al., 2008) and meltrin b, a metalloprotease (Yumoto

et al., 2008). These studies demonstrate that the complexity involved

in the formation of this simple, large peripheral synapse is only

beginning to be unravelled. For example, the NMJ defects in Nova1

and Nova2 mutant mice cannot be rescued by overexpressing

neuronal agrin in motoneurons (Ruggiu et al., 2009), suggesting the

existence of additional neuronal factors.

Mutations in and/or autoimmune reactions to some proteins

essential for NMJ development cause muscular dystrophies,

including myasthenia gravis and congenital myasthenic syndrome

(reviewed by Engel et al., 2008). Studies of NMJ formation could

identify potential culprits and therapeutic targets for these disorders.

Finally, many, if not all, of the molecules involved in NMJ formation
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are expressed in the brain, including agrin, Lrp4 and b1 integrin, as

well as Wnt and its downstream signaling components. Further

studies of NMJ assembly are therefore also likely to shed light on

the mechanisms of synaptogenesis in the brain.
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