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To Code, or Not to Code: Lossy Source—Channel
Communication Revisited
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Abstract—What makes a source—channel communication pends only on the joint (marginal) distributigris, §) of the
system optimal? It is shown that in order to achieve an optimal source and the destination symbols. The inevitable conclusion
cost-distortion tradeoff, the source and the channel have 10 iq that achieving optimality is a matter of achieving the correct

be matched in a probabilistic sense. The match (or lack of it) inals!(: d ) Th tem desi d dina t
involves the source distribution, the distortion measure, the marginalsp(x) andp(s, 5). The system designed according to

channel conditional distribution, and the channel input cost func- the separation principle achieves the right marginals by means
tion. Closed-form necessary and sufficient expressions relating of (asymptotically) long codewords, but the use of long codes is
the above entities are given. This generalizes both the separa-py no means a requirement.

tion-based approach as well as the two well-known examples of . o . .
optimal uncoded communication. For instance, it is well known that an optimal communica

The condition of probabilistic matching is extended to certain 10N System results when a binary uniform source is plugged
nonergodic and multiuser scenarios. This leads to a result on op- into a binary-symmetric channel without any coding at all, pro-
timal single-source broadcast communication. vided that the distortion is measured in terms of the Hamming

Index Terms—Joint source—channel coding, separation theorem, distance (see, e.g., [9, Sec. 11.8], or [5, p. 117]). In another
single-letter codes, single-source broadcast, uncoded transmissionwell-known example of such behavior, a Gaussian source is
transmitted across the additive white Gaussian noise (AWGN)
channel [10].

The reason why we do not need coding in these two exam-

OMMUNICATIONS engineers have a long acquaintancies s that the source and the channel together produce the
\_» with the “separation principle,” i.e., the strategy of splitright marginals. We say that they grebabilistically matched.
ting the coding into two stages, source compression and chanfighstead, we follow the separation principle, the capacity-ap-
coding. This key strategy has been introduced and showngigaching channel code destroys this favorable condition by at-
be optimal by Shannon in 1948 [3, Theorem 21], and is digsmpting to create a deterministic channel (with high proba-
cussed, e.g., in[4]-[7]. The resultis of surprisingly wide validity,”ity)_ Note that this also implies that the mapping from the
in point-to-point communication (see, e.g., [8]). Consequentlyg,rce output sequence to the reconstruction sequence at the
the separation idea has split the research community into t§@stination becomeseterministic(with high probability). In
camps, those who examine source compression and those Wh&krast to this, the source-to-destination mapping in the binary

investigate channel coding. It is well known that the combingng Gaussian examples quoted aboveaiglom This is dis-
tion of the results from the two communities leads to an optima;ssed in more detail in [11].

communication system in terms of the cost—distortion tradeoff, The goal of this paper is to provide a basis for point-to-point
butitis generally highly complex, and it disregards delay.  gq,rce_channel communication systems that are optimal, in-
In order to determine whether a lossy source-channel cogjyging the uncoded ones and those designed according to the
munication system is optimal, it suffices to measure the average, 5 ration principle. We derive a set of necessary and sufficient
cost and the average distortion, and to verify that this cost—digsngitions for any discrete memoryless point-to-point commu-
tortion pair lies on the optimal cost-distortion tradeoff cUNVgication system to be optimal. These conditions show that by
But the average cost depends only on the marginal distrissiqering a broader class of source-to-destination mappings
tion p(«) at the channel input, and the average distortion dgxiher than only the deterministic ones), there is an arbitrarily
large number of source—channel pairs for which the complexity
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X = f(S). The symbolX is transmitted across a discretecode. In this section, we provide definitions of those entities.
memoryless noisy channel specified by a conditional distribMve denote random variables by capital letters, &.gand their
tionpy| x . The channel output is decoded to yield the estimaterealizations by lower case letters, e.g..The probability mass

of the sourceS = ¢(Y'). We show that this is an optimal com-function (pmf) of the random variablé is denoted bys(s).
munication system if and only if the channel input cost functiowhen the subscript is just the capitalized version of the argu-
p(x) and the distortion measuds, 5) relate to the source andment in parentheses, we will often write simpifs).

channel distributions according to (up to shifts and scaling) Definition 1 (Source): A discrete memoryless sourges, d)

p(z) =D (pyx(|z)|lpy () (1) s specified by a pmps(s) on a discrete alphabétand a non-
. . negative functiond(s, §): S x S — R* called the distor-
d(s, 3) = —log, p(s]3) (2)  tion measure. This implicitly specifies a discrete alphabén

whereD(-||-) denotes the Kullback-Leibler distangg;(-) the ~Which the source is reconstructed. The rate-distortion function
distribution of the channel outpdt, andp(s|3) the distribution (See e.g., [13]) of the sourdgs;, d) is defined as

of S given the estimat&. These arguments are made precise B ) 4

in Theorem 6. Equations (1) and (2) suggest our perspective R(D) = o EIS(IE 8)<D 1(8;5) ®)

of probabilistic matching In order to achieve an optimal

cost—distortion tradeoff, the source and the channel have\ffiereS is a random variable over the alphalsit

be matched in a probabilistic sense. The match (or lack of it) )
involves the source distribution, the distortion function, the Definition 2 (Channel): A discrete memoryless channel
channel conditional distribution, and the channel input coty|x: ») is specified by a conditional pmfy|x (y|+), where
function. The two conditions above were known as necessaty€ X andY” € Y, and wheret and) are discrete alphabets,
and sufficient conditions for a channel input distribution an@d @ nonnegative functigr(z): & — R* called the channel
for a test channel to achieve the maximum and the minimuffPUt cost function. The capacity—cost function (see, e.g., [5])
respectively, in the computation of the capacity—cost functii the channe(pyx, p) is defined as
and the rate-distor'tior) function, respectively.[.6]. However, the o(p) = max  I(X:Y). )
more important point is new: the above conditions characterize px: Ep(X)<P
an optimal system in a way that is more fundamental than thﬁ_ L . . L
well-known condition that the rate-distortion function be equz;i Is function is also called capacity-constraint function in [6].
to the capacity—cost function. In order to decide on the optimality of a communication
In Section IV, we argue that the results obtained in Section Bystem, the unconstrained capacity of the channel turns out to
extend to arbitrary encoders, mappingource symbols ont@.  be an important quantity.
channel input symbols, and to arbitrary decoders, mapping
channel output symbols tlo source reconstruction symbols, at
least as long as all alphabets are assumed discrete. What
length is required in order to achieve the optimum match?
some s_ource/c_hannel pairs_, a single-letter code is sufficient,_ as Cp = max I(X;Y). (5)
shown in Section Ill. Consider now the source—channel pairs px
for wh.ich there isno single-letter code that achieyes this. W?—|ence,00 is independent of the choice pfit is solely a prop-
establish for a subset of those source—channel pairs that ther; 5 of py- 1. Whenp(z) < oo, Y € X, an equivalent defini-
no code of finite block length that achieves the optimal matGn, is Co I: limp_o. C(P) ’ '
either. - '
The significance of joint source—channel codes extends bedn this paper, we study communication by means of a
yond memoryless point-to-point systems. This is discusseds@urce—channel code of ratedefined as follows.
Section V. In fact, such codes feature a certai_n universality inp goiion 4 (Source—Channel Code of Rate A source—
that one and the same code may p‘?”?’”" optimally fgr an €HKannel codéF, G) of ratex is specified by an encoding func-
tire set of sogrce—channel pairs. Th|s is reIevanF, fo'r instanges. 7. sk _, ym and a decoding functio: Y™ — &*, such
for nonergodic channels and multiuser communication, wh th/m = .
the separation-based approach is generally suboptimal (see Ex-
ample 4 in Section V). Remark 1: « is part of the problem statememipt a param-
Finally, the application of information theory to biology, ineter in the optimization: is the number of source symbols that
particular to neural communication, has received increasing have to be transmitted per channel use.
tention. The work of Berger [12] is pioneering in this area; one
way of applying the concept of probabilistic matching to neur
communication is illustrated in Example 2 in Section IlI-D.

Definition 3 (Unconstrained Capacity)The unconstrained
cityof the channe{py-| x, p) is the capacity of the channel
|rsregarding input costs, that is,

| Suppose the sourges, d) is transmitted across the channel
‘?py|x, p) using the source—channel codé G). This is illus-
trated in Fig. 1. The average input cost used on the channel is
found to be

Il. OPTIMAL SOURCE-CHANNEL COMMUNICATION SYSTEMS

i i i def 1

.The key elements of the problem studied in this paper are the r<s - Z Ep(X;) (6)

discrete memoryless source and channel, and the single-letter m =
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and the average distortion achieved by the qddeG) is S Destination
o
A= E Z Ed(Sh SL) (7) Fig. 1. The source—channel communication system.
=1

We will sometimes refer t@l", A) as thecost—distortiorpair, or
the operating point. The main goal of this paper is to determine )
necessary and sufficient conditions such that the communication ’
system of Fig. 1 is an optimal communication system, according

to the following definition.

Definition 5 (Optimality): For the transmission of a source
(ps, d) across a channdlpy|x, p), @ source—channel code
(F, G) of ratex is optimal if both

i) the distortionA incurred using(F, G) is the minimum Fig. 2. The bold lines represent a source—channel pair for whigh\) =
distortion that can be achieved at input cbswith the C(T') is feasible, and hence case 1) of Lemma 1 applies; the dashed lines
. represent a source—channel pair for which it is not feasible, i.e., case 2) of
best possible source—channel code of rafeegardless of | cyima 1 applies.
complexity), and

ii) the costI' incurred using(F, G) is the minimum cost xR(A) < C(I). For case 1), suppose that for the source—
needed to achieve distortioA with the best poss!ble channel paikR(A) = C(T') is feasible. Then, if a communica-
source—channel code of ratgregardless of complexity). tion strategy does not satisfy this, it cannot be optimal: there is

Following Definition 5, in order to establish the optimality of? better system (namely, one tha_t does Sa“‘_ﬁ@) - C_(P))‘
a given communication system, the issue is to optimize over AiPWever, xE(A) = C(I) is still not sufficient as it may
possible source—channel codes of a fixed rateegardless of OCcur thatA can be reduced without increasidgA). This
complexity and delay. This problem can be solved by the aid (5 Prevented by condition ii). The same comment applies to
the separation theorem [3, Theorem 21]. For the purpose of tﬁgr): _Hence, ) a_nd '_') together are necessary and_ sufficient
paper, we formulate it as follows. conditions for optimality. For case 2},R(A) = C(T) is not

feasible, i.e.kR(A) < C(T'). The optimality is clear from the
Lemma 1:For a sourceps, d) and a channeé{py|x, p), dashed lines in Fig. 2.

transmission using a source-channel cofieG) of ratex is
optimal if and only if 1) or 2) is satisfied: Il. SINGLE-LETTER CODES THAT PERFORMOPTIMALLY
1) i) kR(A) = C(I'), and
ii) neither canA be lowered without changing(A)
nor canl” be lowered without changing (T");

Pv;Lin szn D

It is well known that there are instances of source—channel
pairs for which single-letter codes achieve the best possible per-
formance. This result is particularly surprising since such codes
2) A= Hgn{D: R(D) = max R(D")} are extremely easy to implement and operate at zero delay. In

and this section, we derive necessary and sufficient conditions under
. . which single-letter codes are optimal. In line with Definition 4,
I'= mlln{P: op) = mn C(P)}- we define the following.

Remark 2: The crucial condition of case 1) isR(A) =  Definition 6 (Single-Letter Source-Channel Codé):
C(I). For condition ii), note that\ may be decreased withoutSingle-letter source—channel cod¢, g) is specified by an
changingR(A) only if R(A) = 0. Likewise,I' may be de- encoding functionf(:): & — A and a decoding function
creased without changing/(I') only if C(I') = Cy. Thisis 9(): Y — S.

developed in Section I11-B. Note that for single-letter codes, = 1. Lemma 1 contains

Remark 3: Case 2) is degenerate in the sense that there ist¥¢ conditionsthat together are necessary and sufficient to es-
tradeoff between cost and distortion; there is only one optimi&@blish the optimality of any communication system, including
operating point. This is illustrated in Fig. 2 by the dashed line#10se that use single-letter codes. These conditions will now
In that example, the only optimal operating points= D, be examined in detail. In Section llI-A, we elaborate on the
andl’ = P,;,.. first condition, i.e.,R(A) = C(T'). The second condition is

) ] ) ) somewhat subtler; it will be discussed in Section IlI-B. In Sec-
Outline of the Proof: This lemma is essentially [3, The-(q §)1-C, the results are combined to yield a general criterion
orem 21]. For an outllng of 'ghe proof, note thqt by comblnmﬂ)r the optimality of single-letter codes.
the proofs of the rate-distortion and the capacity theorem with
the data processing inequality, it is easy to show that apy Condition i) of Lemma 1

source—channel communication system of rateust satis ) .
y fy As a first step, we can reformulate the conditi®(A) =
INote that the two conditions do not necessarily imply one another. In fact,@(T") more explicitly as follows.
the literature, optimality of a transmission scheme is sometimes defined by one
of the two conditions only. Our results can be modified to apply to that case agHere, we only derive detailed results for Case 1) (i.e., the nondegenerate
well. case) of Lemma 1.
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Lemma 2: R(A) = C(T") holds if and only if the following ~ The results of the following Lemmas 3 and 4 are not new.
three conditions are simultaneously satisfied: They have already appeared, in effect, in [6]. Specifically,

i) the distributionpx of X = f(S) achieves capacity on Lemma 3 appears as Problem 2 (without explicit proof) in [6, p.
the channel(py|x, p) at input costl = Ep(X), i.e., 147]; it can also be seen as an extension of [4, Theorem 4.5.1]

I(X;Y) = C(I), to the case of constrained channel inputs. Lemma 4 appears as

i) the conditional distributiorpgls of § = ¢g(Y) given S Problem 3 (without explicit proof) in [6, p. 147].

achieves the rate-distortion function of the souiee, d) Lemma 3: For fixed source distributiops, a single-letter
at distortionA = Fd(S, S),i.e.,1(S;S) = R(A),and  encoderf, and channel conditional distributigr- x
iy f(-) andg(-) are such thaf(S; §) = I(X;Y), i.e., they i) if I(X;Y) < Cy, the first condition of Lemma 2 is satis-
are “information lossless.” fied if and only if the input cost function satisfies
Proof: For any source—channel communication system {: c1D(pyx (-|z)[lpy (-)) + po, if p(z) >0
plz

that employs a single-letter code > e D(pyx (-|7)llpy (1)) + po, otherwise

. (a) X 9)
R(A) = min  I(S;5)<I(S;S) wherec; > 0 andp, are constants, anB(-||-) denotes
055 BA(S,5)<A the Kullback—Leibler distance between two distributions;
(b) (c) i) if I(X;Y) = Cy, the first condition of Lemma 2 is satis-
<I(X;Y)< " g%(()gf()(; )=c) (8 fied for any functiony(z).

Proof. The proof is given in Appendix I.
where(b) is the data processing inequality. Equality hold&ih o _ S
if and only if p; 5 achieves the rate-distortion function of the To gain insight, letyx be the channel input distribution in-
source, and irfc) if and only if py achieves the capacity—costduced by some source distribution through the encgdéior
function of the channel. Thus?(A) = C(T) is satisfied if any cost functiorp, one finds an expected cost and a set of ad-

and only if all three conditions in Lemma 2 are satisfied, whichissible input distributions leading to the same (or smaller) av-
completes the proof. ] erage cost. The input distributigr; lies in that set, but it does

not necessarily maximize mutual information. The key is now to
There are four pairs of entities involved, namely, the sourg@ the cost function, and thus the set of admissible input distri-
(ps, d), the channel(py|x, p), the code(f, g), and the pytions, in such a way that the input distributipa maximizes
cost—distortion pair(I', A). These four pairs are not inde-mytyal information within the set. In the special case where
pendent of one another. For instance, the last is completghy input distributiony~ achieves,, it clearly maximizes mu-
determined by the first three. The corresponding communiGga| information among distributions anyset, regardless of
tion system (as shown in Fig. 1) performs optimally if and onlyence, in that case, the choice of the cost funcfida unre-
if these four pairs are selected in such a way as to fulfill all thgyicted.
requirements of Lemma 1. Lemma 3 gives an explicit formula to select the input cost
There are various ways to verify whether the requirementsnction for given channel conditional and input distributions.

are satisfied. Some of them lead to problems that notoriously g9 analogy, the next lemma gives a similar condition for the
not admit analytical solutions. For example, following Lemmgistortion measure.

2, we could compute the capacity—cost functiofy) of the _ o )
channel(py|x, p) and evaluate it aF. This is known to be a Lemr_na_4: F_or fixed source (_Jllstrlbunoms, chgnnel condi-
problem that does not have a closed-form solution for all buti@nal distributionpy| x, and a single-letter codg, 9)

small set of channels. Similarly, one could compute the rate-dis-i) if 0 < 7(.S; 5), the second condition of Lemma 2 is satis-
tortion function R(-) of the source(ps, d) and evaluate it at fied if and only if the distortion measure satisfies

A. Again, closed-form solutions are known only for a handful A A

of sp?acial cases. Once the rate-distortion and t)rlle capacity—cost d(s, 8) = —c2logy p(s]8) + do(s) (10)
functions are determined, we are ready to check the conditions Wherecs > 0 anddy(-) is an arbitrary function;

of Lemma 1. i) if 1(S;S) = 0, the second condition of Lemma 2 is satis-
One of the main difficulties with this approach lies in fied for any functiond(s, s).
the fact that for a given cost function there is no general Proof: The proof is given in Appendix I.

closed-form expression for the channel input distribution that

achieves capacity; numerical solutions can be found via theThat is, letgg 5 be the conditional distribution induced by
Arimoto—Blahut algorithm. The key idea of the fonowingsomechannel conditional distribution through the encgderd
lemma is to turn this game around: for any distributipg the decodeyp. For any distortion measurg an average distor-
over the channel input alphabat, there exists a closed-formtion A = E,_ d(S, 5) can be computed, which implies a set
solution for the input cost functiop such that the distribution of alternative conditional distributions that also yield distortion
qx achieves capacity. Lemma 3 gives an explicit formula t&- The key is to findl in such a way that the choseg s min-
select the input cost functiop for given channel conditional imizesI(S; S’) among all conditional distributions in the set.
and input distributions. By analogy, Lemma 4 gives a similar Apparently, there is a slight asymmetry between Lemmas 3
condition for the distortion measure. and 4: In the former, whep(z) = 0, p(x) satisfies a less strin-
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G R In particular, the last condition is trivially satisfied
whenevem x is the unique channel input distribu-
tion achievingCy.

ii) A cannot be lowered without changiff A) if and only

if one of the following two conditions is satisfied:

a) I(S;S8) > 0, or
P In I A D b) 1(S;S) = 0 and among the conditional distribu-

tions for whichI(S; 5) = 0, pg 5 belongs to the
Fig. 3.WhenR(A) = C(I') is not sufficient to guarantee optimality. ones with lowest distortion. In particular, the last
condition is trivially satisfied ifpS|S is the unique
gent condition. In the latter, a similar behavior occurs: when conditional distribution achieving(S; g) -0

p(s, §) = 0, the condition can be relaxed to Proof:

dls, 5) 2 —calogy p(s]3) + do(s)- Part i): To see that condition a) is sufficient, defifig.. =

However, since the right-hand side is infinity in that case, r€ain{P: C(P) = Cy}. For everyl' < T'payx, the valueC(I)
quiring equality is equivalent. _ uniquely specified”. This follows from the fact that(-) is

Insummary, our discussion of the requiremB\) = C(T')  convex and nondecreasing. From Lemm#&pA) = C(I') im-
produced a set of explicitly verifiable conditions that tOgeth?ﬂiesc(I‘) = I(X;Y).HenceI(X;Y) < Cy impliesC(T") <
ensureR(A) = C(I'). However, to obtain an explicit criterion ¢ - which in turn implies that it is not possible to chanBe
that can establish the optimality of a single-letter code, it stil{}ithout changingC(T"). To see that condition b) is sufficient,
is the goal of the next subsection. with lowest cost, then it is indeed impossible to lowewithout
changingC(T"). In particular, ifpx is the only achiever of,
then there cannot be anothet that achieves the same rate,

Lemma 1 contains two simultaneous requirements to ensugmely,Cy, but with smaller cost, simply because there is no
the optimality of a communication system that employs singletherpy that achieveg.

letter codes. The first requiremerit(A) = C(I"), was studied |t remains to show that if neither a) nor b) are satisfied, then
and developed in detail in Section IlI-A; in this section, we X can indeed be lowered. In that cageX; Y) = Cj (it cannot
amine the second condition, namely, when it is impossible j |arger thar;). Moreover, there must be multiple achievers
lower A without changingR(A), and when it is impossible to ¢ Cy, andpx is not the one minimizing'. In other wordsT'
lower I' without changingC(I"). This permits to give a gen- can indeed be lowered without changifigl’) = C.

eral criterion to establish the optimality of any communication Part ii): The proof goes along the same lines. To see that con-

system that uses smgle-lgttgr codes. - . dition a) is sufficient, definé\,,,,, = min{D: R(D) = 0}. For
The crux of the problem isillustrated in Fig. 3. It shows simul;

) . everyA < A,,.x, the valueR(A) uniquely specifieg\. This
taneously the capacity—cost function of the channel (left) a?élows from the fact thatR(-) is convex and nonincreasing.
the rate-distortion function of the source (right). Problematia_:rom Lemma 2,R(A) = C(T') implies R(A) = I(S~§)
cases may only occur in regions where eittér) or R(-) are L

: : . : Hence,0 < I(S;S) implies0 < R(A), which, in turn, im-
horizontal, i.e., when they have reached their asymptotic valu&%S that it is not possible to changewithout changing(A).

limp o0 C(I.j) andh.mD_’o" R(l_))' This only happens when For condition b), note that if among the achievers of zero mu-
the mutual mfor_mathn[(X;_Y) Is Co or zero. For example, information,pg 5 belongs to the ones with lowest distor-
bOFh the cost—d_lstortlon pa(rf_l_, A) and the cos.t—d|stort|on tion, then it is indeed impossible to lower without changing
pair (I, A). satisfy the condition?(A) = Q(F)’ howevler,. R(A). In particular, ifp5‘|5 is the unigue conditional distribu-
only the pair(l', &) corresponds to an OF’“'.“”a' transmissiog, achieving zero mutual information, then there may not be
strategy. By analogy, an example can be given involving t\'é%other conditional distribution achieving the same rate (zero)

different distortions. A concrete example of a system where t fitwith smaller distortion, simply because by assumption, there

conditian(A)_ - (_](1“_) Is not sufficient is give_n in [14]. .__Is no other conditional distribution achieving zero mutual infor-
Continuing in this line of thought, we obtain the foIIowmgmation

proposition.

B. Condition ii) of Lemma 1

It remains to show that if neither a) nor b) are satisfied, then
Proposition 5: Suppose that the transmission of the sourcd can indeed be lowered. In that cages; S) = 0 (it cannot
(ps, d) across the channdpy | x, p) using the single-letter be smaller tha). Moreover, there must be multiple achievers

code (f, g) satisfiesR(A) = C(T'). Then we have the fol- of zero mutual information, anﬂg‘s does not minimize the

lowing. distortion among them. In other words,can indeed be lowered
i) T cannot be lowered without changifigT') if and only if  Without changingiz(A) = 0. O
one of the following two conditions is satisfied: Remark 4: In the most general case of Proposition 5, it is
a) I(X;Y) < Cy, or necessary to specify the cost function and the distortion measure

b) I(X;Y) = C, and among the distributions thatbefore the conditions can be verified. Let us point out, however,
achieveCy, px belongs to the ones with lowest costthat in many cases of practical interest, thin@t necessary.
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In particular, if I(X;Y) < Cyorif I(X;Y) = Cp butpx is iv) If Cy = 0, then the system is optimal if and only if

the unique distribution that achievés, then Part i) is satisfied Ep(X) < Ej p(X) for all channel input distributions
irrespective of the choice of the cost function. By analogy, if px,andEd(S, S‘) < Ef,glsd(57 S‘) for all conditional

0 < I(S;5)orif I(S; S) = 0 butpg, 5 is the unique conditional distributionspg, .

distribution for which(S;3) = 0, then Part ii) is satisfied Proof:

irrespective of the choice of the distortion measure. Part 0). From the Data Processing Theorem (e.g., [7, The-

) ) o orem 2.8.1]),/(S; 5) # I(X;Y) impliesI(S;S) < I(X;Y).
In summary, our discussion of Condition ii) of Lemma 1 S“HVIoreover,I(S; g) < I(X;Y) impliesR(A) < C(T) (see also

plied a set of explicitly verifiable criteria. The main result of, proof of Lemma 2). But then, by Lemma 1, the system does
this paper is obtained by combining this with the results of Segz; perform optimally. ' ’

tion llI-A. Parti). If0 < I(S;S) andI(X:;Y) < Cy, the system is op-
) timal if and only if R(A) = C(I") (Lemma 1 with Proposition
C. The Main Result 5). We have shown that this is equivalent to requiring the three

The main result of this paper is a simple criterion to chedtonditions of Lemma 2 to be satisfied. The third of these condi-
whether a given single-letter code performs optimally for #ons,1(S;S) = I(X;Y), is satisfied by assumption. As long
given source/channel pair. Lemma 1 showed that on the aag) < I(S;S) andI(X;Y) < Cj, Lemmas 3 and 4 establish
hand, the system has to satigiyA) = C(T'). The choice of that the first two are satisfiedl and only if p andd are chosen
the cost functionp as in Lemma 3 ensures that the channelccording to (9) and (10), respectively.
input distribution achieves capacity. Similarly, the choice of Partii). If I(X;Y) = Cy, the system is optimaf and only if
the distortion measure according to Lemma 4 ensures that fhg\) = C(I") and among the achievers 6, px belongs to
conditional distribution ofS given S achieves the rate-distor-the ones with lowest cost (Lemma 1 with Proposition 5). The
tion function of the source. Together with the condition thatondition R(A) = C(I') is satisfiedif and only if the three
I(5;8) = I(X;Y), this ensures thaR(A) = C(I'). On conditions of Lemma 2 are satisfied. The third of these condi-
the other hand, Lemma 1 requires tliamay not be lowered tions, /(S;S) = I(X;Y), is satisfied by assumption. When
without changingC(T"), and that A may not be lowered 0 < I(S;S) butI(X;Y) = Cy, Lemmas 3 and 4 establish that
without changingR(A). Recall that this isnot ensured by the first two are satisfiedf and only if d is chosen according
Lemmas 3 and 4. Rather, it was discussed in Section III4B (10). R
and led to Proposition 5. It is now a simple matter to combine Part iii). If 0 = I(S;S), the system is optimaf and only
the insight gained in the latter proposition with the statemerits?(A) = C(T') and among the conditional distributions for
from Lemmas 3 and 4. This leads to a quite simple criteriomhich 1(S;S) = 0, pg)s belongs to the ones with lowest dis-
to establish the optimality of a large class of communicatidortion (Lemma 1 with Proposition 5). The conditidt{A) =
systems that employ single-letter codes: C(T) is satisfiedf and only ifthe three conditions of Lemma 2
are satisfied. The third of these conditiofiS; S) = I(X;Y),
is satisfied by assumption. WhéX ; Y) < Co butI(S; S) =
0, Lemmas 3 and 4 establish that the first two are satisffiaad
only if p is chosen according to (9).

. Part iv) has been added for completeness only. It should be
0) IfI(S;5) # I(X;Y), then the system does not pergiear that ifC, — 0, then automatically, all the mutual informa-
form optlmaIJy. tion conditions are satisfied since all mutual informations must
) If0 < I(S;8) = I(X;Y) < Oy, the system is op- be zero, and all that has to be checked is that the cost and the
timal if and only if p(z) andd(s, $) satisfy Lemmas 3 distortion are minimal. Obviously, this case is of limited prac-
and 4, respectively. tical interest. O
i) If0< I(S;8) = I(X;Y) = Cy, the system is op-
timal if and only ifd(s, §) satisfiesLemma4, ang{z) D. lllustrations of Theorem 6

1S such thaE/’(X)_ < Ep p(X) forall of[hera_\chl_e\{ers To illustrate this theorem, pick any probability measures for
px Of Cy. In particular, the last condition is trivially yo 5o,rce and the channel, and determine the cost function and
satisfied ifp.y is the unique channel input distribution ;s ion measure according to Lemmas 3 and 4, respectively.
achievingCo. For the well-known example of a binary uniform source across
iy If 0 =1(5;5) = I(X;Y) < Co, the system is op- a binary-symmetric channel, this is done as follows.

timal if and only if p(z) satisfies Lemma 3, andl s, §) ) _ ) )
is such thatiZd(s. g) < Eﬁg‘ d(S. g) for all other _Example_l (B_lnary_).Let the source be binary and unlfo_rm

18 with Hamming distortion measure, and let the channel be binary

achle_v_ers% S, Qf I(S; S) — 0 In Pa”"’“'af' the last and symmetric (with transition probability< 1/2) without an
condition is trivially satisfied ip 4 is the unique con- input cost constraint (i.ea(z) = const., Vz). Let f andg be
ditional distribution for which/(5; ) = 0. the identity maps, i.ef(s) = s andg(y) = y. This setup is
also considered in, e.g., [5] and [6].
For this channel, the capacity(I') = Cy = 1 — Hy(e),
3This condition rules out the source—channel pairs of Case 2) of Lemma Wwhere H,(-) denotes the binary entropy function. The rate-dis-

Theorem 6:Consider a sourcgps, d) and a channel
(py|x, p) for which R(A) = C(T") is feasible For the
transmission using a single-letter co@g g¢), the following
statements hold.
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tortion function for the binary source B(D) = 1 — Hy(D) Example 2 considered a simple model of neural communi-
(see, e.g., [7]). In the present example, the distortion is fourdtion. This also illustrates the point that in certain applica-
to beA = Ed(S, S) = ¢, from which R(A) = 1 — Hy(e). tions, the source and the chanoehbe selected in a favorable
Thus,R(A) = C(T) is satisfied. Foe < 1/2, there is a unique fashion: for the case of neural communication, evolution had the
achiever ofCy, and hence, from Proposition 5, neithlemorI” opportunity to do so.
can be decreased (leaving the other fixed). Thus, by Lemma 1Beyond such a direct application, Theorem 6 is also useful in
the considered communications scheme performs optimally.certain proofs. Example 1 suggests the question ofithgue-

Let us establish the same fact using Theorem 6. Triviallgessof the solution. Suppose that all involved alphabets are bi-

I(X;Y) = I(S;S), and we find nary, the distortion measure is Hamming, and the channel input
. cost function a constant. Then, is Example 1 the unique instance
p(s|8) = IM = py|x(8]s) of optimal uncoded transmission? Using Theorem 6, one can es-
py (3) tablish the following lemma.
- { 1-¢ ihs=s (11) Lemma 7 (Binary):LetS=X =Y =38 = {0, 1}, p(z) =
€ otherwise. const.,andd(s, §)=1if s# 3, andd(s, §) =0 otherwise (Ham-
Taking ming distortion). Suppose that the channel has nonzero capacity.
Then, there exists a single-letter code with optimal performance
do(s) = log,y(1 —¢) and ¢y = 1 if and only if the source pm#s is uniform and the channel con-
log, =< log, =< ditional pmfpy-|x is symmetric.

in Lemma 4 reveals that one of the distortion measures that sat- Proof: The proof is given in Appendix Il.

isfy the requirement in Theorem 6 is indeed the Hamming dis- If the alphabets are not binary, the following similar result can
tance. be established.

As shown in this example, Theorem 6 can be applied directlyLemma 8 [.-ary Uniform): Let S, X, Y andS be L-ary,
by fixing the probability measures and the single-letter codg(z) = const., for all z, d(s, §) = 1if s # §, andd(s, §) =0
and determining the cost function and distortion measures atherwise (Hamming distortion), apg be uniform. Moreover,
cording to the formulas. But the conditions of Theorem 6 atet the channel have nonzero capadity. Then, there exists a
also useful if, e.g., the channel conditional probability distribwsingle-letter code with optimal performance if and only if the
tion and the cost function are specified, and the source prolsdannel conditional pmf iy x (y|x) = const., fory # = (or
bility distribution and the distortion measure have to be detes-permutation thereof).
mined accordingly, as illustrated by the following example [11].  Proof: The proof is given in Appendix II.

Example 2:In this example, the alphabets are binary se- There is a nice intuition going along with the last result. Sup-
guences of length, denoted by bold symbois Let the channel pose that the channel is symmetric [7, p. 190] and that the prob-

conditional distribution be any permutation of the lengtlse- abilities of erroneous transition afe;, ..., ex_1} for every
quence, i.e., channelinput. The distortion achieved by uncoded transmission
_1 is simply the sum of these probabilities. However, the distor-
< n > 7 if w(z) = w(y) tion achieved by coded transmission depends on the capacity of
p(ylz) = w() (12)  the channel. Therefore, if uncoded transmission should have a
0, otherwise chance to be optimal, we have to minimize the capacity of the

channel subject to a fixed sui =" ¢;. But this is equivalent
to maximizing the entropy of the “nois€” = Y — X subject
to a fixed probabilitypz (z = 0). Clearly, this maximum occurs
p(x) = ayw(z) + ag. (13) when all thee; are equal.
The claims made in this paper are for discrete alphabets
This can be seen as a simple model of neural communicatmy. However, the proofs of the sufficiency of Lemmas 3 and
[11]. By Lemma 3, the capacity-achieving input distribution saiz given in Appendix | can be extended to continuous alphabets
isfies with appropriate technical assumptions. For example, suppose
that the source distributiops is Gaussian of variancg, and
ayw(z) + ag = c1 D (pyx (-2)[lpy (v)) - (14) the channel is an AWGN channel with noise variance
Suppose that uncoded transmission is used, and the decoder is
In [11], this condition is used to determine the capacitys — P/(P + ¢2)Y. Then, Lemmas 3 and 4 give
achieving input distribution. The probability that(z) = & is
found to be p(x) =122 + po (16)
n A A\ 2
q(k) = bn+b1 — (b— 1)b—k (15) d(s, 8) =ca(s = 8)" + do(s). (17)
In words, if the cost on the channel is power, and the distortion
for k € {0,1,...,n}. In [11], the distortion measure ac-the mean-square error, then uncoded transmission is optimal,
cording to Lemma 4 is also determined. confirming the well-known example reported in [10].

wherew(z) denotes the Hamming weight (number16§) in
the sequence. Moreover, let the cost function be
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IV. OPTIMAL SOURCE-CHANNEL COMMUNICATION SYSTEMS,  p(™)(z™) and distortion measuré®) (s*, $*) need not gener-
REVISITED ally decompose in an additive fashion in terms of the original
abet.
is clear that longer codes generally permit to better match
source and the channel. Corollary 9 can, therefore, also be in-
g r;geted as follows. Suppose a certain finite complexity is avail-
el\?q to implement a source—channel communication system.
Pfowing Lemma 1, one would design (suboptimal) source and
nnel codes independently. The advantage of additional com-
exity appears as a lower error probability on the channel and a
émaller size of the quantization cells for the source. In contrast
fo this, Corollary 9 suggests a very different perspective: addi-
tional coding complexity (in the shape of longer codes) is used
to better match(™) andd(*) to the desired cost and distortion
measures.
While longer codes permit toettermatch the sourcés, d)

to the channefpy | x, p), we would also like to know what code
length is necessary to obtain tbptimalmatch. More precisely,

In Section Ill, we developed results for single-letter code'§1.Iph
However, it is clear that any source—channel code can be see
as a single-letter code in appropriately extended alphabets?hﬁ
least as long as all alphabets are assumed to be discrete (a
have done throughout the present paper). Hence, the resultg
Section Il can be applied directly to arbitrary source—channe
codes. In other words, we have developed a criterion to establf
the optimality of any source—channel communication syste
and that criterion is no less general than the separation theor
Lemma 1.

More precisely, suppose that a source—channel ¢60&)
is used, with?: S¥ — X™ andG: Y™ — S*. This situation
can be addressed by mergihgource symbols to yield a new
source, denoted hy* with alphabetS*. The distribution of the
new source is

. k attention shall still be restricted to discrete memoryless sources
p(s") = HP(Sj)~ (18) and channels as defined in Definitions 1 and 2, but the code is
j=1 now an arbitrary source—channel code of (finite) lenbthFor

nsérnplicity, we consider only codes of rate= 1. Corollary 9
gives the cost function and the distortion measure on lefgth-
m blocks that are necessary for optimal performance. However,
p(y™|e™) = Hp(yﬂxj)- (19) the un.d(_ar'lying source and chgnnel anemorylessTherefore, .
i1 by definition, it must be possible to express the cost function
on lengthA/ blocks as a sum oM individual terms, and the
W&me must be true for the distortion measure. This excludes
8EFtain M-letter codes. Our conjecture is that a finite-length
code with optimal performance exists if and only if there ex-
ists also a single-letter code with optimal performance for the
same source—channel pair. We can prove this conjecture under
Corollary 9: For a source(pg, d*)), and a channel some additional assumptions.
(pym|xm, p'™), suppose thalR(A) = C(I') is feasiblet

Consider the transmission using a single-letter source—channelheorem 10:Let (ps, ) and(pyx, p) be a discrete mem-
code(F, G) with F: S — X™ andG: Y™ — Sk and oOrylesssource and a discrete memoryless channel, respectively.

Suppose that all alphabets are of the same sizepthat> 0

) for all s € &, that the distortion measure has the property
0 <I(8*8%) =1(X"Y™) < Co. that the matrix{2~%(* %1,  is invertible and that the channel
transition probability matrix is invertible. Then, there exists a
m source—channel code of finite block length that performs opti-
= c1D(pymxm (-|2™)[lpy (-)) + po, mally if and only if, for the same source—channel pair, there ex-

Similarly, m channel symbols are merged to yield a new chan
with conditional distribution

Consequently, the cost function and the distortion meas
are also defined in the new, extended alphabets, and
denotedp(™ (™) andd®)(s*, §*). In the new alphabets, the
source—channel codgF, G) is a single-letter code. Hence,
Theorem 6 can be used to obtain the following statement:

suppose that

This is optimal if and only if

() () if p(z™) >0 (20) Sts alsoasingle-letter source-channel code that performs opti-
> e1D(py x (|2)llpy () + po, mally. | .
. Proof: The proof of this theorem is given in [14]. O
otherwise
d(’“)(s’“, ) = —calogy p(s*|3%) + do(s®). 1) Among the restrictions imposed by the last theorem, the one

on the distortion measure may seem somewhat unusual. Note,
Proof: This corollary is Theorem 6, Parti), applied to suithowever, that the standard distortion measures such as the Ham-

ably extended alphabets. O ming distance and the squared-error distortion satisfy that re-

striction. In fact, any distortion measure under which the map-

Corollary 9 makes the concept @robabilistic matchin X . L :
y pt. o g aR ng7T(s) = arg min; d(s, §) is one to one satisfies the require-

precise. For given source and channel statistics,
source—channel code is optimal with respect to an app ent.

priately chosen cost function and distortion measure. The goal

of the code design can be understood as the determination of V. EXTENSIONS TONONERGODIC AND MULTIUSER
the code that achieves the closest match withdingiredcost COMMUNICATION SYSTEMS

function and distortion measure. Note that the cost function . - . .
Optimal transmission systems designed according to the sep-

4This condition rules out the source—channel pairs of Case 2) of Lemma Jaration principle may be quite sensitive to parameter mismatch.
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Suppose, e.g., that the capacity of the channel turns out to be 2 B
smaller than the rate of the channel code that is used. The ef- % Y % S —
fect of this parameter mismatch on the final reconstruction of Destination 1
the data may be catastrophic. 1S |x

Source—channel codes may feature a graceful degradation Source | Zy P
as a function of mismatched parameters. In fact, in some & Y, i Sy
cases, one and the same source—channel code achjgtirasl Destination 2

performance fomultiple source—channel pairs. In this sense,
source—channel codes have a certain universality property. Hwe4. Single-source Gaussian broadcast using uncoded transmission.
following example illustrates this.

By analogy, one can again include all the special cases of
Theorem 6. This is left to the reader. The main reason for

binary uniform source as in Example 1. The channel is Slightléfud ing this particular property of source—channel codes lies
different from Example 1: the transition probabilityvaries . ying this particular property ot source— . .
in its practical implications. One implication is to time-varying

during transmission. Take the encoder and the decoder toje

) ) : : o ading) channels, as illustrated by the above example: the
identity mappings (i.e., uncoded transmission). From Exam . . . SO

- . . . . channel varies over time, but it always remains inside the class
1, itis clear that this code performs optimally irrespective of t

. For that case, itis immediate that a universal source—channel

value ofe. ) .
code achieves the performance of the best source compression

In this example, the suggested code is universal for the trafsfowed by the best channel code. However, the significance
mission of a binary uniform source across any one out of @f universal source—channel codes extends beyond the va-

entire class of channels. In the spirit of this example, we intriidity of the separation theorem. Two scenarios under which
duce the following definition: source—channel codes outperform any code designed according

Definition 7 (Universality): The source—channel codet® the separation paradigm are mentioned and illustrated

- : explicitly in the sequel.
E)f./cr(];a?nlrS] eclzgllgl(ai\c/iel:]né\;ersal for the sourcps, d) and the class Implication 1 (Nonergodic Channels).et the source—chan-

nel code(F, G) be universal for the sourc@s, d) and the
W= {(pgfx, pl0), (pgfp py, .} class of channel$V. Let the channel be i, but not deter-
mined at the time of code design. Then, transmission using the
source—channel codé’, G) achieves optimal performance, re-
gardless of which particular channel is selected.

Note that by complete analogy, one can define the univer-implication 2 (Single-Source Broadcast)et the source—
sality of a code with respect todassof sources and a class ofchannel codé¢F, G) be universal for the sourdgs, d) and the
channels. In order to keep notation simple, we leave this as@ass of channelg). In the particular broadcast scenario, where
exercise to the reader. Instances of universality can be characties-single sourcéps, d) is transmitted across multiple chan-
ized by direct application of Theorem 6 to the present scenar}@s(pgf)lX? p(i)) € W, transmission using the source—channel

For example, for single-letter codes, Theorem 6, Part i), prgode (F, ) achieves optimal performance on each channel
vides the following corollary. individually.

Example 3 (Example 1 With Fading):et the source be the

if, for all 4, the transmission of the sour¢gs, d) across the
channel(pgf)lx, p) using the cod¢F, @) is optimal.

Corollary 11: Consider a sourc@s, d) and a class of chan- Example 4 (Single-Source Gaussian Broadca&®t the
nels)V such that for every channel W, R(A;) = Ci(I'i) is  source be independent and identically distributed (i.i.d.) Gauss-
feasible2Suppose that for the single-letter cade g), itistrue  jan of varianceP. Let the broadcast channel be Gaussian with
that two users. More specifically, the channel operation consists in

A i i adding white Gaussian noise of varianeg and o3, respec-
0 < 1(8;8%) = 1(x;v®) < ¢ tively, and subsequent scaling by a factérf(if: P/2(P +a?)
andf, = P/P + o3), respectively. Assume without loss of

for all i. The single-letter codgf, ¢) is universal if and only if . - - !
! "9 €, g) Is univ I y! generality (w.l.o.g.y? < 2. This is illustrated in Fig. 4. Itis

for all 4 o :
' (@) vy (0) () well known that uncoded transmission is optimal on each of
=0 D(PY\x('|=’U)||PY(')) o’ these channels individually, i.e., the distortion pair achieved
. i by uncoded transmission &, ;1 = Po?/(P + o?) and
pD () ' | if p(w) > 0 22) Ay g e : 1 i/( i)
() vy (3) 0) w2 = Po3 /(P + 03).
> 1" D(pyx (1) llpy (1)) + po”

What is the achievable performance for a strategy based
. . on the concept of separation? The source would have to be
d(s, §) = —c;” log, p¥ (5]3) + dgl)(s), (23) described by a coarse version and a refinement thereof. This
problem has been studied in [15], [16]. For a Gaussian source,
such a two-part description can be accomplished without loss.
This means that if?, bits are used for the coarse version and
R; bits for the refinement, then the reconstruction based on
5This condition rules out the source—channel pairs of Case 2) of Lemma the coarse version only incurs a distortion Bf R,), while

otherwise

wherecgi) > 0, cgi) > 0, andpff) are constants, anq(f)(s) is
an arbitrary function.
Proof: Follows directly from Theorem 6. O
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source—channel codes perform optimally in certain honergodic
and multiuser communication scenarios. For example, a simple
single-source broadcast situation was shown to have this prop-
erty. It was shown for this example that the separation-based
approach leads to a strictly suboptimal performance. Therefore,
another promising extension of the results of this paper, and
in particular of the condition of probabilistic matching, is
to source—channel networks. We have studied one extension
into this direction in [14], [17], [18]. As another step into
this direction, the approach developed in this paper has been
extended to scenarios with side information by Pradhan, Chou,
and Ramchandran in [19], and by Merhav and Shamai in [20].

0.5r

o]
uncoded

0 0.05 01 A 04'15
1 APPENDIX |

Fig. 5. The distortion achievable by uncoded transmission (circle) versus the PROOFS OFLEMMAS 3 AND 4
distortion region achievable by a transmission scheme based on the separgighof of Lemma 3
principle for Example 4. Parameters dfe= 1,07 = 0.1, ando? = 0.2.
This lemma appears as Problem 2 in [6, p. 147], and its proof

_ ) is a consequence of [6, Theorem 3.4]. In the following, we prove
the reconstruction based on both the coarse version and lrili@sufﬁciency of the formula fos () using a slightly different

refinement incurs a distortion ab(R, + Ry). Here, D(-)  approach. Our proof extends to continuous alphabets under the
denotes the distortion-rate function of the source [13]. T"é?ppropriate technical conditions.

rates that.are availablel for thgse two descriptiops are the pairg ot py|x be fixed. For any distributiop on X, define
(R1, R2) in the capacity region of the Gaussian broadcast ' (2= D . o4
channel at hand. Since it is a degraded broadcast channel, the rx(2) = (fnY|X( |x)”?") o (24)
better receiver (the one at the end of the channel withcan Wherepy (y) = Epyx(y|X) is the marginal distribution of
also decode the information destined to the worse receiver [MenX is distributed according tpx.
Therefore, for the separation-based approach, the distortiont i quickly verified that with this definition/, . (X;Y) =
region is bounded by, 1 = D(R; + Ry) andA. » = D(R,), (Px: 1), where(f, g) denotes the standard inner product, i.e.,
where Ry and R, are on the boundary of the capacity regiofPr discrete alphabetsf, g) = >, f(z)g(x). With this nota-
of the Gaussian broadcast channel. This is illustrated in Figlin, we may write
for a particular choice of the parameters. We observe that the Nam _ e _ by|x
distortion pair achieved by uncoded transmission lies strictly DpvixClollpy) = <p3 1% log >y
outside the distortion region for the separation-based approaghere the subscript emphasizes that the inner product is taken
that was described above. in the variabley. The following auxiliary lemma is crucial for

the proof.

VI. CONCLUSION AND EXTENSIONS Lemma: For anypx andjix

To code, or not to code: that is the question. Undoubt_edly, L (X5Y) =L, (X;Y) < (px —px. 1 ).
“not to code” is very appealing when it leads to an optimal
cost—distortion tradeoff, since it involves the smallest possible To see this, note first that sindg, (X;Y) = (px, I, ), we
delay and complexity. Optimality is a matter of matching up sigquivalently prove the inequalitpx, I, ) — I; (X;Y) > 0,
quantities, namely, the sour¢gs, d), the channe(py x, p), foranypx, px.

and the encoder—decoder p@lf, G). Various approaches can (px, Iy ) — I (X3Y)
lead to such a match. o, o, o ,
From a traditional point of view, one can think of the source = (px: L) = (x, Iy ) = (bx, I, — T5)

and the channel as being fixed. Then, one has to design the en-
coder and the decoder in such a way that they match up the
source and the channel probabilistically. Although we do not . Dy
have a specific design procedure, one expects that matching up —\Px <pYX’ logs P_>y
probabilities can be a much simpler task than designing good
source and channel codes. (&) [~ loe Py
If the engineer gets to design a complete system (like nature = (X Pyix)e, log, y
did in the case of neural communication), then conceivably one ~
can design the source and the channel in such away thatthey are = <]3Y7 log, p_Y> = D(py|lpy) >0 (25)
already matched, or that they can be matched with a low-com- Y /oy
plexity encoder and decoder. This is illustrated by Example 2vhere(a) is a change of summation (or integration) order and
Furthermore, the separation principle is limited to ergodibe inequality follows from the fact that the Kullback—-Leibler
point-to-point communication. Interestingly, very simplalistance is nonnegative. Lemma 3 canthen be proved as follows.

= (px, D(py|xllpy) — D(py|x|py))

—~
=
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(«=) (Sufficiency of the formula.) Fix a distributiopx over (<) (Sufficiency of the formula.) Lef be arbitrary, le#¥ be
the channel input alphabet. Lebe arbitrary and lefix be any an arbitrary conditional distribution such that

channel input distribution such that E, wd(S, ) < Epowd(S, 3). (30)
B\ p(X) < Epy p(X). (26) Foranyx > 0
Forany\ > 0 L (S;8) — T (S5 8) > (psW — psW, Iy (s, §))
I (X;Y) = I (X3Y) > (px — px, Ip\) > <psW —psW, ]W +Ad) (31)

> (px = bx B =) (27)  \where the firstinequality is the preceding lemma, and the second

where the firstinequality is the preceding lemma, and the secdiotiows by assumption ofi’. If
follows by assumption ofix. If Ap(x) = I, (z) + cforall = Ad(s, §) = =Ty (s, §) + do(s)
with p(z) > 0, then the last expressmn |s zero, proving th§t
I, (X;Y) indeed maximizes mutual information.

WhenlI,  (X;Y) = Cy, then the input distributiopx max-
imizesI(X;Y') regardless op(x) and trivially fulfills the ex-
pected cost constraint. O

r all pairs(s, §) with p(s, §) > 0, then the last expression is
zero, proving thafyy (S; $) indeed minimizes mutual informa-
tion. Settingdo(s) = —log, p(s) + Ado(s) gives the claimed

formula (10).

When IW(S;ﬁ) = 0, then trivially W achieves the min-

Proof of Lemma 4 |mum mutual information/(:S; S) over all W that satisfy

wd(S, S) < Ewd(S, S), regardless ofl. O
This lemma appears in [6, Problem 3, p. 147], and its proof
is a consequence of [6, Theorem 3.7]. In the following, we APPENDIX |1
prove the sufficiency of the formula fal(s, §) using a slightly PROOFS OFLEMMAS 7 AND 8
different approach. Our proof extends to continuous alphabets
under the appropriate technical conditions. Proof of Lemma 7
To simplify the notation, we will use the symb®l in place Assume thatY = S andS = Y. This is without loss of
of pg,s in the proof. Define generality, since the only two alternatives are i) that the en-
W (s|s) coder permutes the source symbols, which is equivalent to swap-
Iy (s, 8) = log, T (28)  ping the channel transition probabilities (by the symmetry of the
Ps S problem), and ii) that the encoder maps both source symbols
wherepg is the marginal distribution of. onto one channel input symbol, which is always suboptimal ex-
In particular, note that with this definition cept when the channel has capacity zero. We will use the fol-
Iy (8;8) = (psW, Ily) lowing notation:e = py|x(1]0), 6 =py|x (0|1), px (z=0) =T,

andpx(z = 1) = «. For the system to be optimal, since the

channelis left unconstrained, itis necessary iat; V) = Cj.

Therefore, Case ii) of Theorem 6 applies. Hence, ihéses-

~ sarythatd(s, §) be chosen according to (10); i.e., we require

Lemma: For anyW andW that — log, p(s|8) = — log, p(z|y) be equivalent to the Ham-
I (S S) I (S; S) (psW psW, Ily). ming distortion. This is the same as requiring thaty-(0[1) =

-(1]|0). Expressin as a function of, 4, 7, and,
Using the fact thafyy (S; S) = (psW, Ij;), we consider ﬁigilagttLr)implipes that@(ﬂl/) ' "

where, with slight abuse of notation, we have ugedV, Ij;)
tomear) > . ps(s)W(s]s)Ijy (s, §). Inthe proof, we use the
following auxiliary lemma.

Iy (8;8) = (psW, L) 7= /el = €))/(6(1 — 8))7.
- w N W Since, moreovery + 7 = 1, we find
= pSW7 IOgZ ~ <pSW7 10g2 —> 1
Ps Ps . (32)
T+ V(61 —=6))/(e(1—¢))
. v . 174 We show that for channel of nonzero capacity, this is the
psW, log, <p5W log, > capacity-achieving distribution if and only = §, which

completes the proof. The capacity-achievimgsatisfies the
. 1% . following condition:
= <p5V; log, V> = (ps: D(VIIV)) 20 (29) LX) = (e 46— 1) log, LU= =) +70)
where we have useld to denote the conditional distribution of “" (1=m)(1 =€)+
S givenS under, i.e.,V (s|§) = W (3]s)p(s)/p(), and, cor- +Hy(e) — Hy(8) = 0. (33)
respondinglyyV’ to denote the same distribution, but undig; ~ Plugging inm from above yields
Le., V(s|3) = W(3|s)p(s)/B(3). D(V||V) denotes the Kull- H@O=IO (11— )\/6(1—6) +6y/e(1—¢)
back-Leibler distance betwe&handV in the variables, hence, 2 1-b—e (- Iydd -8 +oyved -9 .
it is a function ofs. The last inner product is thus one-dimen- 81 =8)+(1=0)Ve(l—¢)
sional in the variablé. The inequality follows from the fact that Clearly, equality holds it = 6 (and thust = ), but also if
the Kullback—Leibler distance is nonnegative. e = 1 — 6. In the latter case, the channel has zero capacity. To
With this, we are ready to prove Lemma 4. see that there are no more values aihdé for which equality

(34)
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holds, fix (for instancey and consider the curves defined by thehape) in [6]. We would like to thank Prof. Kannan Ramchan-
right- and the left-hand side of (34), respectively. The left-hardtan for initial discussions, and Prof. Emre Telatar for various
side is convex and decreasingdnFor0 < ¢ < 1 — §, the suggestions; in particular, the basic idea leading to Theorem 10
right-hand side is also convex and decreasing. Hence, at meestne up during a discussion of the authors with him. The au-
two intersections can occur in this interval, and we already kndhors would also like to acknowledge Prof. Toby Berger for sug-
them both. By continuing in this fashion, or by upper and lowegesting to look into biological communication and for sharing
bounds, one can establish that there are no more intersetdionisis insights on this topic.
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