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Abstract—What makes a source–channel communication
system optimal? It is shown that in order to achieve an optimal
cost–distortion tradeoff, the source and the channel have to
be matched in a probabilistic sense. The match (or lack of it)
involves the source distribution, the distortion measure, the
channel conditional distribution, and the channel input cost func-
tion. Closed-form necessary and sufficient expressions relating
the above entities are given. This generalizes both the separa-
tion-based approach as well as the two well-known examples of
optimal uncoded communication.

The condition of probabilistic matching is extended to certain
nonergodic and multiuser scenarios. This leads to a result on op-
timal single-source broadcast communication.

Index Terms—Joint source–channel coding, separation theorem,
single-letter codes, single-source broadcast, uncoded transmission.

I. INTRODUCTION

COMMUNICATIONS engineers have a long acquaintance
with the “separation principle,” i.e., the strategy of split-

ting the coding into two stages, source compression and channel
coding. This key strategy has been introduced and shown to
be optimal by Shannon in 1948 [3, Theorem 21], and is dis-
cussed, e.g., in [4]–[7]. The result is of surprisingly wide validity
in point-to-point communication (see, e.g., [8]). Consequently,
the separation idea has split the research community into two
camps, those who examine source compression and those who
investigate channel coding. It is well known that the combina-
tion of the results from the two communities leads to an optimal
communication system in terms of the cost–distortion tradeoff,
but it is generally highly complex, and it disregards delay.

In order to determine whether a lossy source–channel com-
munication system is optimal, it suffices to measure the average
cost and the average distortion, and to verify that this cost–dis-
tortion pair lies on the optimal cost–distortion tradeoff curve.
But the average cost depends only on the marginal distribu-
tion at the channel input, and the average distortion de-
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pends only on the joint (marginal) distribution of the
source and the destination symbols. The inevitable conclusion
is that achieving optimality is a matter of achieving the correct
marginals and . The system designed according to
the separation principle achieves the right marginals by means
of (asymptotically) long codewords, but the use of long codes is
by no means a requirement.

For instance, it is well known that an optimal communica-
tion system results when a binary uniform source is plugged
into a binary-symmetric channel without any coding at all, pro-
vided that the distortion is measured in terms of the Hamming
distance (see, e.g., [9, Sec. 11.8], or [5, p. 117]). In another
well-known example of such behavior, a Gaussian source is
transmitted across the additive white Gaussian noise (AWGN)
channel [10].

The reason why we do not need coding in these two exam-
ples is that the source and the channel together produce the
right marginals. We say that they areprobabilistically matched.
If, instead, we follow the separation principle, the capacity-ap-
proaching channel code destroys this favorable condition by at-
tempting to create a deterministic channel (with high proba-
bility). Note that this also implies that the mapping from the
source output sequence to the reconstruction sequence at the
destination becomesdeterministic(with high probability). In
contrast to this, the source-to-destination mapping in the binary
and Gaussian examples quoted above israndom. This is dis-
cussed in more detail in [11].

The goal of this paper is to provide a basis for point-to-point
source–channel communication systems that are optimal, in-
cluding the uncoded ones and those designed according to the
separation principle. We derive a set of necessary and sufficient
conditions for any discrete memoryless point-to-point commu-
nication system to be optimal. These conditions show that by
considering a broader class of source-to-destination mappings
(rather than only the deterministic ones), there is an arbitrarily
large number of source–channel pairs for which the complexity
and delay can be reduced to the absolute minimum, yet the op-
timal cost–distortion tradeoff is achieved.

The paper is organized as follows. In Section II, a brief review
of Shannon’s conditions for the optimality of a source–channel
communication system is given.

In Section III, these conditions are specialized to the case of
single-letter codes, i.e., codes where the encoder maps every
source output symbol separately onto a channel input symbol,
and the decoder maps every channel output symbol separately
onto a source reconstruction symbol. In a nutshell, suppose that
a discrete memoryless source specified by the random variable

with distribution is encoded (symbol by symbol) into
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. The symbol is transmitted across a discrete
memoryless noisy channel specified by a conditional distribu-
tion . The channel output is decoded to yield the estimate
of the source . We show that this is an optimal com-
munication system if and only if the channel input cost function

and the distortion measure relate to the source and
channel distributions according to (up to shifts and scaling)

(1)

(2)

where denotes the Kullback–Leibler distance, the
distribution of the channel output, and the distribution
of given the estimate . These arguments are made precise
in Theorem 6. Equations (1) and (2) suggest our perspective
of probabilistic matching. In order to achieve an optimal
cost–distortion tradeoff, the source and the channel have to
be matched in a probabilistic sense. The match (or lack of it)
involves the source distribution, the distortion function, the
channel conditional distribution, and the channel input cost
function. The two conditions above were known as necessary
and sufficient conditions for a channel input distribution and
for a test channel to achieve the maximum and the minimum,
respectively, in the computation of the capacity–cost function
and the rate-distortion function, respectively [6]. However, the
more important point is new: the above conditions characterize
an optimal system in a way that is more fundamental than the
well-known condition that the rate-distortion function be equal
to the capacity–cost function.

In Section IV, we argue that the results obtained in Section III
extend to arbitrary encoders, mappingsource symbols onto
channel input symbols, and to arbitrary decoders, mapping
channel output symbols tosource reconstruction symbols, at
least as long as all alphabets are assumed discrete. What code
length is required in order to achieve the optimum match? For
some source/channel pairs, a single-letter code is sufficient, as
shown in Section III. Consider now the source–channel pairs
for which there isno single-letter code that achieves this. We
establish for a subset of those source–channel pairs that there is
no code of finite block length that achieves the optimal match
either.

The significance of joint source–channel codes extends be-
yond memoryless point-to-point systems. This is discussed in
Section V. In fact, such codes feature a certain universality in
that one and the same code may perform optimally for an en-
tire set of source–channel pairs. This is relevant, for instance,
for nonergodic channels and multiuser communication, where
the separation-based approach is generally suboptimal (see Ex-
ample 4 in Section V).

Finally, the application of information theory to biology, in
particular to neural communication, has received increasing at-
tention. The work of Berger [12] is pioneering in this area; one
way of applying the concept of probabilistic matching to neural
communication is illustrated in Example 2 in Section III-D.

II. OPTIMAL SOURCE–CHANNEL COMMUNICATION SYSTEMS

The key elements of the problem studied in this paper are the
discrete memoryless source and channel, and the single-letter

code. In this section, we provide definitions of those entities.
We denote random variables by capital letters, e.g.,, and their
realizations by lower case letters, e.g.,. The probability mass
function (pmf) of the random variable is denoted by .
When the subscript is just the capitalized version of the argu-
ment in parentheses, we will often write simply .

Definition 1 (Source):A discrete memoryless source
is specified by a pmf on a discrete alphabetand a non-
negative function called the distor-
tion measure. This implicitly specifies a discrete alphabetin
which the source is reconstructed. The rate-distortion function
(see e.g., [13]) of the source is defined as

(3)

where is a random variable over the alphabet.

Definition 2 (Channel): A discrete memoryless channel
is specified by a conditional pmf , where

and , and where and are discrete alphabets,
and a nonnegative function called the channel
input cost function. The capacity–cost function (see, e.g., [5])
of the channel is defined as

(4)

This function is also called capacity-constraint function in [6].

In order to decide on the optimality of a communication
system, the unconstrained capacity of the channel turns out to
be an important quantity.

Definition 3 (Unconstrained Capacity):The unconstrained
capacityof the channel is the capacity of the channel
disregarding input costs, that is,

(5)

Hence, is independent of the choice of; it is solely a prop-
erty of . When , an equivalent defini-
tion is .

In this paper, we study communication by means of a
source–channel code of rate, defined as follows.

Definition 4 (Source–Channel Code of Rate): A source–
channel code of rate is specified by an encoding func-
tion and a decoding function , such
that .

Remark 1: is part of the problem statement,not a param-
eter in the optimization: is the number of source symbols that
have to be transmitted per channel use.

Suppose the source is transmitted across the channel
using the source–channel code . This is illus-

trated in Fig. 1. The average input cost used on the channel is
found to be

(6)
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and the average distortion achieved by the code is

(7)

We will sometimes refer to as thecost–distortionpair, or
the operating point. The main goal of this paper is to determine
necessary and sufficient conditions such that the communication
system of Fig. 1 is an optimal communication system, according
to the following definition.

Definition 5 (Optimality): For the transmission of a source
across a channel , a source–channel code

of rate is optimal if both1

i) the distortion incurred using is the minimum
distortion that can be achieved at input costwith the
best possible source–channel code of rate(regardless of
complexity), and

ii) the cost incurred using is the minimum cost
needed to achieve distortion with the best possible
source–channel code of rate(regardless of complexity).

Following Definition 5, in order to establish the optimality of
a given communication system, the issue is to optimize over all
possible source–channel codes of a fixed rate, regardless of
complexity and delay. This problem can be solved by the aid of
the separation theorem [3, Theorem 21]. For the purpose of this
paper, we formulate it as follows.

Lemma 1: For a source and a channel ,
transmission using a source-channel code of rate is
optimal if and only if 1) or 2) is satisfied:

1) i) , and
ii) neither can be lowered without changing

nor can be lowered without changing ;
2)

and

Remark 2: The crucial condition of case 1) is
. For condition ii), note that may be decreased without

changing only if . Likewise, may be de-
creased without changing only if . This is
developed in Section III-B.

Remark 3: Case 2) is degenerate in the sense that there is no
tradeoff between cost and distortion; there is only one optimal
operating point. This is illustrated in Fig. 2 by the dashed lines.
In that example, the only optimal operating point is
and .

Outline of the Proof: This lemma is essentially [3, The-
orem 21]. For an outline of the proof, note that by combining
the proofs of the rate-distortion and the capacity theorem with
the data processing inequality, it is easy to show that any
source–channel communication system of ratemust satisfy

1Note that the two conditions do not necessarily imply one another. In fact, in
the literature, optimality of a transmission scheme is sometimes defined by one
of the two conditions only. Our results can be modified to apply to that case as
well.

Fig. 1. The source–channel communication system.

Fig. 2. The bold lines represent a source–channel pair for which�R(�) =
C(�) is feasible, and hence case 1) of Lemma 1 applies; the dashed lines
represent a source–channel pair for which it is not feasible, i.e., case 2) of
Lemma 1 applies.

. For case 1), suppose that for the source–
channel pair is feasible. Then, if a communica-
tion strategy does not satisfy this, it cannot be optimal: there is
a better system (namely, one that does satisfy ).
However, is still not sufficient as it may
occur that can be reduced without increasing . This
is prevented by condition ii). The same comment applies to

. Hence, i) and ii) together are necessary and sufficient
conditions for optimality. For case 2), is not
feasible, i.e., . The optimality is clear from the
dashed lines in Fig. 2.

III. SINGLE-LETTERCODESTHAT PERFORMOPTIMALLY

It is well known that there are instances of source–channel
pairs for which single-letter codes achieve the best possible per-
formance. This result is particularly surprising since such codes
are extremely easy to implement and operate at zero delay. In
this section, we derive necessary and sufficient conditions under
which single-letter codes are optimal. In line with Definition 4,
we define the following.

Definition 6 (Single-Letter Source–Channel Code):A
single-letter source–channel code is specified by an
encoding function and a decoding function

.

Note that for single-letter codes, . Lemma 1 contains
two conditions2 that together are necessary and sufficient to es-
tablish the optimality of any communication system, including
those that use single-letter codes. These conditions will now
be examined in detail. In Section III-A, we elaborate on the
first condition, i.e., . The second condition is
somewhat subtler; it will be discussed in Section III-B. In Sec-
tion III-C, the results are combined to yield a general criterion
for the optimality of single-letter codes.

A. Condition i) of Lemma 1

As a first step, we can reformulate the condition
more explicitly as follows.

2Here, we only derive detailed results for Case 1) (i.e., the nondegenerate
case) of Lemma 1.
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Lemma 2: holds if and only if the following
three conditions are simultaneously satisfied:

i) the distribution of achieves capacity on
the channel at input cost , i.e.,

,

ii) the conditional distribution of given
achieves the rate-distortion function of the source
at distortion , i.e., , and

iii) and are such that , i.e., they
are “information lossless.”

Proof: For any source–channel communication system
that employs a single-letter code

(8)

where is the data processing inequality. Equality holds in
if and only if achieves the rate-distortion function of the
source, and in if and only if achieves the capacity–cost
function of the channel. Thus, is satisfied if
and only if all three conditions in Lemma 2 are satisfied, which
completes the proof.

There are four pairs of entities involved, namely, the source
, the channel , the code , and the

cost–distortion pair . These four pairs are not inde-
pendent of one another. For instance, the last is completely
determined by the first three. The corresponding communica-
tion system (as shown in Fig. 1) performs optimally if and only
if these four pairs are selected in such a way as to fulfill all the
requirements of Lemma 1.

There are various ways to verify whether the requirements
are satisfied. Some of them lead to problems that notoriously do
not admit analytical solutions. For example, following Lemma
2, we could compute the capacity–cost function of the
channel and evaluate it at . This is known to be a
problem that does not have a closed-form solution for all but a
small set of channels. Similarly, one could compute the rate-dis-
tortion function of the source and evaluate it at

. Again, closed-form solutions are known only for a handful
of special cases. Once the rate-distortion and the capacity–cost
functions are determined, we are ready to check the conditions
of Lemma 1.

One of the main difficulties with this approach lies in
the fact that for a given cost function, there is no general
closed-form expression for the channel input distribution that
achieves capacity; numerical solutions can be found via the
Arimoto–Blahut algorithm. The key idea of the following
lemma is to turn this game around: for any distribution
over the channel input alphabet, there exists a closed-form
solution for the input cost function such that the distribution

achieves capacity. Lemma 3 gives an explicit formula to
select the input cost function for given channel conditional
and input distributions. By analogy, Lemma 4 gives a similar
condition for the distortion measure.

The results of the following Lemmas 3 and 4 are not new.
They have already appeared, in effect, in [6]. Specifically,
Lemma 3 appears as Problem 2 (without explicit proof) in [6, p.
147]; it can also be seen as an extension of [4, Theorem 4.5.1]
to the case of constrained channel inputs. Lemma 4 appears as
Problem 3 (without explicit proof) in [6, p. 147].

Lemma 3: For fixed source distribution , a single-letter
encoder , and channel conditional distribution

i) if , the first condition of Lemma 2 is satis-
fied if and only if the input cost function satisfies

if

otherwise
(9)

where and are constants, and denotes
the Kullback–Leibler distance between two distributions;

ii) if , the first condition of Lemma 2 is satis-
fied for any function .

Proof: The proof is given in Appendix I.

To gain insight, let be the channel input distribution in-
duced by some source distribution through the encoder. For
any cost function , one finds an expected cost and a set of ad-
missible input distributions leading to the same (or smaller) av-
erage cost. The input distribution lies in that set, but it does
not necessarily maximize mutual information. The key is now to
find the cost function, and thus the set of admissible input distri-
butions, in such a way that the input distribution maximizes
mutual information within the set. In the special case where
the input distribution achieves , it clearly maximizes mu-
tual information among distributions inanyset, regardless of.
Hence, in that case, the choice of the cost functionis unre-
stricted.

Lemma 3 gives an explicit formula to select the input cost
function for given channel conditional and input distributions.
By analogy, the next lemma gives a similar condition for the
distortion measure.

Lemma 4: For fixed source distribution , channel condi-
tional distribution , and a single-letter code

i) if , the second condition of Lemma 2 is satis-
fied if and only if the distortion measure satisfies

(10)

where and is an arbitrary function;

ii) if , the second condition of Lemma 2 is satis-
fied for any function .

Proof: The proof is given in Appendix I.

That is, let be the conditional distribution induced by
some channel conditional distribution through the encoderand
the decoder . For any distortion measure, an average distor-
tion can be computed, which implies a set
of alternative conditional distributions that also yield distortion

. The key is to find in such a way that the chosen min-

imizes among all conditional distributions in the set.
Apparently, there is a slight asymmetry between Lemmas 3

and 4: In the former, when , satisfies a less strin-
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Fig. 3.WhenR(�) = C(�) is not sufficient to guarantee optimality.

gent condition. In the latter, a similar behavior occurs: when
, the condition can be relaxed to

However, since the right-hand side is infinity in that case, re-
quiring equality is equivalent.

In summary, our discussion of the requirement
produced a set of explicitly verifiable conditions that together
ensure . However, to obtain an explicit criterion
that can establish the optimality of a single-letter code, it still
remains to scrutinize the second requirement of Lemma 1. This
is the goal of the next subsection.

B. Condition ii) of Lemma 1

Lemma 1 contains two simultaneous requirements to ensure
the optimality of a communication system that employs single-
letter codes. The first requirement, , was studied
and developed in detail in Section III-A; in this section, we ex-
amine the second condition, namely, when it is impossible to
lower without changing , and when it is impossible to
lower without changing . This permits to give a gen-
eral criterion to establish the optimality of any communication
system that uses single-letter codes.

The crux of the problem is illustrated in Fig. 3. It shows simul-
taneously the capacity–cost function of the channel (left) and
the rate-distortion function of the source (right). Problematic
cases may only occur in regions where either or are
horizontal, i.e., when they have reached their asymptotic values

and . This only happens when
the mutual information is or zero. For example,
both the cost–distortion pair and the cost–distortion
pair satisfy the condition ; however,
only the pair corresponds to an optimal transmission
strategy. By analogy, an example can be given involving two
different distortions. A concrete example of a system where the
condition is not sufficient is given in [14].

Continuing in this line of thought, we obtain the following
proposition.

Proposition 5: Suppose that the transmission of the source
across the channel using the single-letter

code satisfies . Then we have the fol-
lowing.

i) cannot be lowered without changing if and only if
one of the following two conditions is satisfied:

a) , or
b) and among the distributions that

achieve , belongs to the ones with lowest cost.

In particular, the last condition is trivially satisfied
whenever is the unique channel input distribu-
tion achieving .

ii) cannot be lowered without changing if and only
if one of the following two conditions is satisfied:

a) , or
b) and among the conditional distribu-

tions for which , belongs to the
ones with lowest distortion. In particular, the last
condition is trivially satisfied if is the unique

conditional distribution achieving .

Proof:

Part i): To see that condition a) is sufficient, define
. For every , the value

uniquely specifies . This follows from the fact that is
convex and nondecreasing. From Lemma 2, im-
plies . Hence, implies

, which in turn implies that it is not possible to change
without changing . To see that condition b) is sufficient,
note that if among the achievers of , belongs to the ones
with lowest cost, then it is indeed impossible to lowerwithout
changing . In particular, if is the only achiever of ,
then there cannot be another that achieves the same rate,
namely, , but with smaller cost, simply because there is no
other that achieves .

It remains to show that if neither a) nor b) are satisfied, then
can indeed be lowered. In that case, (it cannot

be larger than ). Moreover, there must be multiple achievers
of , and is not the one minimizing . In other words,
can indeed be lowered without changing .

Part ii): The proof goes along the same lines. To see that con-
dition a) is sufficient, define . For
every , the value uniquely specifies . This
follows from the fact that is convex and nonincreasing.
From Lemma 2, implies .
Hence, implies , which, in turn, im-
plies that it is not possible to changewithout changing .
For condition b), note that if among the achievers of zero mu-
tual information, belongs to the ones with lowest distor-
tion, then it is indeed impossible to lower without changing

. In particular, if is the unique conditional distribu-
tion achieving zero mutual information, then there may not be
another conditional distribution achieving the same rate (zero)
but with smaller distortion, simply because by assumption, there
is no other conditional distribution achieving zero mutual infor-
mation.

It remains to show that if neither a) nor b) are satisfied, then
can indeed be lowered. In that case, (it cannot

be smaller than). Moreover, there must be multiple achievers
of zero mutual information, and does not minimize the
distortion among them. In other words,can indeed be lowered
without changing .

Remark 4: In the most general case of Proposition 5, it is
necessary to specify the cost function and the distortion measure
before the conditions can be verified. Let us point out, however,
that in many cases of practical interest, this isnot necessary.
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In particular, if or if but is
the unique distribution that achieves, then Part i) is satisfied
irrespective of the choice of the cost function. By analogy, if

or if but is the unique conditional

distribution for which , then Part ii) is satisfied
irrespective of the choice of the distortion measure.

In summary, our discussion of Condition ii) of Lemma 1 sup-
plied a set of explicitly verifiable criteria. The main result of
this paper is obtained by combining this with the results of Sec-
tion III-A.

C. The Main Result

The main result of this paper is a simple criterion to check
whether a given single-letter code performs optimally for a
given source/channel pair. Lemma 1 showed that on the one
hand, the system has to satisfy . The choice of
the cost function as in Lemma 3 ensures that the channel
input distribution achieves capacity. Similarly, the choice of
the distortion measure according to Lemma 4 ensures that the
conditional distribution of given achieves the rate-distor-
tion function of the source. Together with the condition that

, this ensures that . On
the other hand, Lemma 1 requires thatmay not be lowered
without changing , and that may not be lowered
without changing . Recall that this isnot ensured by
Lemmas 3 and 4. Rather, it was discussed in Section III-B
and led to Proposition 5. It is now a simple matter to combine
the insight gained in the latter proposition with the statements
from Lemmas 3 and 4. This leads to a quite simple criterion
to establish the optimality of a large class of communication
systems that employ single-letter codes:

Theorem 6: Consider a source and a channel
for which is feasible.3 For the

transmission using a single-letter code , the following
statements hold.

o) If , then the system does not per-
form optimally.

i) If , the system is op-
timal if and only if and satisfy Lemmas 3
and 4, respectively.

ii) If , the system is op-
timal if and only if satisfies Lemma 4, and
is such that for all other achievers

of . In particular, the last condition is trivially
satisfied if is the unique channel input distribution
achieving .

iii) If , the system is op-
timal if and only if satisfies Lemma 3, and
is such that for all other

achievers of . In particular, the last
condition is trivially satisfied if is the unique con-

ditional distribution for which .

3This condition rules out the source–channel pairs of Case 2) of Lemma 1.

iv) If , then the system is optimal if and only if
for all channel input distributions

, and for all conditional
distributions .

Proof:
Part o). From the Data Processing Theorem (e.g., [7, The-

orem 2.8.1]), implies .
Moreover, implies (see also
the proof of Lemma 2). But then, by Lemma 1, the system does
not perform optimally.

Part i). If and , the system is op-
timal if and only if (Lemma 1 with Proposition
5). We have shown that this is equivalent to requiring the three
conditions of Lemma 2 to be satisfied. The third of these condi-
tions, , is satisfied by assumption. As long
as and , Lemmas 3 and 4 establish
that the first two are satisfiedif and only if and are chosen
according to (9) and (10), respectively.

Part ii). If , the system is optimalif and only if
and among the achievers of , belongs to

the ones with lowest cost (Lemma 1 with Proposition 5). The
condition is satisfiedif and only if the three
conditions of Lemma 2 are satisfied. The third of these condi-
tions, , is satisfied by assumption. When

but , Lemmas 3 and 4 establish that
the first two are satisfiedif and only if is chosen according
to (10).

Part iii). If , the system is optimalif and only
if and among the conditional distributions for
which , belongs to the ones with lowest dis-
tortion (Lemma 1 with Proposition 5). The condition

is satisfiedif and only ifthe three conditions of Lemma 2
are satisfied. The third of these conditions, ,
is satisfied by assumption. When but
, Lemmas 3 and 4 establish that the first two are satisfiedif and

only if is chosen according to (9).
Part iv) has been added for completeness only. It should be

clear that if , then automatically, all the mutual informa-
tion conditions are satisfied since all mutual informations must
be zero, and all that has to be checked is that the cost and the
distortion are minimal. Obviously, this case is of limited prac-
tical interest.

D. Illustrations of Theorem 6

To illustrate this theorem, pick any probability measures for
the source and the channel, and determine the cost function and
distortion measure according to Lemmas 3 and 4, respectively.
For the well-known example of a binary uniform source across
a binary-symmetric channel, this is done as follows.

Example 1 (Binary):Let the source be binary and uniform
with Hamming distortion measure, and let the channel be binary
and symmetric (with transition probability ) without an
input cost constraint (i.e., ., ). Let and be
the identity maps, i.e., and . This setup is
also considered in, e.g., [5] and [6].

For this channel, the capacity is ,
where denotes the binary entropy function. The rate-dis-



GASTPARet al.: LOSSY SOURCE–CHANNEL COMMUNICATION REVISITED 1153

tortion function for the binary source is
(see, e.g., [7]). In the present example, the distortion is found
to be , from which .
Thus, is satisfied. For , there is a unique
achiever of , and hence, from Proposition 5, neithernor
can be decreased (leaving the other fixed). Thus, by Lemma 1,
the considered communications scheme performs optimally.

Let us establish the same fact using Theorem 6. Trivially,
, and we find

if

otherwise.
(11)

Taking

and

in Lemma 4 reveals that one of the distortion measures that sat-
isfy the requirement in Theorem 6 is indeed the Hamming dis-
tance.

As shown in this example, Theorem 6 can be applied directly
by fixing the probability measures and the single-letter code,
and determining the cost function and distortion measures ac-
cording to the formulas. But the conditions of Theorem 6 are
also useful if, e.g., the channel conditional probability distribu-
tion and the cost function are specified, and the source proba-
bility distribution and the distortion measure have to be deter-
mined accordingly, as illustrated by the following example [11].

Example 2: In this example, the alphabets are binary se-
quences of length, denoted by bold symbols. Let the channel
conditional distribution be any permutation of the length-se-
quence, i.e.,

if

otherwise

(12)

where denotes the Hamming weight (number of’s) in
the sequence. Moreover, let the cost function be

(13)

This can be seen as a simple model of neural communication
[11]. By Lemma 3, the capacity-achieving input distribution sat-
isfies

(14)

In [11], this condition is used to determine the capacity-
achieving input distribution. The probability that is
found to be

(15)

for . In [11], the distortion measure ac-
cording to Lemma 4 is also determined.

Example 2 considered a simple model of neural communi-
cation. This also illustrates the point that in certain applica-
tions, the source and the channelcanbe selected in a favorable
fashion: for the case of neural communication, evolution had the
opportunity to do so.

Beyond such a direct application, Theorem 6 is also useful in
certain proofs. Example 1 suggests the question of theunique-
nessof the solution. Suppose that all involved alphabets are bi-
nary, the distortion measure is Hamming, and the channel input
cost function a constant. Then, is Example 1 the unique instance
of optimal uncoded transmission? Using Theorem 6, one can es-
tablish the following lemma.

Lemma 7 (Binary):Let ,
., and if , and otherwise (Ham-

ming distortion). Suppose that the channel has nonzero capacity.
Then, there exists a single-letter code with optimal performance
if and only if the source pmf is uniform and the channel con-
ditional pmf is symmetric.

Proof: The proof is given in Appendix II.

If the alphabets are not binary, the following similar result can
be established.

Lemma 8 ( -ary Uniform): Let and be -ary,
., for all , if , and

otherwise (Hamming distortion), and be uniform. Moreover,
let the channel have nonzero capacity. Then, there exists a
single-letter code with optimal performance if and only if the
channel conditional pmf is ., for (or
a permutation thereof).

Proof: The proof is given in Appendix II.

There is a nice intuition going along with the last result. Sup-
pose that the channel is symmetric [7, p. 190] and that the prob-
abilities of erroneous transition are for every
channel input. The distortion achieved by uncoded transmission
is simply the sum of these probabilities. However, the distor-
tion achieved by coded transmission depends on the capacity of
the channel. Therefore, if uncoded transmission should have a
chance to be optimal, we have to minimize the capacity of the
channel subject to a fixed sum . But this is equivalent
to maximizing the entropy of the “noise” subject
to a fixed probability . Clearly, this maximum occurs
when all the are equal.

The claims made in this paper are for discrete alphabets
only. However, the proofs of the sufficiency of Lemmas 3 and
4 given in Appendix I can be extended to continuous alphabets
with appropriate technical assumptions. For example, suppose
that the source distribution is Gaussian of variance, and
the channel is an AWGN channel with noise variance.
Suppose that uncoded transmission is used, and the decoder is

. Then, Lemmas 3 and 4 give

(16)

(17)

In words, if the cost on the channel is power, and the distortion
the mean-square error, then uncoded transmission is optimal,
confirming the well-known example reported in [10].
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IV. OPTIMAL SOURCE–CHANNEL COMMUNICATION SYSTEMS,
REVISITED

In Section III, we developed results for single-letter codes.
However, it is clear that any source–channel code can be seen
as a single-letter code in appropriately extended alphabets, at
least as long as all alphabets are assumed to be discrete (as we
have done throughout the present paper). Hence, the results of
Section III can be applied directly to arbitrary source–channel
codes. In other words, we have developed a criterion to establish
the optimality of any source–channel communication system,
and that criterion is no less general than the separation theorem,
Lemma 1.

More precisely, suppose that a source–channel code
is used, with and . This situation
can be addressed by mergingsource symbols to yield a new
source, denoted by with alphabet . The distribution of the
new source is

(18)

Similarly, channel symbols are merged to yield a new channel
with conditional distribution

(19)

Consequently, the cost function and the distortion measure
are also defined in the new, extended alphabets, and are
denoted and . In the new alphabets, the
source–channel code is a single-letter code. Hence,
Theorem 6 can be used to obtain the following statement:

Corollary 9: For a source , and a channel
, suppose that is feasible.4

Consider the transmission using a single-letter source–channel
code with and , and
suppose that

This is optimal if and only if

if

otherwise

(20)

(21)

Proof: This corollary is Theorem 6, Part i), applied to suit-
ably extended alphabets.

Corollary 9 makes the concept ofprobabilistic matching
precise. For given source and channel statistics, any
source–channel code is optimal with respect to an appro-
priately chosen cost function and distortion measure. The goal
of the code design can be understood as the determination of
the code that achieves the closest match with thedesiredcost
function and distortion measure. Note that the cost function

4This condition rules out the source–channel pairs of Case 2) of Lemma 1.

and distortion measure need not gener-
ally decompose in an additive fashion in terms of the original
alphabet.

It is clear that longer codes generally permit to better match
the source and the channel. Corollary 9 can, therefore, also be in-
terpreted as follows. Suppose a certain finite complexity is avail-
able to implement a source–channel communication system.
Following Lemma 1, one would design (suboptimal) source and
channel codes independently. The advantage of additional com-
plexity appears as a lower error probability on the channel and a
smaller size of the quantization cells for the source. In contrast
to this, Corollary 9 suggests a very different perspective: addi-
tional coding complexity (in the shape of longer codes) is used
to better match and to the desired cost and distortion
measures.

While longer codes permit tobettermatch the source
to the channel , we would also like to know what code
length is necessary to obtain theoptimalmatch. More precisely,
attention shall still be restricted to discrete memoryless sources
and channels as defined in Definitions 1 and 2, but the code is
now an arbitrary source–channel code of (finite) length. For
simplicity, we consider only codes of rate . Corollary 9
gives the cost function and the distortion measure on length-
blocks that are necessary for optimal performance. However,
the underlying source and channel arememoryless. Therefore,
by definition, it must be possible to express the cost function
on length- blocks as a sum of individual terms, and the
same must be true for the distortion measure. This excludes
certain -letter codes. Our conjecture is that a finite-length
code with optimal performance exists if and only if there ex-
ists also a single-letter code with optimal performance for the
same source–channel pair. We can prove this conjecture under
some additional assumptions.

Theorem 10:Let and be a discrete mem-
oryless source and a discrete memoryless channel, respectively.
Suppose that all alphabets are of the same size, that
for all , that the distortion measure has the property
that the matrix is invertible and that the channel
transition probability matrix is invertible. Then, there exists a
source–channel code of finite block length that performs opti-
mally if and only if, for the same source–channel pair, there ex-
ists also a single-letter source–channel code that performs opti-
mally.

Proof: The proof of this theorem is given in [14].

Among the restrictions imposed by the last theorem, the one
on the distortion measure may seem somewhat unusual. Note,
however, that the standard distortion measures such as the Ham-
ming distance and the squared-error distortion satisfy that re-
striction. In fact, any distortion measure under which the map-
ping is one to one satisfies the require-
ment.

V. EXTENSIONS TONONERGODIC AND MULTIUSER

COMMUNICATION SYSTEMS

Optimal transmission systems designed according to the sep-
aration principle may be quite sensitive to parameter mismatch.
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Suppose, e.g., that the capacity of the channel turns out to be
smaller than the rate of the channel code that is used. The ef-
fect of this parameter mismatch on the final reconstruction of
the data may be catastrophic.

Source–channel codes may feature a graceful degradation
as a function of mismatched parameters. In fact, in some
cases, one and the same source–channel code achievesoptimal
performance formultiple source–channel pairs. In this sense,
source–channel codes have a certain universality property. The
following example illustrates this.

Example 3 (Example 1 With Fading):Let the source be the
binary uniform source as in Example 1. The channel is slightly
different from Example 1: the transition probabilityvaries
during transmission. Take the encoder and the decoder to be
identity mappings (i.e., uncoded transmission). From Example
1, it is clear that this code performs optimally irrespective of the
value of .

In this example, the suggested code is universal for the trans-
mission of a binary uniform source across any one out of an
entire class of channels. In the spirit of this example, we intro-
duce the following definition:

Definition 7 (Universality): The source–channel code
is called universal for the source and the class

of channels given by

if, for all , the transmission of the source across the
channel using the code is optimal.

Note that by complete analogy, one can define the univer-
sality of a code with respect to aclassof sources and a class of
channels. In order to keep notation simple, we leave this as an
exercise to the reader. Instances of universality can be character-
ized by direct application of Theorem 6 to the present scenario.
For example, for single-letter codes, Theorem 6, Part i), pro-
vides the following corollary.

Corollary 11: Consider a source and a class of chan-
nels such that for every channel in , is
feasible.5Suppose that for the single-letter code , it is true
that

for all . The single-letter code is universal if and only if
for all

if

otherwise

(22)

(23)

where , , and are constants, and is
an arbitrary function.

Proof: Follows directly from Theorem 6.

5This condition rules out the source–channel pairs of Case 2) of Lemma 1.

Fig. 4. Single-source Gaussian broadcast using uncoded transmission.

By analogy, one can again include all the special cases of
Theorem 6. This is left to the reader. The main reason for
studying this particular property of source–channel codes lies
in its practical implications. One implication is to time-varying
(fading) channels, as illustrated by the above example: the
channel varies over time, but it always remains inside the class

. For that case, it is immediate that a universal source–channel
code achieves the performance of the best source compression
followed by the best channel code. However, the significance
of universal source–channel codes extends beyond the va-
lidity of the separation theorem. Two scenarios under which
source–channel codes outperform any code designed according
to the separation paradigm are mentioned and illustrated
explicitly in the sequel.

Implication 1 (Nonergodic Channels):Let the source–chan-
nel code be universal for the source and the
class of channels . Let the channel be in , but not deter-
mined at the time of code design. Then, transmission using the
source–channel code achieves optimal performance, re-
gardless of which particular channel is selected.

Implication 2 (Single-Source Broadcast):Let the source–
channel code be universal for the source and the
class of channels . In the particular broadcast scenario, where
the single source is transmitted across multiple chan-
nels , transmission using the source–channel
code achieves optimal performance on each channel
individually.

Example 4 (Single-Source Gaussian Broadcast):Let the
source be independent and identically distributed (i.i.d.) Gauss-
ian of variance . Let the broadcast channel be Gaussian with
two users. More specifically, the channel operation consists in
adding white Gaussian noise of variance and , respec-
tively, and subsequent scaling by a factor of
and , respectively. Assume without loss of
generality (w.l.o.g.) . This is illustrated in Fig. 4. It is
well known that uncoded transmission is optimal on each of
these channels individually, i.e., the distortion pair achieved
by uncoded transmission is and

.

What is the achievable performance for a strategy based
on the concept of separation? The source would have to be
described by a coarse version and a refinement thereof. This
problem has been studied in [15], [16]. For a Gaussian source,
such a two-part description can be accomplished without loss.
This means that if bits are used for the coarse version and

bits for the refinement, then the reconstruction based on
the coarse version only incurs a distortion of , while



1156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

Fig. 5. The distortion achievable by uncoded transmission (circle) versus the
distortion region achievable by a transmission scheme based on the separation
principle for Example 4. Parameters areP = 1, � = 0:1, and� = 0:2.

the reconstruction based on both the coarse version and the
refinement incurs a distortion of . Here,
denotes the distortion-rate function of the source [13]. The
rates that are available for these two descriptions are the pairs

in the capacity region of the Gaussian broadcast
channel at hand. Since it is a degraded broadcast channel, the
better receiver (the one at the end of the channel with) can
also decode the information destined to the worse receiver [7].
Therefore, for the separation-based approach, the distortion
region is bounded by and ,
where and are on the boundary of the capacity region
of the Gaussian broadcast channel. This is illustrated in Fig. 5
for a particular choice of the parameters. We observe that the
distortion pair achieved by uncoded transmission lies strictly
outside the distortion region for the separation-based approach
that was described above.

VI. CONCLUSION AND EXTENSIONS

To code, or not to code: that is the question. Undoubtedly,
“not to code” is very appealing when it leads to an optimal
cost–distortion tradeoff, since it involves the smallest possible
delay and complexity. Optimality is a matter of matching up six
quantities, namely, the source , the channel ,
and the encoder–decoder pair . Various approaches can
lead to such a match.

From a traditional point of view, one can think of the source
and the channel as being fixed. Then, one has to design the en-
coder and the decoder in such a way that they match up the
source and the channel probabilistically. Although we do not
have a specific design procedure, one expects that matching up
probabilities can be a much simpler task than designing good
source and channel codes.

If the engineer gets to design a complete system (like nature
did in the case of neural communication), then conceivably one
can design the source and the channel in such a way that they are
already matched, or that they can be matched with a low-com-
plexity encoder and decoder. This is illustrated by Example 2.

Furthermore, the separation principle is limited to ergodic
point-to-point communication. Interestingly, very simple

source–channel codes perform optimally in certain nonergodic
and multiuser communication scenarios. For example, a simple
single-source broadcast situation was shown to have this prop-
erty. It was shown for this example that the separation-based
approach leads to a strictly suboptimal performance. Therefore,
another promising extension of the results of this paper, and
in particular of the condition of probabilistic matching, is
to source–channel networks. We have studied one extension
into this direction in [14], [17], [18]. As another step into
this direction, the approach developed in this paper has been
extended to scenarios with side information by Pradhan, Chou,
and Ramchandran in [19], and by Merhav and Shamai in [20].

APPENDIX I
PROOFS OFLEMMAS 3 AND 4

Proof of Lemma 3

This lemma appears as Problem 2 in [6, p. 147], and its proof
is a consequence of [6, Theorem 3.4]. In the following, we prove
the sufficiency of the formula for using a slightly different
approach. Our proof extends to continuous alphabets under the
appropriate technical conditions.

Let be fixed. For any distribution on , define

(24)

where is the marginal distribution of
when is distributed according to .

It is quickly verified that with this definition,
, where denotes the standard inner product, i.e.,

for discrete alphabets, . With this nota-
tion, we may write

where the subscript emphasizes that the inner product is taken
in the variable . The following auxiliary lemma is crucial for
the proof.

Lemma: For any and

To see this, note first that since , we
equivalently prove the inequality ,
for any .

(25)

where is a change of summation (or integration) order and
the inequality follows from the fact that the Kullback–Leibler
distance is nonnegative. Lemma 3 can then be proved as follows.
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( ) (Sufficiency of the formula.) Fix a distribution over
the channel input alphabet. Letbe arbitrary and let be any
channel input distribution such that

(26)

For any

(27)

where the first inequality is the preceding lemma, and the second
follows by assumption on . If for all
with , then the last expression is zero, proving that

indeed maximizes mutual information.
When , then the input distribution max-

imizes regardless of and trivially fulfills the ex-
pected cost constraint.

Proof of Lemma 4

This lemma appears in [6, Problem 3, p. 147], and its proof
is a consequence of [6, Theorem 3.7]. In the following, we
prove the sufficiency of the formula for using a slightly
different approach. Our proof extends to continuous alphabets
under the appropriate technical conditions.

To simplify the notation, we will use the symbol in place
of in the proof. Define

(28)

where is the marginal distribution of .
In particular, note that with this definition

where, with slight abuse of notation, we have used
to mean . In the proof, we use the
following auxiliary lemma.

Lemma: For any and

Using the fact that , we consider

(29)

where we have used to denote the conditional distribution of
given under , i.e., , and, cor-

respondingly, to denote the same distribution, but under,
i.e., . denotes the Kull-
back–Leibler distance betweenand in the variable , hence,
it is a function of . The last inner product is thus one-dimen-
sional in the variable. The inequality follows from the fact that
the Kullback–Leibler distance is nonnegative.

With this, we are ready to prove Lemma 4.

( ) (Sufficiency of the formula.) Let be arbitrary, let be
an arbitrary conditional distribution such that

(30)

For any

(31)

where the first inequality is the preceding lemma, and the second
follows by assumption on . If

for all pairs with , then the last expression is
zero, proving that indeed minimizes mutual informa-
tion. Setting gives the claimed
formula (10).

When , then trivially achieves the min-
imum mutual information over all that satisfy

, regardless of .

APPENDIX II
PROOFS OFLEMMAS 7 AND 8

Proof of Lemma 7

Assume that and . This is without loss of
generality, since the only two alternatives are i) that the en-
coder permutes the source symbols, which is equivalent to swap-
ping the channel transition probabilities (by the symmetry of the
problem), and ii) that the encoder maps both source symbols
onto one channel input symbol, which is always suboptimal ex-
cept when the channel has capacity zero. We will use the fol-
lowing notation: , , ,
and . For the system to be optimal, since the
channel is left unconstrained, it is necessary that .
Therefore, Case ii) of Theorem 6 applies. Hence, it isneces-
sary that be chosen according to (10); i.e., we require
that be equivalent to the Ham-
ming distortion. This is the same as requiring that

. Expressing as a function of and ,
the latter implies that

Since, moreover, , we find

(32)

We show that for channel of nonzero capacity, this is the
capacity-achieving distribution if and only if , which
completes the proof. The capacity-achievingsatisfies the
following condition:

(33)

Plugging in from above yields

(34)

Clearly, equality holds if (and thus ), but also if
. In the latter case, the channel has zero capacity. To

see that there are no more values ofand for which equality
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holds, fix (for instance) and consider the curves defined by the
right- and the left-hand side of (34), respectively. The left-hand
side is convex and decreasing in. For , the
right-hand side is also convex and decreasing. Hence, at most
two intersections can occur in this interval, and we already know
them both. By continuing in this fashion, or by upper and lower
bounds, one can establish that there are no more intersections.

Proof of Lemma 8

Pick an arbitrary channel conditional distribution
for which there exists a single-letter code that makes
the overall system optimal. From Lemma 2, this implies that

. Since the channel is unconstrained here,
. Therefore, Case ii) of Theorem 6 applies. That is,

to perform optimally, the distortion measure must be chosen
as a scaled and shifted version of . But since,
by assumption, the distortion measure must be the Hamming
distance, we must have that

where denotes the Kronecker delta function (i.e., it is one if
the argument is zero, and zero otherwise). Equivalently,
must satisfy

.
(35)

The simultaneous equations imply a full-rank
linear system of equations in the variables , from which
it immediately follows that . But this means that

must satisfy

.
(36)

By assumption, is uniform, which implies that is also
uniform. But since all alphabets are of the same size, the con-
dition that implies that and are
also uniform, and that is a permutation of

. (37)

But this implies that the channel has to be symmetric
with for , and for

, or a permutation thereof.
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