

https://helda.helsinki.fi

To continue to burn something? : Technological, economic and political path dependencies in district heating in Helsinki, Finland

Vaden, Tere

2019-12

Vaden, T, Majava, A, Toivanen, TT, Järvensivu, P, Hakala, E & Eronen, JT 2019, ' To continue to burn something? Technological, economic and political path dependencies in district heating in Helsinki, Finland ', Energy Research & Social Science, vol. 58, 101270. https://doi.org/10.1016/j.

http://hdl.handle.net/10138/333729 https://doi.org/10.1016/j.erss.2019.101270

cc_by_nc_nd acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

To continue to burn something? Technological, economic and political path dependencies in district heating in Helsinki, Finland

Authors:

Vadén, T.¹, Majava, A.¹, Toivanen, T.¹ Järvensivu, P.¹, Hakala, E.^{1,2}, Eronen, J.T.^{1,3}

Affiliations:

- 1. BIOS Research Unit, Helsinki, Finland
- 2. Finnish Institute of International Affairs, Helsinki, Finland

3. Ecosystems and Environment Research Programme & Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, University of Helsinki, Finland

* = corresponding author

Abstract

The transition away from fossil fuel based infrastructure for heating and cooling has to happen on a scale and timetable with no historical precedent. As the systems are large and networked, path-dependencies constrain the transition that is further complicated by the diversity of stakeholders. Here we analyse the case of transitioning the district heating system in the city of Helsinki, Finland, within the target of a carbon neutral metropolitan area. Despite relatively advanced climate policies, path-dependencies on the political, technological-material and economical levels interact in creating a "wicked" problem with no obvious solution and potential for backsliding. It is in this context that a possibility of a green paradox arises: despite the explicit commitment of all stakeholders towards carbon dioxide emission reductions, the combination of the path-dependencies may result in a transition that increases emissions. Our results highlight policy implications of path-dependencies for researchers, government and business.

Keywords

path-dependency; energy transition; district heat; green paradox

Declarations of interest

None

Acknowledgements.

This research has been been funded by the Kone Foundation and the Strategic Research Council at the Academy of Finland (University of Helsinki 312623/312663).

1 To continue to burn something? Technological, economic and political path

2 dependencies in district heating in Helsinki, Finland

5 Abstract.

The transition away from fossil fuel based infrastructure for heating and cooling has to happen on a scale and timetable with no historical precedent. As the systems are large and networked, path-dependencies constrain the transition that is further complicated by the diversity of stakeholders. Here we analyze the case of transitioning the district heating system in the city of Helsinki, Finland, within the target of a carbon neutral metropolitan area. Despite relatively advanced climate policies, path-dependencies on the political, technological-material and economical levels interact in creating a "wicked" problem with no obvious solution and potential for backsliding. It is in this context that a possibility of a green paradox arises: despite the explicit commitment of all stakeholders towards carbon dioxide emission reductions, the combination of the path-dependencies may result in a transition that increases emissions. Our results highlight policy implications of path-dependencies for researchers, government and business. **Keywords** path-dependency; energy transition; district heat; green paradox Declarations of interest: none

- 25 1 Introduction

27 Transition to low-carbon infrastructure is a key target for economies aiming to mitigate the

worst effects of climate change and to achieve the goals of the Paris agreement 2015. The literature on transition emphasizes the need for a deep-seated and wide-ranging transition within three decades [1], [2], [3], while acknowledging that the combination of the needed scale and pace of change has no historical precedent [4], [5].

From the perspective of material and energetic conditions of societies, the crucial question is the legacy infrastructure that has been built, maintained and is still run mostly on fossil fuels [6], [7]. The infrastructure includes power plants, energy transmission and storage systems, buildings, transport systems, and city structures, which in Smil's [7] estimate correspond to at least 25 trillion USD (1990 international dollars) in investments during the last century alone.

Replacement, early retirement or retrofit of existing infrastructure is constrained by economic, political and technical factors with their own historical trajectories. The interlinked path-dependencies make the problem complicated. There is a diversity of stakeholders, and decisions made now will result in lock-in of development paths and resources for potentially several decades, while every year of inaction necessitates even faster cuts of emissions in the future. Responding to these problems implies using systemic knowledge about the interactions of stocks and resource use at different spatial and temporal scales [8].

Here we build on the existing literature of path-dependencies and connect it with the literature on transitions. We then use this general context to frame one recent case in Finland as illustrative of the real-world path-dependencies and their effect on climate action: the role of the district heating (DH) system in the city of Helsinki in the overall goal of carbon neutrality nationally and in the Helsinki metropolitan area.

In the literature, energy transition is analyzed from different perspectives, such as social,

technological, economical, infrastructural, institutional and political. The so-called multi-level perspective [9], [10], analyses transitions arising from the interplay at three analytical levels: "niches (the locus of radical innovations), socio-technical regimes (the locus of established practices and associated rules that enable and constrain incumbent actors in relation to existing systems), and an exogenous socio-technical landscape" [9]. Here we concentrate on the level of socio-technical regimes as the level where the analyzed constraints and path-dependencies appear, and the analysis will concern the technological, economical and political perspectives. The "wickedness" [11] of the problem of transition is illustrated by the possibility that despite the explicit commitment to the goal of carbon neutrality by all relevant stakeholders, the current trajectory for the system may lead to a "Green Paradox" [12]: due to efforts towards transition, the actual amount of greenhouse gas (GHG) emissions may increase. Overall, the purpose of this study is to show how path-dependencies interact in creating a complicated problem for energy transition with no obvious solution and even potential for backsliding. Furthermore, our analysis offers guidance on how policies may be changed so that the green paradox can be avoided. In this case study our research questions are: 1. What are the key path dependencies, constraints and legacy technological solutions in DH in Helsinki, as framed by the need to move to carbon neutral energy provision? 2. How do these path-dependencies underlie the wickedness of the problem of transition towards carbon neutral energy, and even point toward a trajectory creating a green paradox? 3. What general lessons for policy guidance can be derived from this case study?

2 Background: Energy transitions, lock-ins, path-dependency and the green paradox 84

85 It is abundantly clear that there is a need for massive shift in the way energy is generated 86 and used. While there is a constant barrage of news about breakthroughs of renewable 87 energy in the markets, and their cost is starting to be competitive [13], past experience of 88 energy transitions is worth observing. Historically, transitions have been slow, and the 89 evolution of technologies is influenced by problems of scale and previous infrastructure [6],

[7].

Recently, Sovacool [4] suggested that the present transition might be proceeding quicker than historical examples. The conventional transition literature, e.g., [14], [7], posits that it takes between 50 and 160 years for a total energy transition to occur. Sovacool [4] suggests that future energy transitions can be accelerated to the point where they take only a few years or decades. On the other hand, Smil [7] and Fouquet [15] argue that scaling issues and legacies from previous technology point to a more conservative estimate. Smil [7] offers a critique of Sovacool's [4] suggestion, citing evidence suggesting that at a national level transition can be fast, but on the global level it is much slower. The slow pace is mainly due to path-dependency and technological lock-ins.

⁹ 101

Fouquet [15] offers a review of energy path-dependency and lock-in situations. A lock-in situation is usually referred to when energy generation is preferential to using a system that is either less energy-efficient or is highly energy-intensive compared to best available current technologies. Lock-ins happen when there are high infrastructure costs or there exist legacies of previous infrastructure that would be expensive to change or retrofit. They can also happen through historical trajectories where early-on competition has pushed an energy system towards one particular technology, which in turn has increased its likelihood of

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
211
278
278 279
278 279 280
278 279
278 279 280 281
278 279 280 281 282
278 279 280 281
278 279 280 281 282 283
278 279 280 281 282 283 283 284
278 279 280 281 282 283 283 284 285
278 279 280 281 282 283 283 284 285
278 279 280 281 282 283 283 284 285 286
278 279 280 281 282 283 284 285 286 287
278 279 280 281 282 283 284 285 286 287
278 279 280 281 282 283 284 285 286 287 288
278 279 280 281 282 283 284 285 286 287
278 279 280 281 282 283 284 285 286 286 287 288 289
278 279 280 281 282 283 284 285 286 285 286 287 288 289 289 290
278 279 280 281 282 283 284 285 286 286 287 288 289
278 279 280 281 282 283 284 285 286 287 288 287 288 289 290 291
278 279 280 281 282 283 284 285 286 285 286 287 288 289 289 290

109 becoming the dominant technology [16], [15]. There is a wide literature on this issue, usually 110 under the title "history matters" [17], [18], [19]. 111 112 Lock-ins and path-dependencies are not only a matter of infrastructure and technology, but 113 may also arise due to policy decisions. For example, the "green paradox" is an example of 114 adverse policy fueled path-dependency. The concept was coined to illustrate a situation 115 where the announcement of a future climate policy, such as a carbon tax, raises short-term 116 emissions as fossil fuel producers increase their extraction today as a response to an 117 anticipated reduction in future resource rents [20], [21], [12]. Other examples of green 118 paradox include the observations that subsidies for renewable energy can increase 119 emissions through increasing fossil fuel extraction [22] and that giving positive feedback to 120 citizens on their green choices can lead to less green behavior by the same citizens [23]. 121 Following [12], we will use the term in a wide sense to describe unintended negative (for 122 instance, emission increasing) consequences of climate policies. 123 124 Harjanne & Korhonen [24] have pointed out how the use of the term "renewable energy" to 125 cover a wide variety of very different forms of energy generation is problematic in 126 discussions of transition. They note that the term contains problems with regard to 127 sustainability, incoherence, policy impacts, and bait-and-switch tactics [24]. As an example 128 of the bait-and-switch tactic. Harjanne & Korhonen [24] discuss the national coal ban in 129 Finland, which is communicated as an accelerated action for climate change mitigation [25]. 130 However, the expected outcome is a move towards wood biomass use [26], a renewable 131 source, which, however, produces more end-of-pipe emissions compared to coal. 132 133 In the current international GHG accounting framework, based on the Kyoto protocol and

134 implemented in the EU Emissions Trading System (ETS), bioenergy is treated as carbon 135 neutral in the energy sector, and any emissions from bioenergy are included in the land

sector (LULUCF) accounting. Furthermore, the EU has labeled wood biomass as a renewable energy source [27]. Consequently, fossil fuels are being replaced by wood biomass around Europe, including in Finland [28]. An additional incentive for the energy use of wood in Finland is provided by the government bioeconomy framework [29], [30], that, for instance, subsidizes wood chip production [31]. The problem is that carbon dioxide emissions per produced energy unit are higher from wood biomass than from coal, and the uptake of the "carbon debt" resulting from wood burning is conditional on the dynamics of biomass (re)growth [32]. Consequently, the climate benefits of transitioning from fossil fuels to wood have been contested on the global and European levels [32], [33], [34], [35], as well as in the context of the Finnish bioeconomy framework [36]. The life-cycle comparison between coal burning and wood biomass burning contains many variables, including combustion and processing efficiency, carbon intensity of combustion and carbon intensity of supply chain for both fuels, as well as the particulars of the forest type and harvesting methodology [32]. Recent research ([32], for studies using Finnish/Scandinavian forest data see [37], [38], [39]) suggests that repaying the resulting carbon debt from the transition from coal to wood takes several decades, even up to a century, which from the perspective of the needed pace of transition may be too slow. These results suggest that transitioning from coal to wood in energy generation may even increase carbon dioxide emissions within the crucial time frame for transition, rather than diminish them. The coal ban and the implied move to wood biomass form the immediate background of our case study. Our intention is to analyze the path-dependencies and constraints that lie behind the "bait-and-switch" mentioned by Harjanne & Korhonen [24]. More generally, we use Helsinki district heating system as a case study on how a well-meaning and advanced climate policy can have adverse effects due to not taking fully into account the path-

dependencies on various levels, including the material, economical and policy levels. In our analysis, it is the interaction of the path-dependencies on these levels that creates complications for the transition and the potential for a green paradox. Furthermore, we will use the analysis of the path-dependencies in order to evaluate the policy implications of the

case.

The potential for the green paradox is set by the path-dependent structure of the existing DH system. It is technically built and optimized for a certain temperature and pressure, and needs a wide enough customer base to make economic sense. Under these circumstances, if the decision of replacing existing co-generation plants happens in a moment where emissions from coal are penalized or coal use is outright banned, and emissions from biomass are not, the result may be investment in a fleet of biomass burning plants that lock in years if not decades of increased emissions, even though the explicit goal at the moment of decision is to decrease emissions.

Next, in section 3, the methods and data are described. In section 4, the object of our case study, the city of Helsinki district heating system is introduced from the perspective of its historical trajectory, and its main stakeholders. In section 5, the existing situation is briefly described from technical, economical and political perspectives before, in section 6, analyzing the material and policy-related path-dependencies, and showing how they interact in creating a complicated situation with a clear potential for a green paradox. The results are presented in section 7, before a discussion in section 8 and conclusion in section 9.

3 Methods and data

Our approach is exploratory and aims at description and understanding of a case within a larger context [40]. We set out for inductive fact finding without any theoretical

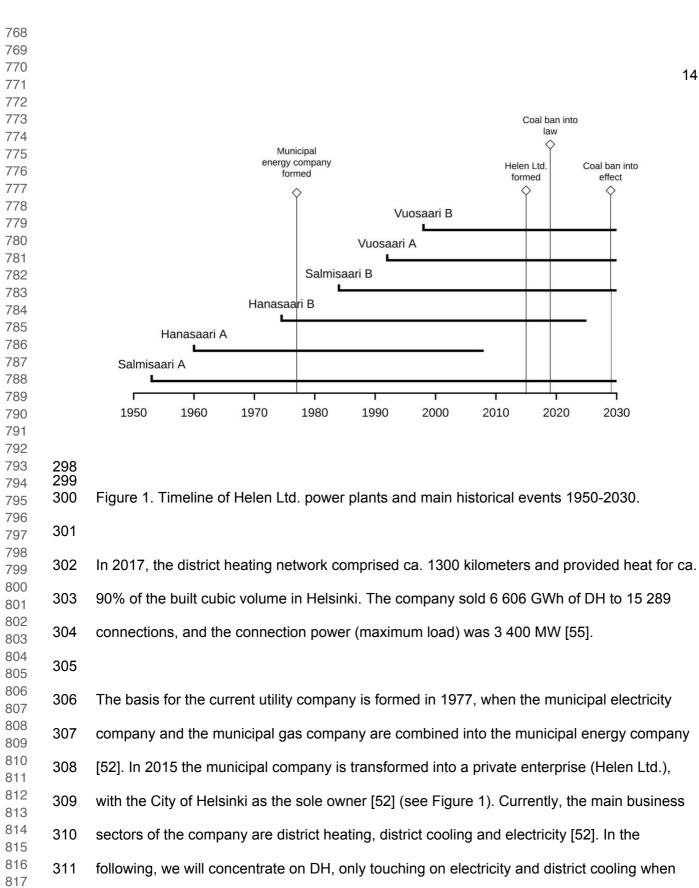
414 415		
416 417		8
418 419	190	preconceptions or hypotheses to test, like in the approaches labeled under grounded theory
420 421	191	[41]. The research questions 1-2 are prompted by the problems in transition to low-carbon
422 423	192	infrastructure, as articulated by multiple stakeholders. The questions are motivated by the
424 425	193	need to find out which factors are stalling transition in the particular case, and the context for
426 427	194	the questions is formed by the existing literature on transition and path-dependencies. They
428 429	195	also lead directly to research question 3, as a better understanding of the path-
430 431	196	dependencies may inform the practices of the different stakeholders.
432 433	197	
434 435	198	The research setting is thus case-led rather than theory-led, and consequently the data
436 437	199	gathering relies on methods (document analysis, participant observation) suited for
438	200	exploratory contexts with low theoretical ambitions [42]. By definition, results from this kind of
439 440	201	inductive and exploratory research setting cannot, as such, distinguish between existing
441 442	202	theoretical views and the verification of the results is hard if not impossible. However, the
443 444	203	results may be hypothesis confirming or hypothesis generating, like results from grounded
445 446	204	theory approaches, which as [43] notes, have been fruitfully used for various topics in energy
447 448	205	research.
449 450	206	
451 452	207	For original data gathering, we used document analysis and participant observation.
453 454	208	Document analysis refers to the process of collecting data via analyzing written documents
455 456	209	[44]. The original data on the research questions 1-2 was gathered primarily through
457 458	210	analysis of publicly available documents published by the stakeholders. A comprehensive list
459 460	211	of the documents used is presented in the supplementary material. It contains the websites
461 462	212	of the included stakeholders (national and local administration, the utility company, political
463 464	213	parties, NGOs and research organizations), as well as documents from newspapers, web
465 466	214	publications and social media. The documents were read, and notes taken on the views
467 468	215	presented on the future of DH, the coal ban, use of wood biomass and other relevant issues.
469 470	216	The analysis was conducted manually, as it was seen that, e.g., quantitative coding or
471 472		

statistical methods were not needed. Documents were read and notes taken by multiple
authors, and the main author independently verified from original sources the views
presented here. The main document sources that are available online are referenced within
this article.

Participant observation is often used in long-term studies intended for intensive involvement with a group of people, but it can also be used for data-gathering without the goal of deep anthropological or cultural study [45], [46]. Participant observation is recommended for research settings where researchers need to enrich their understanding of what questions to ask and for gaining an understanding of the meaning and relevance of the data [46]. In this case, participant observation was chosen as a method to facilitate direct contact with stakeholders in order to validate the data gathered from document review and to widen the range of what to look for in the data.

The authors conducted the observation either as complete participants or as participants-as-observers [45] in 14 different events and discussions on the theme of transition in DH in the Helsinki metropolitan area within the timeframe between September 2018 - January 2019. As the time period was limited and researchers from various universities and research groups were and have been involved in the discussions on transition for a long time in visible roles, the potential ethical dilemmas of participant involvement [47] could be kept to a minimum. The events ranged from private discussions and invite-only round-table discussions with less than 10 participants to large public events (see table 1). Representatives from all the analyzed stakeholder groups were present at the same time in at least three of these events, while participants in some of the events consisted only of one group of stakeholders.

Event	Торіс	Date	Participant stakeholders
Public	Alternatives to coal in DH	26.9.	Greenpeace Finland, political
seminar		2018	parties
Private	Technical and economic issues,	10.10.	ex-CEO of Helen Ltd
discussion	esp. load and production curves	2018	
Private	Political issues, views within the	26.10.	City councillor (Greens)
discussion	city council	2018	
Private	Technical and economic issues	2.11.	ex-CEO of Helen Ltd
discussion		2018	
Private	Technical and economic issues	14.11.	ex-CEO of Helen Ltd
discussion		2018	
Roundtable	Upcoming motions on DH in the	20.11.	City councillor (Greens), city
discussion	city council	2018	councillor (Pirate Party), city
			councillor (Left Alliance)
Private	Technical and economic issues	27.11.	ex-CEO of Helen Ltd
discussion		2018	
Private	City ownership policy	4.12.	Chairman of the Board, Heler
discussion		2018	Ltd
Public	Roadmap towards carbon neutral	11.12.	Representatives from city cou
seminar	DH in Helsinki	2018	groups, Helen Ltd., NGOs
Private	Political issues, views within the	11.12.	City councillor (Social
discussion	city council	2018	Democrats)
Private	Coal ban and DH	12.12.	City council group, Greens
discussion		2018	
Roundtable	Coal ban and DH	20.12.	Representatives of Greenpea
discussion		2018	Finland, FinGo, and The Finn


				11
				Association for Nature
				Conservancy
	Roundtable	Helen Ltd. existing and future	20.12.	Representatives of Helen Ltd.
	discussion	technological plans	2018	
	Invite-only	Discussion on the "Clean district	7.1.	Representatives of Helen Ltd.
	researcher	heating – how can it work?" report	2019	NGOs
	meeting			
44				
45	Table 1. Event	s of participant observation. Location fo	or all even	ts in Helsinki, Finland.
246				
247	The authors pa	articipated in the events (all more than o	once, and	none in all of them) and took
248	notes on their o	observations. The notes were collected	and revie	ewed by multiple authors. As
249	the goal was to	o find data on views that stakeholders e	xplicitly h	old and are willing to express,
250	note-taking wa	s limited to factual statements presente	ed by the	participants. For clarity and
251	brevity, the find	lings from observations are reported in	the article	e text without referring to
252	particular even	ts or notes. When the article relies on r	notes from	n spoken communications
253	within the ever	its, the correctness of the presentation	has been	confirmed with the relevant
254		through subsequent direct communica		
255	during Februar	- · ·		
256	uunig rooraal			
257				
258	4 District host	ing infrastructure in the city of Helsi	nki	
		ing imasu ucture in the city of Heisi		
259	1 1 Jun France Arrises of			
260	4.1 Infrastruct	ure		
			<i></i>	
		nland launched a program of reconstruct	ction with	rapid increase in energy
261 262	Aller WWI, Fir			

generation [48]. These efforts, among other factors, brought into focus the need to improve primary energy efficiency and minimize fuel imports, leading to the adoption of DH [49]. The energy efficiency of energy generation from burning can be substantially increased in combined heat and power (CHP) units, and the DH network, in addition, contributes to improved total energy system efficiency [50]. Consequently, the efficiency of cogeneration is a key rationale and design constraint for the evolution of the DH system in Helsinki, setting a path-dependency right from the start. Helsinki had some city-block sized and smaller cogeneration units based on burning wood and coal already before the war [51]. However, in the decades after the war, the larger cogeneration plants were designed exclusively for coal burning, which constrains the temperature and pressure of the heat transmission liquid [49], which, in turn, determines, in part, network characteristics and parameters for customer equipment. Altogether five big cogeneration plants have been built in Helsinki since the 1950's (see Table 2 and Figure 1). The post-war demand for electricity was first met in 1953 by building the Salmisaari A power plant which uses a coal-powered turbine for electricity generation, and from 1957 on, the excess heat from the unit is captured and used for district heating. In 1960, 1974 and 1984 new coal cogeneration plants are built (Hanasaari A and B, Salmisaari B). The first CHP plant using natural gas (Vuosaari A) is taken online in 1991 and a second in 1998 (Vuosaari B) [52]. Currently, Hanasaari A has been decommissioned, and Salmisaari A is a reserve unit, with Salmisaari B (electricity capacity 160 MW, heat capacity 300 MW), Hanasaari B (electricity capacity 220 MW, heat capacity 420 MW) and Vuosaari (electricity capacity 650 MW, heat capacity 600 MW) functioning as base load units [53]. In addition, the DH network has seven smaller heating plants around the city area with a total heat power of 2200 MW and a heat-only boiler in Salmisaari, with 170 MW of capacity [54]. Over half of the yearly heat

generation is done by burning coal (with heat generation capacity from coal at 890 MW), the rest being a combination of natural gas (ca. 30 %), heat pumps (using excess heat from waste water as a source, ca. 10%), wood biomass and heavy oil [55].

Power plant	Main fuel	Commissioned	Decommissioned	Current role	Heat capacity
Salmisaari A	Coal	1950	?	Reserve	170 MW
Hanasaari A	Coal	1960	2007	-	-
Hanasaari B	Coal	1974	Planned 2024	Base load	420 MW
Salmisaari B	Coal	1981	?	Base load	300 MW
Vuosaari A	Natural gas	1991	?	Base load	165 MW
Vuosaari B	Natural gas	1998	?	Base load	430 MW

Table 2. Helen Ltd. power plants.

- they relevantly affect the DH transition. In 2017, the company generated a profit of 81 million
- euros, with a turnover of 805 million [55].

315 4.2 Stakeholders

The stakeholders in the question of DH as a part of energy transition can be identified in different ways. Ultimately, as the issue of GHG emissions affects all life on the planet, the stakeholders involve all humans. More directly, the stakeholders include at least the utility company, its owners and customers, the citizens of the city and the whole metropolitan area, the national government and citizens of Finland, various NGOs and political organizations, researchers, fuel and technology suppliers, and the wider energy sector and its institutions. We will here concentrate on three stakeholders or stakeholder groups: the utility company, the city and NGOs/political organizations, and touch on the national level as a regulatory actor. We believe that the viewpoints presented by these three groups are sufficient to illustrate how the path-dependencies end up hampering intended climate action.

The main actor is the utility company that owns and runs the DH system. Its views are publicly available on its own website, where it presents both official information and more free-form audience-engaging content such as blog posts. The views of the utility company are also a point of public interest, so that its representatives are often interviewed both for journalistic and research purposes (e.g., [36]).

The city of Helsinki has a dual stakeholdership: on the one hand it is the owner of the utility company, on the other hand it is a regulator determining policy. Ultimately, the city of Helsinki consists of its citizens that are represented by an elected city council overseeing the executive and regulatory affairs of the city. All major policy changes both with regard to the utility company and climate and energy policy have to pass through the council. The views of the council itself are a matter of public record [56], and its members representing various political parties have their own publications, e.g., on the internet.

886 887		
888 889		16
890 891	342	There is a number of NGOs and NGO-led campaigns advocating ambitious climate action, in
892 893	343	general, and active in the discussions around DH, in particular. Three of these, Greenpeace
894 895	344	Finland, The Finnish Association for Nature Conservation (Suomen Luonnonsuojeluliitto)
896 897	345	and FINGO (a NGO platform for global development), have dedicated staff on climate and/or
898 899	346	forest issues, have published position papers on climate and forest issues [57], [58], [59] and
900 901	347	have regularly taken part in the discussion on DH. Their views are therefore analysed,
902 903	348	below.
903 904 905	349	
906	350	
907 908	351	5 Economical, Technical and Political Operating Environment
909 910	352	
911 912	353	5.1 Economical
913 914	354	
915 916	355	Economically, the role of the company is to generate revenue for the owner, within the
917 918	356	corporate governance guidelines set by the city [60]. Although the DH network is in its area
919 920	357	of coverage something of a natural monopoly, at the edges of the network the company
921 922	358	faces competition from other smaller providers that offer decentralized heating, e.g., via heat
923 924	359	pumps with geothermal wells and ambient air as heat sources. In the densely built city
925 926	360	center the monopoly is relatively secure, as alternative modes of heating are either
927 928	361	technically not viable (for instance, it is very hard if not impossible to find space for
929 930	362	geothermal wells) or much more costly (direct electric heating) [61]. However, investments
931 932	363	into energy efficiency, such as insulation and heat pumps, may affect the economic bottom-
933 934	364	line also in the city center.
935 936	365	
937 938	366	As observed in [50], the total competitiveness of DH is a combination of two cost
939 940	367	components: first, the cost difference between centralized and decentralized heat supply
941 942 943 944	368	and, second, the heat distribution cost. If the amount of heat the company generates and

sells diminishes, the proportional weight of the distribution cost in the calculation increases. Thus losing sales and customers via increased energy efficiency or transition to other methods of heating affects the bottom line of a DH provider substantially, as decreases in distribution cost are difficult to obtain. However, densification of urban areas may help keep distribution costs down, and modeling in [50] has indicated that in dense areas reduced heat demand is not a barrier to DH. In addition, it has been observed that taxation of competing forms of heating can increase the competitiveness of DH even in areas of low heat density [62]. In 2018, due to regulatory and political pressure, Helen Ltd. opened its DH network for other providers of heat, for which it pays a seasonally variable rate [63]. For the reason noted above, the open DH network is also a potential problem for the company. Industrial scale CHP units are economically most effective when they are used for base load capacities with uninterrupted uptimes. Consequently, functioning as a network operator promises less economic return than selling heat produced by the company itself. Furthermore, the pricing models are not developed enough for separating the network operator from the heat producers [64]. The company sees that if the share of the heat produced and sold by the company itself via its network plummets, maintaining the DH network and CHP units may lose commercial viability [65]. This network characteristic forms an important economic condition. For instance, network load and temperature adjustments and proactive reacting to weather patterns is best done on the system level (even though the development of smart metering and demand flexibility in so-called 4th generation DH systems may in time change the situation, [61], [64]). Likewise, economically the network needs a large enough customer base. From this perspective, there is a critical threshold for both control over the network and the amount of heat delivered below which the network loses economic competitiveness and loses its

advantage in terms of energy efficiency compared to non-networked heat provision. The basic economic setting is complicated by the fact that the owner, the city of Helsinki, also consists mainly of the customers of the company, the citizens of Helsinki. Helsinki residents are by definition owners of the utility company, and almost always in practice its customers. The majority of the profit generated by the utility company is included in the budget of the city. The budget, in turn, is governed by the city council for the benefit of the residents. The profit also comes out of the pocket of the residents in so far as they generate the revenue for the company by buying electricity and heat (part of the electricity is sold outside of Helsinki). Consequently, the customer price for DH is also partly determined by social factors. If the customers feel that the price is not right, they can vote for representatives that as the owners of the enterprise do have a say on company policies. Here the intertwinement of the economical and the political becomes evident: on one hand the company is statutorily governed to operate as a market actor, on the other hand the owner does set constraints informed by factors other than market prices. 5.2 Material and technological The company makes agreements with customers, promising to deliver a certain amount of heat. When added together, the sum of these agreements gives the contractual peak load that the company is obliged to be able to provide (in 2018, the maximum contractual load was 3400 MW), even during the coldest periods of the year. Due to seasonal variation, there is considerable difference between the actual peak thermal load and the base load (around 1500 MW) [66]. From the perspective of the plants generating heat, it makes sense to optimize the plant size and location for maximum yearly uptimes according to the base loads. Providing for the peak

load, usually necessitated by extended periods of below zero temperatures, creates another important technical constraint. Even though the peak load is required only for a small percentage of the year, it is also the time when customers are most reliant on the service. This necessitates having generating capacity up to double of base loads at the ready for peak periods. As noted above, the technical and energetic efficiency of the CHP units is best when they have long and uninterrupted uptimes. From this perspective, it makes sense to design the units to correspond to continuous base load use. The existing units have been optimized for cogeneration, and reach high levels of efficiency, up to 90% [66]. In the past few years, they have been readjusted to use a small percentage of wood pellets (up to 10%) mixed with coal [53]. From the perspective of the network, one crucial factor is the physical location of heat producing units, constrained by the physical location of the most intensive and consistent user loads, supply and return temperatures, as well as city zoning and other regulation on power plant placement. Due to the historical factors discussed in section 3, the network is a so-called high-temperature network, with heat-exchanging temperatures in the hot loop between 65 – 120 °C, and during cold periods 80 – 120 °C. The heat exchangers that customers use have been dimensioned for the high-temperature heat exchange liquid. 5.3 Political The city of Helsinki and the other cities in the Helsinki metropolitan area have committed themselves to carbon neutrality [67]. The city of Helsinki has its own Carbon Neutral Helsinki policy program, with the target of reducing emissions generated within the city by 80 percent

450 and compensating all the rest by 2035 [68]. With regard to this goal, DH is a main concern,
 451 as it produces over 40 percent of the yearly emissions of carbon dioxide equivalent GHG
 452 gasses [69].

The biggest political groups in the city council for the current term in office (2017-2021) are the Greens and the right-wing National Coalition Party. For the Greens, climate action has been a major goal, and for them the CHP units with their open air coal storage areas and power plant chimneys very visible in the cityscape have been a sore point [70], [71]. The views of the Greens have been supported by NGOs such as Greenpeace, which during 2018 collected a list of over 8000 signatures supporting rapid transition to a coal free Helsinki [72] and published a Gallup poll according to which two thirds of Finns support an end to coal in energy generation by 2025 [73]. Consequently, the 2018 decision [74] by the City Council to explore ways of providing heating without coal and to obligate Helen Ltd. to find ways of providing fossil free DH were presented as important achievement by the Greens [75], [70]. Most of the other groups in the council supported the motion.

465

As part of its EU climate agreements, Finland has committed to increasing the share of renewable energy sources to 50 percent by the year 2030 [76]. In 2015, the government of PM Juha Sipilä, representing the Centre Party, launched a bioeconomy program, where renewable products based on wood and other biomass, including energy from wood, figure centrally [29]. The bioeconomy program supports even non-renewable peat as a domestic energy source, both for DH and decentralized heating solutions. Toward this goal, the program includes the use of taxation so that peat is more competitive than coal, but more expensive than wood [77]. Major interest groups, such as The Central Union of Agricultural Producers and Forest Owners, which is closely aligned with the Centre Party, are strong supporters of the bioeconomy program and wood biomass as energy source.

- **476** 1178

The political constraints on DH have been recently brought to limelight with a national ban on coal burning by 2029 [25]. The year is earlier than the economical end-of-cycle for the existing CHP plants (estimated to be in the mid-2030's). The Centre Party has presented the coal ban as the major climate action accomplishment by the government of PM Sipilä, with his Centre Party colleague Kimmo Tiilikainen as the Minister for Environment [78]. The other parties in government, the National Coalition and Blue Reform, supported the ban, as do majorities in the opposition parties.

Concern over and opposition to the ban did not follow party lines. The opponents and

skeptics that represent almost all of the major parties, have raised three kinds of concerns [79]. First, there are concerns over the effects on DH prices and the competitiveness of the companies. Second, opponents of the ban pointed out that, for instance, the Helsinki power plants can convert over ninety percent of the fuel energy into electricity and heat, while coal burning plants in Europe often operate on energy efficiency that is much lower, down to 40%. This means that when the more effective coal burning plants are scrapped and their emission allowances released, carbon dioxide emissions in the EU may rise. Of course, this green paradox can be avoided if the state or another actor buys the released allowances, as suggested, for instance, by Helen Ltd. and The Finnish Innovation Fund Sitra [80], [81]. The third concern, one to which we will return below, is that given the current availability and

pricing of heat sources, the most likely replacement for coal is biomass, with problems of its own.

The analyzed environmental NGOs (Greenpeace, The Finnish Association for Nature Conservation and FINGO) recognize the possibility of a "green paradox" due to the coal ban and move to wood biomass. However, in their view the coal ban is necessary for a variety of reasons. First, it is needed as a factor that forces the utility company to "do at least

something".¹ The NGOs have been frustrated by what they perceive as foot-dragging by the utility company. In their view, the company has been aware of the need to transition away from fossil fuels for three decades but has done little and found excuses for continuing coal burning. Second, the coal ban is needed as a signal of ambitious work against climate change. The argument goes that a developed country like Finland can help international efforts by setting an example. Third, the NGOs emphasize the role of research and development. Even if at the moment there is no realistic scenario for providing for the peak load with non-burning heat sources, new technologies can advance rapidly. Thus the representatives of the NGOs see that the utility company should launch ambitious R&D efforts, preferably in an open manner that could involve a wider community. Furthermore, the NGOs see that the coal ban is just one step on a long road. The issue of emissions (and other potential ecological damage, such as biodiversity loss) from burning wood biomass can and should, in their view, be tackled separately. From the perspective of the city, the possible increase in emissions is a more troubling issue, even though it, like the utility company, may under the current regulatory regime report diminishing emissions when transitioning from coal to wood. The city mayor, Jan Vapaavuori representing the National Coalition Party, has repeatedly maintained that economically the utilization of biomass benefits mainly other areas in Finland, and is not the best solution for the city, either economically or ecologically [82]. The city would prefer that Helen Ltd. runs the DH network on non-burning base load technologies. However, the city also requires that the company has to be competitive. In the current technological landscape, the company can not fulfill both demands from its owner at once. The views summarised in this paragraph are gathered through participant observation, and their validity confirmed in subsequent communication. See section 3.

6 Path dependency and its role in complicating transition Given the political goal of carbon neutrality and the ban on coal use, the most urgent challenge for the DH system, and its operator, Helen Ltd., is replacing the existing coal-powered CHP plants, Salmisaari B and Hanasaari B, with total heat capacity of 870 MW. Even though natural gas produces much less carbon dioxide than coal, also the natural gas powered plants Vuosaari A and B will need either replacement or carbon capture technology to become carbon neutral. In addition, natural gas is more expensive than coal and Finnish energy companies see low security of supply (with Russia as the only provider) as a barrier for increasing the role of natural gas [83]. The timeline of the coal ban, 2029, means that if scrapped, the plants will not reach the end of their planned lifecycle. As the company loses not only the heat generation from these plants but also the electricity generation, it loses some of its revenue and, consequently, means of investment. Currently, according to the utility company itself and confirmed by studies by research organizations, no economically competitive non-burning technology exists that could provide the needed amount of heat load for the peak periods [84], [61]. This is also the view held by

heat boilers [61] but this alternative presupposes a massive increase in electricity availability

city officials [85]. The only possible alternative would be the utilization of direct electricity-to-

1343 547 and grid upgrades – matters that are not in the hands of the utility company. If the transition

¹³⁴⁴
 ¹³⁴⁵
 ¹³⁴⁶
 ¹³⁴⁶

- ¹³⁴⁷ ¹³⁴⁸ 550 the move to electricity-to-heat might use the DH network as a regulator of intermittent
- ¹³⁵⁰ 551 electricity generation. However, due to the technological constraints mentioned above, these
- 1352 552 options are not on the table. As the CEO of Helen Ltd., Pekka Manninen, has pointed out, 1353
- 1354 553 this means that the decision over which technology replaces coal burning depends on when 1355

1358		
1359 1360 1361		24
1362 1363	554	the decision is made: in the future new non-burning alternatives, such as small modular
1364 1365	555	nuclear reactors, may become available, but with currently available technology, the
1366 1367	556	transition will result in wood biomass burning [86].
1368 1369	557	
1370 1371	558	The utility company emphasizes that it has to operate within the current regulatory and
1372 1373	559	contractual framework. Given the need to provide for the peak load and to operate with an
1374 1375	560	acceptable profit margin, providing heat through burning is the best option for the company.
1376 1377	561	As head of corporate responsibility for Helen Ltd., Maiju Westergren, puts it: "The fastest
1378 1379	562	route away from coal and fossil fuels is via biofuels and via accepting the fact that we
1380 1381	563	continue to burn something" [87]. With the end of coal use on the horizon, market conditions
1382 1383	564	suggest biomass as fuel, as also pointed out by independent research [84]. In sum, the
1384 1385	565	choice that fits the existing legacy parameters is to burn biomass instead of fossil fuel in the
1386 1387	566	base load units that need to be constructed to replace the existing CHP units.
1388 1389	567	
1390 1391	568	As noted above, there is a list of concerns about the trajectory of replacing coal burning with
1392 1393	569	biomass burning. These concerns are voiced, for instance, in the statements on the coal
1394	570	plan that stakeholders have left in the official governmental service collecting statements on
1395 1396	571	new legislation [79]. The concerns with regard to a move to biomass expressed, for instance,
1397 1398	572	by Helen Ltd. and other energy companies, include questions of availability, price, GHG
1399 1400	573	emissions, small particle emissions, logistics and effects on biodiversity and other ecological
1401 1402	574	effects.
1403 1404	575	
1405 1406	576	The official evaluation on the coal ban legislation concludes, based on a review of the views
1407 1408	577	of current coal users, that the most likely outcome of the ban is that coal is replaced by wood
1409 1410	578	biomass [26]. More strikingly, the evaluation also states that because of this replacement the
1411 1412	579	ban will not likely reduce Finnish carbon dioxide emissions [26]. The statement is quite
1413 1414 1415 1416	580	stunning, when we remember that the legislation is intended and celebrated as a major

climate action. However, there is no reason to suspect its validity. As Sterman et al. [32]
observe, while the combustion effect of wood pellets is lower than coal and the wood supply
chain has higher procession emissions, "wood-fired power plants generate more CO2 per
kWh than coal."

With regard to the main goal of the transition, reducing GHG emissions in the name of climate action, the result of this path of least resistance is paradoxical. However, the increase in carbon dioxide emissions would be politically acceptable, since current GHG accounting in the EU includes wood felling in the LULUCF sector, and biofuels are deemed to be carbon-neutral [27]. Thus, even if the physical end-of-pipe emissions compared to coal burning increase, in the current regulatory framework the emissions are not penalized. This situation is, of course, not particular to Helsinki or even Finland; rather the accounting of LULUCF sector emissions, especially biomass burning, is a contentious issue worldwide [88], and researchers have warned that the new European Union renewable energy directive (RED), aimed at reaching higher renewable energy targets, could result in a situation where energy generation "consume[s] quantities of wood equal to all Europe's wood harvests, greatly increase[s] carbon in the air for decades, and set[s] a dangerous global example." [34].

599

The outcome is also closely linked to the use of the term "renewable". As Harjanne & Korhonen [24] point out, the term "renewable" contains many ambiguities and is therefore a poor indicator for successful energy policy. In this case, energy from burning wood biomass is renewable, but not emissionless and not, without further qualifications, sustainable. Most damagingly, the concept enables bait-and switch schemes that seem to address climate change, but in reality serve other interests [24]. In the case of Helsinki DH, these interests include the economical goal of forest owners and bionenergy providers to have lucrative markets and the interest of politicians to promote domestic renewable energy. These

1476		
1477 1478		
1479		26
1480 1481	608	interests combined with the economic and technical path-dependency according to which "to
1482 1483	609	burn something" is the most competitive available technology, are on the trajectory of locking
1484 1485	610	in yet another decades long increase in carbon dioxide emissions from DH.
1486 1487	611	
1488 1489	612	This potential new lock-in also introduces a new risk. It is possible that the international GHG
1490 1491	613	accounting regulations and ETS are changed over time, so that the end-of-pipe emissions of
1492 1493	614	wood burning have an economic effect, for instance, through inclusion in the ETS or through
1494 1495	615	a price on natural carbon sinks, in which case wood biomass price is bound to increase.
1496 1497	616	These worries have registered within the stakeholders, as, for instance, the chairman of the
1498 1499	617	board for Helen Ltd., Osmo Soininvaara, representing the Green Party, has predicted that by
1500 1501	618	2030 at least a part of wood burning emissions will be included in the ETS [89].
1502 1503	619	
1504 1505	620	
1505 1506 1507	621	7 Results
1508	622	
1509 1510	623	The first research question was to identify the key path dependencies, constraints and
1511 1512	624	legacy technological solutions in DH in Helsinki, given the goal of rapid transition. In view of
1513 1514	625	the above, the path dependencies and constraints can be listed as follows:
1515 1516	626	
1517 1518	627	• The company is committed and contractually bound (economic constraint)
1519 1520	628	• to reliable service (socio-economic path-dependence)
1521 1522	629	during peak load periods (material constraint).
1523 1524 1525	630	• This together with the high-temperature nature (material path-dependence) of the
1525 1526 1527	631	network means that no non-burning technology currently exists to replace coal.
1528	632	• In current GHG accounting frameworks, emissions from wood burning are calculated
1529 1530 1531 1532	633	on the LULUCF sector (political path-dependency), which means that from the
1533 1534		

1535 1536		
1537 1538		27
1539 1540	634	emission accounting perspective, the move from coal to wood is possible.
1541 1542	635	In addition, the bioeconomy framework of the current government supports wood
1543 1544	636	biomass by subsidies and taxation (political constraint) and
1545 1546	637	 coal use in energy generation is banned by 2029 (political constraint).
1547 1548	638	
1549 1550	639	The second research question concerned the role of these path-dependencies in
1551 1552	640	complicating the transition towards carbon-free energy. Due to the material path-
1553 1554	641	dependency, government supported market environment and regulatory framework, the
1555 1556	642	trajectory for DH in Helsinki produces a green paradox if coal is replaced by wood biomass:
1557 1558	643	even if all stakeholders are committed to reducing GHG emissions and act on their
1559 1560	644	commitment, physical emissions may grow. Moreover, this green paradox may be enforced
1561 1562	645	by a future lock-in. For the utility company and its owner, investments into heat producing
1563 1564	646	units are long-term affairs, with pay-back times extending well over a decade. Thus
1565 1566	647	investing, for instance, in wood biomass burning base load units means, other things being
1567 1568	648	equal, that biomass will be burned for decades, so that the increase in carbon dioxide
1569 1570	649	emissions is perpetuated.
1570 1571 1572	650	
1573	651	This is the crux of the path-dependent nature of the green paradox at hand. The need (and,
1574 1575	652	from the company's contractual and commercial perspectives, responsibility) to do long-term
1576 1577	653	investments in industrial-scale infrastructure locks in future emissions for decades. If the
1578 1579	654	decision happens at a moment when coal emissions are penalized but biomass emissions
1580 1581	655	are not, the result may be an increase in emissions even though the explicitly expressed
1582 1583	656	reason for infrastructure overhaul is to decrease emissions.
1584 1585	657	
1586 1587	658	The third research question was the policy implications to be drawn form the case. As noted
1588 1589 1590 1591 1592 1593	659	above, coal emissions from energy use are included in the ETS, while wood biomass

emissions are included in the accounting of the LULUCF sector when the timber is felled (not when it is burned). Clearly, a more uniform accounting would level the field. For instance, a regime where carbon dioxide emissions would have a price, regardless of the fuel burned, and coal sinks would be compensated, would create a uniform price mechanism, where coal and wood biomass would compete on an equal footing with regard to their contribution to actual atmospheric carbon dioxide emissions. These policy issues are, for the most part, outside the purview of local and national legislation, so any initiative for change most likely needs to happen through attention to the more general level danger that the inconsistent accounting and directives pose, as pointed out in [34]. Likewise, as argued in [24], the notion of "renewable energy" functions as a term that somewhat obscures the fact that wood biomass is not a carbon free fuel. A more nuanced research and public discourse is needed, such that combustible and non-combustible forms of energy generation, and carbon-intensive, low-carbon and carbon-free energy systems can be distinguished and discussed in policy settings unambiguously. Our case study corroborates the hypothesis in [24] that the ambiguity of the term "renewable", as it appears both on the national and EU level discussions, contributes to the potential green paradox. The DH network itself, with the power plants, pipe networks and consumer equipment, is a massive and expensive piece of infrastructure, where major changes are expensive and slow. If, indeed, it is the case, first, that currently no non-burning technology exists for provisioning for the peak loads, and, second, that transition to a wood biomass base load means a commitment to decades of increased carbon dioxide emissions, then it would make sense to reconsider the social and economic constraints that are behind the need for the peak load. For instance, the need for the peak load could be alleviated by reformulating the contracts between the company and its clients so that the company could provide a lower temperature for some customers during cold periods. It is obvious that such a decrease in

the comfort level provided by the service would not be totally welcome by the customers. This brings up the cultural aspect of energy transitions [90] and underlines that a more realistic and detailed understanding of the material path-dependencies and constraints of the legacy infrastructure might help to further the needed steps of transition in terms of social acceptability. The last point also touches on the role of the city. The city obligates the company, Helen Ltd., to competitive market performance. At the same time, it has set itself the goal of being carbon neutral by 2035. These goals are, to some extent, at cross purposes, in so far as no non-burning technology exists for provisioning for current DH needs at competitive prices. Thus a more realistic and detailed knowledge of the existing DH infrastructure and its constraints would help the city place more realistic demands on the company and itself. If it prioritizes the goal of being carbon free, as it given the current knowledge on climate change and its effects should, it should relax the economic constraints on the company so that it has more leeway in terms of investment and operational costs. If more costly technologies were an option, the green paradox could be easier to avert. 8 Discussion In so far as there are other DH systems with similar path-dependencies and constraints, the lessons from the case study may apply. This is most likely the case in (Northern) European countries that share the relevant EU regulations and goals, including the ETS system and the RED directive, as well as climatic conditions. This gives grounds to generate a hypothesis on the basis of the case study: in Northern European DH systems that transition away from fossil fuels, especially coal, the path of least resistance points towards burning wood biomass, thus implying a green paradox. This is because the transition to a non-

- burning alternative implies larger systemic changes (for instance, re-dimensioning of network, reformulating contractual obligations, changing customer expectations, etc.) that are likely to be also more costly. However, the lessons from the case study are obviously limited by particular constraints in the DH system in Helsinki. First is the bioeconomy framework strongly pushed by the government of PM Sipilä. The bioeconomy framework has helped create a situation favorable to transition to wood biomass, through both direct economic subsidies for wood energy and through encouraging public perception of the benefits of wood biomass use. Here the ambiguity of the term "renewable" has been consequential, not the least by uniting the goals of forest owners and the analyzed NGOs in supporting banning coal, with the expected replacement of coal by wood biomass. As noted above, the bioeconomy framework has been guestioned and criticized by researchers and politicians. It is possible that a future national government may formulate a different strategy, especially if it prioritizes rapid transition, and wood biomass may lose some of its advantage. However, given the weight of the forest sector in Finnish economy, it is unlikely that any national government would set climate or sustainability criteria for wood energy that would be more ambitious than those on the EU level. Consequently, a definitive dismantling of the potential for green paradox in cases like Helsinki DH would most likely demand a change in how GHG emissions from wood burning are included in emission accounting and target setting on the EU and/or global level. Second, the city as the sole owner of the utility company has created goals that are at cross-purposes: to generate revenue and to transition to carbon neutrality. The city could prioritize carbon neutrality and relax the demand for revenue. Due to the loss of revenue, this would mean increased costs for its citizens. Depending on structures of ownership, this option may

not be available in other cases.

Third, the DH network in Helsinki is exceptionally reliable and prepared for undiminished service also during prolonged cold spells. If a DH provider and its customers would be willing to use less heat during cold spells, the peak load demanded from the system would be lower, and consequently provisioning with non-burning alternatives would be easier.

Due to the use of participant observation as a method, some of the results are tied to particular events happening within a given time frame. For instance, the views of the stakeholders, the utility company, politicians and NGOs, are likely to evolve in time, so that a return back to the views present at the time of observation is not possible. Thus the independent verifiability of these observations is necessarily limited. However, the limitation seems acceptable, especially given the fact that the answers to the three research questions rely mostly on publicly available records. The data from participant observation has helped in confirming that the facts presented in the publicly available materials are, indeed, facts on which the stakeholders rely in their views and actions, and in focusing on crucial facts that underlie the positions of the stakeholders.

For instance, the importance of reliability of service and contractual obligations is mentioned in the materials published by Helen Ltd., but observing the argumentation by current and previous representatives of Helen Ltd. helped drive home the centrality of these constraints in the reasoning done in the company. Likewise, discussions with local politicians and representatives of NGOs focused attention to the factors enabling the potential green paradox: in their perspective the potential is an unfortunate side effect of, on one hand, existing international regulation, and, on the other hand, need for rapid and visible action.

9 Conclusion The DH system in Helsinki has evolved on the basis of cogeneration of heat and electricity from coal burning. The company operating the system is contractually obligated to a given peak load, even during prolonged periods of cold weather, and its customers are accustomed to reliable service. In addition, the owner of the company, the city of Helsinki, expects the company both to be commercially viable in terms of returning a profit to the owner and to provision DH in a carbon neutral manner in line with the goals set by the city and the wider metropolitan area. This, together with a new national legislation banning the burning of coal for energy generation by 2029 means that, at the moment, the most economic and technically reliable option for the company is to start burning wood biomass. The outcome is unfortunate, as research has shown that GHG emissions from burning wood are higher than from burning coal, at least for a period of several decades, before the "carbon debt" from loggings may be repaid by regenerated woodland. However, this fact, even if observed, is not seen as reason not to use wood biomass by the company, as burning wood biomass is excluded from the EU emission trading system and thus does not. unlike coal, appear in the emission accounting of the company or the city. In sum, it seems that as hypothesized in the literature, green paradoxes, in the sense of unintended negative consequences of climate policies, are indeed possible, as evidenced by the situation created in Helsinki DH, where regulation aimed at diminishing GHG emissions together with the economic-technological path dependencies of the DH system drive a transition from coal to wood biomass, with the possible effect of increasing atmospheric GHG emissions. The possibility for the paradox could be undermined by a form of international GHG

1889 1890 1891 1892		33
1893 1894	795	accounting, for instance on the EU level, that would better unify the accounting of the
1895 1896	796	LULUCF sector (loss of sinks via logging, existing sinks in forests) and the ETS sector.
1897 1898	797	Also, a different ownership policy by the city could provide more economical leeway for the
1899 1900	798	company, so that a more intensive and costly transition would become an option. Third, the
1900 1901 1902	799	task of transition could be made easier if the customers adjusted their levels of expectations
1902 1903 1904	800	on the service, and if this was also reflected in the contracts between the company and its
1904 1905 1906	801	customers.
1907	802	
1908 1909	803	
1910 1911	804	10 References
1912 1913	805	
1914 1915 1916 1917 1918 1919	806	[1]
	807	J. Rockström, O. Gaffney, J. Rogelj, M. Meinshausen, N. Nakicenovic, H. J. Schellnhuber
	808	A roadmap for rapid decarbonization
1920 1921	809	Science, 355 (6331) 2017, pp. 1259–1271, https://doi.org/10.1126/science.aah3443
1922 1923	810	
1924 1925	811	[2]
1926 1927	812	S. Bringezu, A. Ramaswami, H. Schandl, M. O'Brien, R. Pelton, J. Acquatella, E. Ayuk, A.
1928 1929	813	Chiu, R. Flanegin, J. Fry, S. Giljum, S. Hashimoto, S. Hellweg, K. Hosking, Y. Hu, M.
1930 1931	814	Lenzen, M. Lieber, S. Lutter, A. Miatto, A. Singh Nagpure, M. Obersteiner, L. van Oers, S.
1932 1933	815	Pfister, P. Pichler, A. Russell, L. Spini, H. Tanikawa, E. van der Voet, H. Weisz, J. West, A.
1934 1935	816	Wiijkman, B. Zhu, and R. Zivy.
1936 1937	817	Assessing global resource use: A systems approach to resource efficiency and pollution
1938 1939	818	reduction.
1940 1941	819	Nairobi, Kenya: International Resource Panel, United Nations Environment Programme 2017
1942 1943	820	http://www.resourcepanel.org/reports/assessing-global-resource-use
1944 1945 1946 1947	821	

1948		
1949		
1950 1951		34
1952 1953	822	[3]
1954 1955	823	V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla,
1956 1957	824	A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen,
1958 1959	825	X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)
1960 1961	826	Summary for Policymakers. In: Global warming of 1.5°C.
1962 1963	827	Geneva: World Meteorological Organization 2018.
1964 1965	828	https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/SR15_SPM_High_Res.pdf
1966 1967	829	
1968 1969	830	[4]
1970	831	B.K. Sovacool
1971 1972 1973	832	How long will it take? Conceptualizing the temporal dynamics of energy transitions
1974 1975	833	Energy Res. Soc. Sci., 13 (2016), pp. 202–215. https://doi.org/10.1016/j.erss.2015.12.020
1976 1977	834	
1978 1979	835	[5]
1980 1981	836	K. Anderson
1982 1983	837	Climate change going beyond dangerous–Brutal numbers and tenuous hope.
1984 1985	838	Dev. Dialogue, 61 (1) (2012), pp. 16-40.
1986 1987	839	
1988 1989	840	[6]
1990 1991	841	V. Smil
1992 1993	842	Energy and Civilization: A History
1994 1995	843	MIT Press, Camdridge, MA. 2017
1996 1997	844	
1998	845	[7]
1999 2000	846	V. Smil
2001 2002 2003 2004 2005 2006	847	Examining energy transitions: A dozen insights based on performance

2007 2008			
2009		35	
2010 2011	040	Energy Dec. Sec. Sci. 22 (2016), nr. 101 107, https://doi.org/10.1016/j.ergs.2016.09.017	
2012 2013	848	Energy Res. Soc. Sci., 22 (2016), pp. 194-197, https://doi.org/10.1016/j.erss.2016.08.017	
2014	849		
2015 2016	850	[8]	
2017 2018	851	F. Krausmann, D. Wiedenhofer, C. Lauk, W. Haas, H. Tanikawa, T. Fishman, A. Miatto, H.	
2019 2020	852	Schandl, H. Haberl	
2021 2022	853	Global in-use material stocks in the 20th century	
2023 2024	854	Proc. Natl. Acad. Sci. 114 (8) (2017), pp. 1880-1885,	
2025	855	https://doi.org/10.1073/pnas.1613773114	
2026 2027	856		
2028 2029 2030	857	[9]	
2030 2031 2032	858	F.W. Geels	
2032 2033 2034	859	Regime Resistance against Low-Carbon Transitions: Introducing Politics and Power into the	
2035	860	Multi-Level Perspective	
2036 2037 2038	861	Theory Cult. Soc., 31 (5) (2014), pp. 21-40,	
2039	862	https://doi.org/10.1177/0263276414531627	
2040 2041	863		
2042 2043	864	[10]	
2044 2045	865	F.W. Geels and J.W. Schot	
2046 2047	866	Typology of sociotechnical transition pathways.	
2048 2049	867	Res. Policy 36 (3) (2007), pp. 399–417, https://doi.org/10.1016/j.respol.2007.01.003	
2050 2051	868		
2052 2053	869	[11]	
2054 2055	870	H. W. J. Rittel and M. M. Webber	
2056 2057	871	Dilemmas in a General Theory of Planning	
2058 2059	872	Policy Sci., 4 (2) (1973), pp. 155-169, http://www.jstor.org/stable/4531523	
2060 2061 2062 2063 2064 2065	873		

2066 2067			
2068			26
2069			36
2070 2071	874	[12]	
2072 2073	875	S. Jensen K. Mohlin, K. Pittel, T. Sterner	
2074 2075	876	An Introduction to the Green Paradox: The Unintended Consequences of Climate Policies	
2076 2077	877	Rev. Environ. Econ. Policy, 9 (2) (2015), pp. 246–265, https://doi.org/10.1093/reep/rev010	
2078 2079	878		
2080 2081	879	[13]	
2082 2083	880	International Renewable Energy Agency	
2084 2085	881	Renewable Power Generation Costs in 2017	
2086 2087	882	International Renewable Energy Agency, Abu Dhabi.	
2088 2089	883	https://cms.irena.org/publications/2018/Jan/Renewable-power-generation-costs-in-2017	
2000 2090 2091	884		
2092 2093	885	[14]	
2093 2094 2095	886	A. Grubler	
2095 2096 2097	887	Energy transitions research: insights and cautionary tales	
2097 2098 2099	888	Energy Policy 50 (2012), pp. 8–18, <u>https://doi.org/10.1016/j.enpol.2012.02.070</u>	
2099 2100 2101	889		
2101 2102 2103	890	[15]	
2103 2104 2105	891	R. Fouquet	
2105 2106 2107	892	The slow search for solutions: lessons from historical energy transitions by sector and	
2107 2108 2109	893	service	
2110 2111	894	Energy Policy 38 (2010), pp. 6586–6596, https://doi.org/10.1016/j.enpol.2010.06.029	
2112 2113	895		
2116 2114 2115	896	[16]	
2116 2117	897	W.B. Arthur	
2118 2119	898	Competing Technologies, Increasing Returns, and Lock-In by Historical Events.	
2120 2121	899	Econ. J. 99 (2) (1989), pp. 116-131, https://www.jstor.org/stable/2234208	
2122			
2123 2124			

2125			
2126 2127			37
2128			57
2129 2130	900		
2131 2132	901	[17]	
2132		[17]	
2134 2135	902	G. C. Unruh	
2136	903	Escaping carbon lock-in	
2137 2138	904	Energy Policy 30 (2002), pp. 317–325, https://doi.org/10.1016/S0301-4215(01)00098-2	
2139 2140	905		
2141 2142	906	[18]	
2143	907	G. C. Unruh	
2144 2145			
2146	908	Understanding carbon lock in	
2147 2148	909	Energy Policy 28 (2000), pp. 817–830, <u>https://doi.org/10.1016/S0301-4215(00)00070-7</u>	
2149 2150	910		
2151 2152	911	[19]	
2153 2154	912	T.J. Foxon, P.J.G. Pearson, S. Arapostathis, A. Carlsson-Hyslop, and J. Thornton	
2155 2156	913	Branching points for transition pathways: Assessing responses of actors to challenges on	
2157 2158	914	pathways to a low carbon future.	
2159 2160	915	Energy Policy 52 (2013), pp. 146-158, <u>https://doi.org/10.1016/j.enpol.2012.04.030</u>	
2161 2162	916		
2163	917	[20]	
2164 2165			
2166 2167	918	HW. Sinn	
2168 2169	919	Public policies against global warming: A supply side approach.	
2170	920	Int. Tax Public Finance 15 (4) (2008), pp. 360–94, https://doi.org/10.1007/s10797-008-908	82-
2171 2172	921	Z	
2173 2174	922		
2175 2176	923	[21]	
2177 2178	924	E. van der Werf and C. Di Maria	
2179 2180	925	Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond	ł
2181			
2182 2183			

2184		
2185 2186		
2187 2188		
2189	926	Int. Rev. Environ. Resour. Econ. 6 (2) (2012), pp. 153–194,
2190 2191	927	http://dx.doi.org/10.1561/101.0000050
2192 2193	928	
2194 2195	929	[22]
2196 2197	930	R. Q. Grafton, T. Kompas and N.Van Long
2198 2199	931	Substitution between biofuels and fossil fuels: Is there a green paradox?
2200 2201	932	J. Environ. Econ. Manag. 64 (3) (2012), pp. 328-341,
2202 2203	933	https://doi.org/10.1016/j.jeem.2012.07.008
2203 2204 2205	934	
2205 2206 2207	935	[23]
2207 2208 2209	936	C. Longoni, P.M.Gollwitze and Gabriele Oettingen
2209 2210 2211	937	A green paradox: Validating green choices has ironic effects on behavior, cognition, and
2212	938	perception
2213 2214 2215	939	J. Exp. Soc. Psychol. 50 (2014), pp. 158-165, <u>https://doi.org/10.1016/j.jesp.2013.09.010</u>
2216	940	
2217 2218	941	[24]
2219 2220	942	A., Harjanne and J. M. Korhonen
2221 2222	943	Abandoning the concept of renewable energy
2223 2224	944	Energy Policy 127 (2019), pp. 330–340, https://doi.org/10.1016/j.enpol.2018.12.029
2225 2226	945	
2227 2228	946	[25]
2229 2230	947	Ministry of Economic Affairs and Employment of Finland
2231 2232	948	Hiilen energiakäytön kieltäminen lailla (Law on banning coal in energy generation)
2233 2234	949	Retrieved 12.1. 2019 from
2235 2236	950	https://tem.fi/hankesivu?tunnus=TEM050:00/2018
2237	951	
2238 2239	952	[26]
2240		
2241 2242		

2243		
2244 2245		
2245		
2247 2248	953	Finnish Government
2249 2250	954	Hallituksen esitys eduskunnalle laeiksi hiilen energiakäytön kieltämisestä ja
2251 2252	955	oikeudenkäynnistä markkinaoikeudessa annetun lain 1 luvun 2 §:n muuttamisesta
2253 2254	956	(Governement proposal to the parliament on banning coal in energy generation)
2255 2256	957	Retrieved 12.1. 2019 from
2257 2258	958	https://valtioneuvosto.fi/delegate/file/46546
2259 2260	959	
2261 2262	960	[27]
2263 2264	961	European Commission 2003
2265 2266	962	Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003
2267 2268	963	Brussels: European Parliament.
2269 2270	964	Retrieved 12.1. 2019 from
2271 2272	965	http://eur-lex.europa.eu/ legal-content/EN/TXT/?uri=CELEX:32003L0087
2273 2274	966	
2275	967	[28]
2276 2277	968	Natural Resources Institute Finland (LUKE)
2278 2279	969	Wood in energy generation 2017
2280 2281	970	Retrieved 12.1. 2019 from
2282 2283	971	https://stat.luke.fi/en/wood-energy-generation-2017_en
2284 2285	972	
2286 2287	973	[29]
2288 2289	974	Ministry of Agriculture and Forestry of Finland
2290 2291	975	Bioeconomy
2292 2293	976	Retrieved 11.10. 2018 from
2294 2295	977	https://mmm.fi/en/bioeconomy
2296 2297	978	[00]
2298 2299 2300 2301	979	[30]

2302 2303 2304 2305		40
2306 2307	980	M. Kröger and K. Raitio
2308 2309	981	Finnish forest policy in the era of bioeconomy: A pathway to sustainability?
2310	982	For. Policy Econ. 77 (2017), pp. 6-15, <u>https://doi.org/10.1016/j.forpol.2016.12.003</u>
2311 2312	983	
2313 2314	984	[31]
2315 2316	985	A. Petty and K. Kärhä
2317 2318	986	Effects of subsidies on the profitability of energy wood production of wood chips from early
2319 2320	987	thinnings in Finland
2321 2322	988	For. Policy Econ. 13 (7) (2011), pp. 575-581,
2323 2324	989	https://doi.org/10.1016/j.forpol.2011.07.003
2325 2326	990	
2327 2328	991	[32]
2329 2330	992	J. D. Sterman, L. Siegel and J. N. Rooney-Varga
2331 2332	993	Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood
2333 2334	994	bioenergy
2335 2336	995	Environ. Res. Lett. 13 (1) (2018), <u>https://doi.org/10.1088/1748-9326/aaa512</u>
2337 2338	996	
2339 2340	997	[33]
2341 2342	998	P. Leturcq, P.
2343 2344	999	Wood preservation (carbon sequestration) or wood burning (fossil-fuel substitution), which is
2345 2346	1000	better for mitigating climate change?
2347 2348	1001	Ann. For. Sci. 71 (117) (2014). https://doi.org/10.1007/s13595-013-0269-9
2349 2350	1002	
2350 2351 2352	1003	[34]
2353	1004	T. D. Searchinger, T. Beringer, B. Holtsmark, D. M. Kammen, E. F. Lambin, W. Lucht, P.
2354 2355	1005	Raven & JP. van Ypersele
2356 2357 2358 2359 2360	1006	Europe's renewable energy directive poised to harm global forests

2361		
2362		
2363 2364		41
2365 2366	1007	Nat. Commun. 9 (2018),
2367 2368	1008	https://www.nature.com/articles/s41467-018-06175-4
2369 2370	1009	
2371 2372	1010	[35]
2373	1011	European Academies' Science Advisory Council
2374 2375 2376	1012	The EU's renewable energy ambitions: Bioenergy from forests is not always carbon neutral -
2377 2378	1013	and may even increase the EU's carbon emissions
2379 2380	1014	Retrieved 12.1. 2019 from
2381 2382	1015	https://easac.eu/press-releases/details/the-eus-renewable-energy-ambitions-bioenergy-from-
2382 2383 2384	1016	forests-is-not-always-carbon-neutral-and-may-e/
2385	1017	
2386 2387	1018	[36]
2388 2389	1019	K. Dahal, S. Juhola, J. Niemelä
2390 2391	1020	The role of renewable energy policies for carbon neutrality in Helsinki Metropolitan area
2392 2393	1021	Sustain. Cities Soc. 40 (2018), pp. 222–232, <u>https://doi.org/10.1016/j.scs.2018.04.015</u>
2394 2395	1022	
2396 2397	1023	[37]
2398 2399	1024	T. Helin, H. Salminen, J. Hynynen, S. Soimakallio, S. Huuskonen, K. Pingoud
2400 2401	1025	Global warming potentials of stemwood used for energy and materials in Southern Finland:
2402 2403	1026	differentiation of impacts based on type of harvest and product lifetime
2404 2405	1027	Bioenergy 8 (2) (2016), pp. 334-345, <u>https://doi.org/10.1111/gcbb.12244</u>
2406 2407 2408	1028	
2409	1029	[38]
2410 2411	1030	S. Soimakallio, L. Saikku, L. Valsta, and K. Pingoud
2412 2413	1031	Climate Change Mitigation Challenge for Wood Utilization—The Case of Finland
2414 2415 2416 2417 2418	1032	Environ. Sci. Technol., 50 (10) (2016), pp. 5127–5134,
2419		

2420 2421 2422			42
2423 2424 2425	1033	https://doi.org/10.1021/acs.est.6b00122	42
2426 2427	1034		
2428 2429	1035	[39]	
2430 2431	1036	R. Sievänen, S. Soimakallio, O.Salminen	
2432 2433	1037	Metsät biotalouden raaka-aineena ja hiilinieluna (Forests as raw material for bioecomomy	
2434 2435	1038	and as carbon sinks)	
2436 2437	1039	Metsätieteen aikakauskirja 2, pp. 25-127, http://dx.doi.org/10.14214/ma.5960	
2438 2439	1040		
2440 2441	1041	[40]	
2442 2443	1042	A.L. George, A. Bennett	
2444 2445	1043	Case Studies and Theory Development in the Social Sciences	
2446 2447	1044	Cambridge, MA: Harvard University Press 2004.	
2448 2449	1045		
2450 2451	1046	[41]	
2452 2453	1047	K. Charmaz.	
2454 2455	1048	Constructing grounded theory: a practical guide through qualitative analysis.	
2456 2457	1049	London: Sage 2006.	
2458 2459	1050		
2460 2461	1051	[42]	
2462 2463	1052	A. Strauss, J. Corbin.	
2464 2465	1053	Basics of qualitative research.	
2466 2467	1054	London: Sage 1990.	
2468 2469	1055		
2470 2471	1056	[43]	
2472 2473	1057	B. K. Sovacool, L. Noel, J. Kester, G. Zarazua de Rubens	
2473 2474 2475	1058	Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of	
2475 2476 2477 2478	1059	decarbonisation in Denmark, Finland, Iceland, Norway, Sweden	

2479 2480		
2481		
2482 2483		
2483 2484	1060	Energy 165 (2018), https://doi.org/10.1016/j.energy.2018.09.110
2485 2486	1061	
2480 2487	1062	[44]
2488 2489		
2490	1063	G. A. Bowen
2491 2492	1064	Document Analysis as a Qualitative Research Method
2493 2494	1065	Qual. Res. J. 9 (2) (2009), pp. 27-40, https://doi.org/10.3316/QRJ0902027
2495 2496	1066	
2497 2498	1067	[45]
2499	1068	B.B. Kawulich
2500 2501	1069	Participant Observation as a Data Collection Method
2502 2503	1070	Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 6 (2) (2005),
2504 2505	1071	http://nbn-resolving.de/urn:nbn:de:0114-fqs0502430.
2506 2507	1072	
2508 2509	1073	[46]
2510 2511	1074	K. DeWalt, Kathleen M. & B. DeWalt.
2512 2513	1075	Participant observation: a guide for fieldworkers.
2514 2515	1076	Walnut Creek, CA: AltaMira Press 2002.
2516 2517	1077	
2518 2519	1078	[47]
2520 2521	1079	D. Ghosh
2522 2523	1080	Risky fieldwork: The problems of ethics in the field
2524 2525	1081	Energy Res. Soc. Sci. (2018), https://doi.org/10.1016/j.erss.2018.07.020
2526 2527	1082	
2528 2529	1083	[48]
2530 2531	1084	T. Myllyntaus
2532 2533	1085	Electrifying Finland
	1086	London: MacMillan Academic and Professional and ETLA, Helsinki 1991.

0500			
2538 2539			
2540			11
2541			44
2542	1087		
2543 2544			
2545	1088	[49]	
2546	1089	P. Woods, J. Overgaard	
2547	1000		
2548 2549	1090	Historical development of district heating and characteristics of a modern district heating	
2550	1091	system	
2551			
2552 2553	1092	Advanced District Heating and Cooling (DHC) Systems. http://dx.doi.org/10.1016/B978-1-	
2554	1093	78242-374-4.00001-X	
2555			
2556 2557	1094		
2558	1095	[50]	
2559			
2560 2561	1096	U. Persson, S. Werner	
2562	1097	Heat distribution and the future competitiveness of district heating	
2563	4000		
2564 2565	1098	Appl. Energy 88 (3) (2011), pp. 568-576, https://doi.org/10.1016/j.apenergy.2010.09.020	
2566	1099		
2567	1099		
2568 2569	1100	[51]	
2570	1100		
2571	1101	T. Mattila	
2572 2573	1102	Halkoskandaalista öljykriisiin - vuosisata energiahistoriaa (From the log scandal to the oil	
2574			
2575	1103	crisis – a century of energy history)	
2576 2577	1104	In S. Laakkonen, Simo (ed.). Näkökulmia Helsingin ympäristöhistoriaan (Views on Helsink	i
2578			
2579	1105	environmental history). Edita Oyj, Helsinki (2001) 64-75	
2580 2581	1106		
2582	1100		
2583	1107	[52]	
2584 2585	1108	Helen Ltd.	
2586			
2587	1109	About Helen	
2588 2589	1110	Retrieved 8.2. 2019 from	
2590			
2591	1111	https://www.helen.fi/en/company/helen-ltd/about-us/about-helen/	
2592 2593	1112		
2594			
2595			
2596			

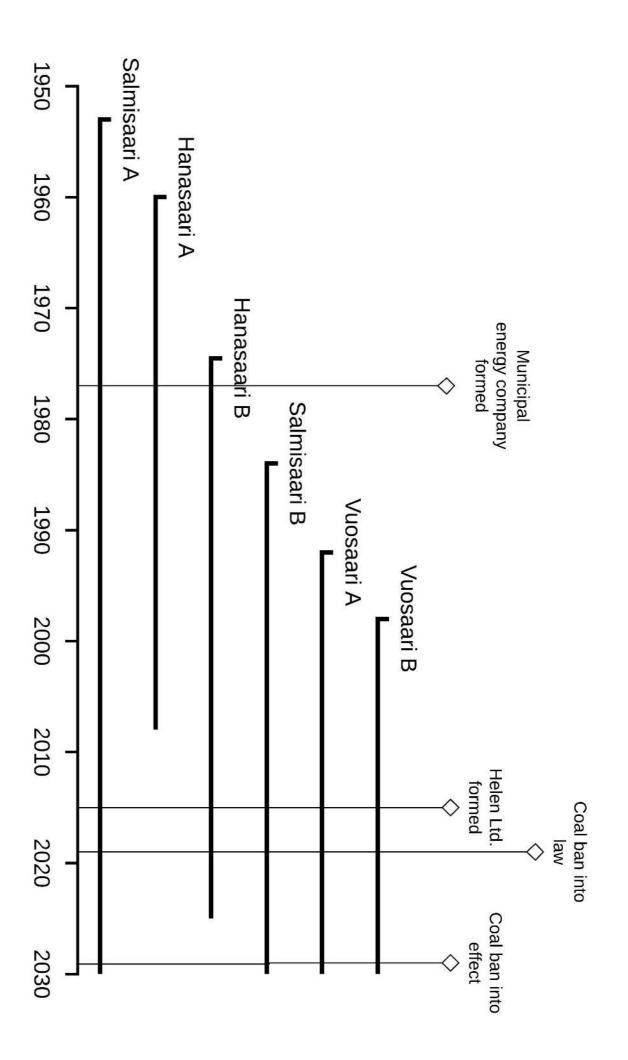
2597 2598		
2599 2600		
2601 2602	1113	[53]
2603 2604	1114	Helen Ltd.
2605 2606	1115	Power Plants
2607 2608	1116	Retrieved 8.2. 2019 from
2609 2610	1117	https://www.helen.fi/en/company/energy/energy-production/power-plants/
2611 2612	1118	
2612 2613 2614	1119	[54]
2615 2616	1120	Helen Ltd.
2617 2618	1121	Heating Plants
2619 2620	1122	Retrieved 8.2. 2019 from
2620 2621 2622	1123	https://www.helen.fi/en/company/energy/energy-production/power-plants/heating-plants/
2623	1124	
2624 2625	1125	[55]
2626 2627	1126	Helen Ltd.
2628 2629	1127	Annual Report 2017
2630 2631	1128	Retrieved 8.2. 2019 from
2632 2633	1129	https://www.helen.fi/en/annual-report/annual-report-2017/financial-statements/report-on-
2634 2635	1130	operations/
2636 2637	1131	
2638 2639	1132	[56]
2640 2641	1133	City of Helsinki
2642 2643	1134	Kaupunginvaltuusto (City Council)
2644 2645	1135	Retrieved 8.2. 2019 from
2646 2647	1136	https://www.hel.fi/helsinki/fi/kaupunki-ja-hallinto/paatoksenteko/kaupunginvaltuusto/
2648 2649	1137	
2650 2651	1138	[57]
2652 2653	1139	Greenpeace Finland
2653 2654 2655		

2656			
2657			
2658			46
2659 2660			
2661	1140	Metsät (Forests)	
2662 2663	1141	Retrieved 20.5. 2019 from	
2664 2665	1142	https://metsat.greenpeace.fi/	
2666 2667	1143		
2668 2669	1144	[58]	
2670 2671	1145	The Finnish Association for Nature Conservation	
2672 2673	1146	Lausunnot (Statements)	
2674 2675	1147	Retrieved 20.5. 2019 from	
2676 2677	1148	https://www.sll.fi/arkisto/ajankohtaista/lausunnot/	
2678 2679	1149		
2680 2681	1150	[59]	
2682 2683	1151	Finnish Development NGOs – FINGO	
2684 2685	1152	Julkaisut (Publications)	
2686 2687	1153	Retrieved 20.5. 2019 from	
2688 2689	1154	https://www.fingo.fi/ajankohtaista/julkaisut	
2690 2691	1155		
2692 2693	1156	[60]	
2694 2695	1157	City of Helsinki	
2696 2697	1158	Konserniohje (Ownership policy)	
2698 2699	1159	https://www.hel.fi/static/helsinki/muut-saannot/Konserniohje.pdf	
2700 2701	1160		
2701 2702 2703	1161	[61]	
2704	1162	S. Rinne, K. Auvinen, F. Reda, S. Ruggiero, A. Temmes.	
2705 2706	1163	Discussion paper: Clean district heating – how can it work?	
2707 2708	1164	Publication of the Smart Energy Transition project, Academy of Finland's Strategic Resea	ırch
2709 2710	1165	Council.	
271127122713	1166	Retrieved 18.1. 2019 from	
2714			

2715 2716			
2717 2718		47	
2719 2720	1167	http://smartenergytransition.fi/wp-content/uploads/2018/11/Clean-DHC-discussion-	
2721 2722	1168	paper_SET_2018.pdf	
2723 2724	1169		
2725 2726	1170	[62]	
2727 2728	1171	C. Reidhav and S. Werner	
2729 2730	1172	Profitability of sparse district heating	
	1173	Appl. Energy 85 (9) (2008), pp. 867-877, https://doi.org/10.1016/j.apenergy.2008.01.006	
2733 2734	1174		
	1175	[63]	
	1176	Helen Ltd.	
	1177	Avoin kaukolömpö (Open district heat)	
2741	1178	Retrieved 8.2. 2019 from	
2742 2743	1179	https://www.helen.fi/uutiset/2018/avoinkaukolampo/	
2744 2745	1180		
	1181	[64]	
2748 2749	1182	The Finnish Innovation Fund Sitra	
2750 2751	1183	Kaksisuuntaisen kaukolämmön liiketoimintamallit (Business models for two-way district heat)	
2752 2753	1184	Retrieved 8.2. 2019 from	
2754 2755	1185	https://media.sitra.fi/2017/02/27175247/Kaksisuuntaisen_kaukolammon_liiketoimintamallit-	
2756 2757	1186	2.pdf	
2758 2759	1187		
2760 2761	1188	[65]	
2762 2763	1189	Helen Ltd.	
2764 2765	1190	Lausunto Hallituksen esitysluonnoksestta laiksi hiilen energiakäytön kieltämisestä (Official	
2766 2767	1191	statement on the government proposal for banning the use of coal in energy production)	
2768 2769	1192	Retrieved 8.2. 2019 from	
2770 2771	1193	https://www.lausuntopalvelu.fi/FI/Proposal/Participation?proposalId=fade67cc-4fe8-433b-	
2772 2773			

2774 2775		
2776		
2777 2778	1101	
2779 2780	1194	<u>9ff7-dd89f1c839d8</u>
2781	1195	
2782 2783	1196	[66]
2784 2785	1197	Helen Ltd.
2786 2787	1198	Energy Production
2788 2789	1199	Retrieved 8.2. 2019 from
2790 2791	1200	https://www.helen.fi/en/company/energy/energy-production/energy-production2/
2792	1201	
2793 2794	1202	[67]
2795 2796	1203	K. Dahal, J. Niemelä
2797 2798	1204	Initiatives towards carbon neutrality in the Helsinki metropolitan area.
2799 2800	1205	Climate 4 (3) (2016), http://dx.doi.org/10.3390/cli4030036.
2801 2802	1206	
2803 2804	1207	[68]
2805 2806	1208	City of Helsinki
2807 2808	1209	Hiilineutraali Helsinki 2035 -toimenpideohjelma (Carbon Neutral Helsinki 2035)
2809 2810	1210	Retrieved 8.2. 2019 from
2811 2812	1211	https://www.hel.fi/static/liitteet/kaupunkiymparisto/julkaisut/julkaisut/HNH-2035-
2813 2814	1212	toimenpideohjelma.pdf
2815 2816	1213	
2817 2818	1214	[69]
2819 2820	1215	Helsinki Region Environmental Services Authority HSY
2821 2822	1216	Greenhouse gas emissions
2823	1217	Retrieved 8.2. 2019 from
2824 2825	1218	https://www.hsy.fi/en/experts/climatechange/mitigation/Pages/Greenhouse-Gas-
2826 2827	1219	Emissions.aspx
2828 2829	1220	
2830 2831		
2832		

2833 2834 2835 2836 2837		49)
2838	1221	[70]	
2839 2840	1222	Helsingin Vihreät (Helsinki Greens)	
2841 2842	1223	Kivihiili (Coal)	
2843 2844	1224	Retrieved 8.2. 2019 from	
2845 2846	1225	http://www.helsinginvihreat.fi/tags/kivihiili/	
2847 2848	1226		
2849 2850	1227	[71]	
2851 2852	1228	L. Leipola	
2853	1229	Valtuusto haluaa Helsingin irti hiilestä 2020-luvulla (The council wants to get rid of coal	
	1230	during the 2020s)	
2856 2857	1231	Retrieved 8.2. 2019 from	
2858 2859	1232	https://www.vihrealanka.fi/uutiset-ymp%C3%A4rist%C3%B6/valtuusto-haluaa-helsingin-irti-	
2860 2861	1233	hiilest%C3%A4-2020-luvulla	
2862 2863	1234		
2864 2865	1235	[72]	
2866 2867	1236	Greenpeace	
2868 2869	1237	Hiiletön Helsinki (Coalfree Helsinki)	
2870 2871	1238	Retrieved 8.2. 2019 from	
2872 2873	1239	https://www.greenpeace.org/archive-finland/fi/kampanjat/ilmastonmuutos/hiiletonhelsinki/	
2874 2875	1240		
2876 2877	1241	[73]	
2878 2879	1242	Terhi Pape-Mustonen	
2880 2881	1243	Greenpeace: Helen pitää kiinni monopolistaan – Helsingin kivihiilen poltto loppuu vain	
2882 2883	1244	poliittisella ohjauksella (Greenpeace: Helen sticks to its monopoly – coal burning in Helsinki	
2884 2885	1245	will stop only through political action)	
2886	1246	Retrieved 8.2. 2019 from	
2887 2888 2889 2890 2891	1247	https://www.maaseuduntulevaisuus.fi/ymp%C3%A4rist%C3%B6/artikkeli-1.228511	


2892 2893 2894 2895 2896 2897	1248	50
2898 2899	1249	[74]
2900 2901	1250	Helsinki City Council
2902 2903	1251	Diario number HEL 2018-000644
2904 2905	1252	Retrieved 8.2. 2019 from
2906 2907	1253	https://dev.hel.fi/paatokset/asia/hel-2018-000644/kvsto-2018-11/
2908 2909	1254	
2910 2911	1255	[75]
	1256	L. Leipola
2914 2915	1257	Hiilikielto pakottaa Helsingin viimein ilmastotekoihin (Ban on coal forces Helsinki at least to
	1258	climate action)
2918 2919	1259	Retrieved 8.2. 2019 from
2920 2921	1260	https://www.vihreatuuma.fi/hiilikielto-pakottaa-helsingin-ilmastotekoihin/,
2922 2923	1261	
2923 2924 2925	1262	[76]
2926	1263	Prime Minister's office
2927 2928	1264	Finland, a land of solutions: Strategic Programme of Prime Minister Juha Sipilä's
2929 2930	1265	Government
2931 2932	1266	Government Publications 12/2015.
2933 2934	1267	Retrieved 8.2. 2019 from
2935 2936	1268	http://valtioneuvosto.fi/en/sipila/government-programme
2937 2938	1269	
2939 2940	1270	[77]
2941 2942	1271	Ministry of Economic Affairs and Employment
2943 2944	1272	Strategy outlines energy and climate actions to 2030 and beyond
2945 2946	1273	Retrieved 8.2. 2019 from
2947 2948 2949 2950	1274	https://tem.fi/en/article/-/asset_publisher/strategia-linjaa-energia-ja-ilmastotoimet-vuoteen-

2951 2952 2953		
2954 2955 2956	1275	51 2030-ja-eteenpain
2950 2957 2958	1276	
2959 2960	1277	[78]
2961 2962	1278	Kansan Uutiset
2963 2964	1279	Kivihiilen käytölle tulossa loppu vuonna 2029 (Coal use to end by 2029)
2965 2966	1280	Retrieved 8.2. 2019 from
2967 2968	1281	https://www.kansanuutiset.fi/artikkeli/3976572-kivihiilen-kaytolle-tulossa-loppu-vuonna-2029
2969 2970	1282	
2971 2972	1283	[79]
2973 2974	1284	Various
2975 2976	1285	Official statements on the government proposal for banning the use of coal in energy
2977	1286	production
2978 2979 2980	1287	Retrieved 8.2. 2019 from
2981	1288	https://www.lausuntopalvelu.fi/FI/Proposal/Participation?proposalId=fade67cc-4fe8-433b-
2982 2983 2984	1289	<u>9ff7-dd89f1c839d8</u>
2985	1290	
2986 2987	1291	[80]
2988 2989	1292	Helen Ltd.
2990 2991	1293	Helen ready to phase out coal
2992 2993	1294	Retrieved 8.2. 2019 from
2994 2995	1295	https://www.helen.fi/en/news/2018/ready-to-phase-out-coal/
2996 2997	1296	
2998 2999	1297	[81]
3000 3001	1298	Finnish Innovation Fund Sitra
3002 3003	1299	Sitran lausunto lakiesityksestä hiilen energiakäytön kieltämiseksi (Sittra statement on the
3004 3005	1300	proposal for banning coal use in energy production)
3005 3006 3007	1301	Retrieved 8.2. 2019 from
3008 3009		

3010 3011		
3012 3013		52
3014 3015	1302	https://www.sitra.fi/artikkelit/sitran-lausunto-lakiesityksesta-hiilen-energiakayton-
3016 3017	1303	kieltamiseksi/
3018 3019	1304	
3020 3021	1305	[82]
3022 3023	1306	J. Kyytsönen
3024 3025	1307	Helsinki vastustaa kivihiilen korvaamista bioenergialla – "Sipilä, Orpo ja Terho ovat tässäkin
3026 3027	1308	asiassa väärässä" (Helsinki resists replacing coal with bioenergy – "Sipilä, Orpo and Terho
3028 3029	1309	are wrong also here")
	1310	Retrieved 8.2. 2019 from
3032 3033	1311	https://www.maaseuduntulevaisuus.fi/talous/artikkeli-1.345957
3033 3034 3035	1312	
3035 3036 3037	1313	[83]
3038	1314	I. Myllylä
0010	1315	Mihin tarvitaan kivihiilen kieltolakia? (Why is the coal ban needed?)
0012	1316	Retrieved 8.2. 2019 from
3043 3044	1317	http://poltelehti.fi/2018/03/polttopisteessa-mihin-tarvitaan-kivihiilen-kieltolakia/
3045 3046	1318	
3047 3048	1319	[84]
3049 3050	1320	K. Helin, J. Jääskelainen, S. Syri
3051 3052	1321	Energy Security Impacts of Decreasing CHP Capacity in Finland
3053 3054	1322	15th International Conference on the European Energy Market (EEM)
3055 3056	1323	https://doi.org/10.1109/EEM.2018.8469786
3057 3058	1324	
3059 3060	1325	[85]
3061 3062	1326	M. Koskinen
3063 3064	1327	Selvä vaihtoehto kivihiilelle puuttuu vielä Helsingissä – vihreät haluaa pitää kiinni hiilikiellosta
3065 3066 3067 3068	1328	(A clear alternative to coal still missing in Helsinki - Greens want to uphold the coal ban)
0000		

3069			
3070 3071			_
3072			5
3073 3074	1329	Retrieved 8.2. 2019 from	
3075 3076	1330	https://www.vihrealanka.fi/juttu/selv%C3%A4-vaihtoehto-kivihiilelle-puuttuu-viel%C3%A4-	
3077 3078	1331	helsingiss%C3%A4-%E2%80%93-vihre%C3%A4t-haluaa-pit%C3%A4%C3%A4-kiinni	
3079 3080	1332		
3081 3082	1333	[86]	
3083 3084	1334	P. Manninen	
3085 3086	1335	Kivihiilen korvaaminen onnistuu Helsingissä: "Helen hoitaa oman osuutensa" (Coal	
3087 3088	1336	replacement is going to succeed in Helsinki: "Helen will do its part)	
3089 3090	1337	Retrieved 8.2. 2019 from	
3091 3092	1338	https://www.kauppalehti.fi/uutiset/kivihiilen-korvaaminen-onnistuu-helsingissa-helen-hoitaa	<u>3-</u>
3093 3094	1339	oman-osuutensa/986d41a3-b7fc-46a1-8131-9f1ae7d2f5ce	
3095	1340		
3096 3097 3098	1341	[87]	
3099 3099 3100	1342	M. Westergren	
3100 3101 3102	1343	Viisi ratkaisua ilmastoneutraaliin tulevaisuuteen (Five solutions towards a climate neutral	
3102 3103 3104	1344	future)	
3104 3105 3106	1345	Retrieved 8.2. 2019 from	
3107 3108	1346	https://www.helen.fi/yritys/vastuullisuus/ajankohtaista/blogi/2017/viisi_ratkaisua/	
3109 3110	1347		
3111	1348	[88]	
3112 3113	1349	D. Frieden, N. Pena, D.N. Bird	
3114 3115	1350	Incentives for the use of forest biomass: a comparative analysis of Kyoto Protocol	
3116 3117	1351	accounting pre- and post-2012	
3118 3119	1352	Greenh. Gas Meas. Manag. 2 (2012) (2-3), <u>https://doi.org/10.1080/20430779.2012.72351</u>	<u>3</u>
3120 3121	1353		
3122 3123	1354	[89]	
3124 3125	1355	O. Soininvaara	
3126 3127			

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141		
	1356	Kivihiilen kielto ei yksin vähennä ilmastopäästöjä (Coal ban alone does not lower GHG
	1357	emissions)
	1358	Retrieved 8.2. 2019 from
	1359	http://www.soininvaara.fi/2016/11/04/kivihiilen-kielto-ei-yksin-vahenna-ilmastopaastoja/
	1360	
3142 3143	1361	[90]
3144	1362	P. Järvensivu
3145 3146	1363	A post-fossil fuel transition experiment: Exploring cultural dimensions from a practice-
3147 3148	1364	theoretical perspective
3149 3150	1365	J. Clean. Prod. 169 (2017), pp. 143-151, https://doi.org/10.1016/j.jclepro.2017.03.154
3151 3152	1366	
3153 3154	1367	
3155 3156		
3157		
3158		
3159 3160		
3161		
3162		
3163		
3164 3165		
3166		
3167		
3168		
3169 3170		
3171		
3172		
3173		
3174 3175		
3175		
3177		
3178		
3179		
3180 3181		
3182		
3183		
3184		
3185 3186		
5100		

To continue to burn something? Technological, economic and political path dependencies in district heating in Helsinki, Finland

Supplementary material

Documents reviewed:

Websites

- Government of Finland, <u>https://valtioneuvosto.fi/en/frontpage</u>
- Ministry of Economic Affairs and Employment, <u>https://tem.fi/en/frontpage</u>
- Ministry of Justice, Launsuntopalvelu (Statements on planned legislation). https://lausuntopalvelu.fi/Fl
- Ministry of the Environment, https://www.ym.fi/en-US
- Ministry of Agriculture and Forestry, https://mmm.fi/en/
- Helen Ltd., https://www.helen.fi/en/
- Helsinki City Council, <u>https://www.hel.fi/helsinki/fi/kaupunki-ja-hallinto/paatoksenteko/</u> kaupunginvaltuusto/
- City of Helsinki, <u>https://www.hel.fi/helsinki/en</u>
- Helsinki Region Environmental Services Authority HSY, https://www.hsy.fi/en/
- FINGO, <u>https://www.fingo.fi/english</u>
- Greepeace Finland, https://www.greenpeace.org/archive-finland/fi/
- The Finnish Association for Nature Conservancy, Suomen Luonnonsuojeluliitto, <u>https://www.sll.fi/</u>
- The Bioenergy Association of Finland, Bioenergia ry, http://www.bioenergia.fi/English
- Green Party, https://www.vihreat.fi/
- Centre Party, https://www.keskusta.fi/
- Social Democratic Party, https://sdp.fi/
- National Coalition Party, https://www.kokoomus.fi/
- True Finns Party, https://www.perussuomalaiset.fi/
- Left Alliance, <u>https://vasemmisto.fi/</u>

Web-searches, keywords "kaukolämpö", "Helen", "hiililaki"

- Helsingin Sanomat, <u>https://www.hs.fi</u>
- Maaseudun Tulevaisuus, https://www.maaseuduntulevaisuus.fi/
- Vihreä Lanka, https://www.vihrealanka.fi
- Helsingin Uutiset, https://www.helsinginuutiset.fi/