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Abstract We give an introduction to several regularization

schemes that deal with ultraviolet and infrared singularities

appearing in higher-order computations in quantum field the-

ories. Comparing the computation of simple quantities in the

various schemes, we point out similarities and differences

between them.
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1 Introduction

Higher-order calculations in quantum field theories usually

involve ultraviolet (UV) and/or infrared (IR) divergences

which need to be regularized at intermediate steps. Only

after renormalization and proper combination of real and vir-

tual corrections, a finite and regularization-scheme indepen-

dent result can be obtained. The choice of the regularization

scheme matters in several respects of conceptual and practi-

cal relevance:

• Mathematical consistency: It must be excluded that the

calculational rules lead to internal inconsistencies such

as final expressions contradicting each other.

• Unitarity and causality: The final finite result must be

compatible with the basic quantum field theoretical prop-

erties of unitarity and causality. In practice this compat-

ibility can be shown by proving the equivalence of a

given scheme with ms or bphz renormalization, which

are known to have these properties.

• Symmetries: It is desirable that symmetries like Lorentz

invariance, non-Abelian gauge invariance, or supersym-

metry are manifestly preserved by the regularization to

the largest possible extent. Symmetry breaking by the

regularization which does not correspond to anomalies

must be compensated by special, symmetry-restoring

counterterms.

• Quantum action principle: The regularized quantum

action principle is a relation between symmetries of the

regularized Lagrangian and Ward/Slavnov–Taylor identi-

ties of regularized Green functions. If it is valid in a given

regularization scheme, the study of symmetry properties

is strongly simplified.

• Computational efficiency: The regularization scheme

should allow for efficient calculational techniques and

ideally reduce the technical complexity as much as pos-

sible.

In recent years, the understanding of traditional regular-

ization schemes has further improved, and novel schemes

have been proposed and developed. The motivation for this

progress has been to broaden the conceptual basis as well as

to enable new efficient, automated analytical and numerical

calculational methods. It appears timely to present a uniform

and up-to-date description of all schemes and to collect and

compare all established properties, definitions, and calcula-

tional procedures. This is the goal of the present report. The

covered schemes are the following:

• traditional dimensional schemes: conventional dimen-

sional regularization (cdr), the ‘t Hooft–Veltman scheme

(hv), the four-dimensional helicity scheme (fdh), and

dimensional reduction (dred),

• new, distinctive (re-)formulations of dimensional sch-

emes: the four-dimensional formulation of the fdh

scheme (fdf), the six-dimensional formalism (sdf),

• non-dimensional schemes: implicit regularization (ireg),

four-dimensional regularization/renormalization (fdr),

four-dimensional unsubtraction (fdu).

In the following we present introductions to all these

schemes. Having applications and practitioners in mind we

will perform some simple calculations to illustrate the dif-

ferences as well as common features of the schemes. In par-

ticular, we aim to sketch the computation of the cross sec-

tion for e+e− → γ ∗ → qq̄ at next-to-leading order and

the fermion self-energy. The quantities are chosen such that

potential technical disadvantages of the traditional schemes

are exposed and the properties of novel schemes with respect

to UV and IR divergences and (sub)renormalization can be

illustrated. In a number of footnotes we will directly compare

intermediate results and features of the different schemes and

comment on their relation.

Of course, much more detailed information is available in

the literature and we refer to the references listed in the indi-

vidual sections for a more in-depth discussion. However, we

also have to warn the reader that, unfortunately, the nomen-

clature and notation used in the literature is far from being

unique. This often leads to misunderstandings. In an attempt

to avoid these in the future, we have adopted a unified descrip-

tion in this article. As a result, the notation and terms used

here will differ in parts from the notation used in the special-

ized literature referred to. To help further with clearing out

some of the misunderstandings and elucidating the relation
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between the schemes, we will conclude in Sect. 7 by giving

a list of concrete statements.

2 DS: dimensional schemes CDR, HV, FDH, DRED

2.1 Integration in d dimensions and dimensional schemes

Dimensional regularization [1,2] and variants are the most

common regularization schemes for practical calculations in

gauge theories of elementary particle physics. In the follow-

ing we summarize the basic definitions common to all dimen-

sional schemes (ds) discussed in Sects. 2 and 3 and then pro-

vide specific definitions for four variants of ds which differ

by the rules for the numerator algebra in analytical expres-

sions.

The basic idea of all ds is to regularize divergent integrals

by formally changing the dimensionality of space-time and

of momentum space. In the present report we always denote

the modified space-time dimension by d, and we set

d ≡ 4 − 2ǫ. (2.1)

Correspondingly, a four-dimensional loop integration is

replaced by a d-dimensional one,1

∫
d4k[4]
(2π)4

→ μ4−d
ds

∫
ddk[d]
(2π)d

, (2.2)

including the scale of dimensional regularization, μ
ds

. After

this replacement, UV and IR divergent integrals lead to poles

of the form 1/ǫn . In Refs. [3,4], it is shown that such an

operation can indeed be defined in a mathematical consis-

tent way and that this operation has the expected properties

such as linearity and invariance under shifts of the integration

momentum.

To define a complete regularization scheme for realistic

quantum field theories, it must be specified how to deal with

γ matrices, metric tensors, and other objects appearing in

analytical expressions. Likewise, it should be specified how

to deal with vector fields in the regularized Lagrangian. On

a basic level, two decisions need to be made,

• regularize only those parts of diagrams which can lead to

divergences, or regularize everything;

• regularize algebraic objects like metric tensors, γ matri-

ces, and momenta in d dimensions, or in a different

dimensionality.

1 In this section and in Sect. 3, the (quasi)dimensionality dim of an

object is indicated by a subscript [dim]. In Sects. 4–6, where loop inte-

grations are performed in strictly four dimensions, the subscript is sup-

pressed unless stated otherwise.

It turns out that there is an elegant way to unify essentially

all common variants of ds in a single framework, where

all definitions can easily be formulated and where the dif-

ferences and relations between the schemes become trans-

parent. This framework is based on distinguishing strictly

four-dimensional objects, formally d-dimensional objects,

and formally ds-dimensional objects.2 These objects can be

mathematically realized [3–5] by introducing a strictly four-

dimensional Minkowski space S[4] and infinite-dimensional

vector spaces QS[ds ], QS[d], QS[nǫ ], which satisfy the rela-

tions

QS[ds ] = QS[d] ⊕ QS[nǫ ], S[4] ⊂ QS[d]. (2.3)

The space QS[d] is the natural domain of cdr and of momen-

tum integration in all considered schemes. Using

ds ≡ d + nǫ = 4 − 2ǫ + nǫ, (2.4)

it is enlarged to QS[ds ] via a direct (orthogonal) sum with

QS[nǫ ].
3

The structure of the vector spaces in Eq. (2.3) gives rise to

the following decomposition of metric tensors and γ matri-

ces:

g
μν
[ds ] = g

μν
[d] + g

μν
[nǫ ], γ

μ
[ds ] = γ

μ
[d] + γ

μ
[nǫ ]. (2.5)

Since the quantities in Eq. (2.5) do not have a finite-

dimensional representation, in most of the practical calcu-

lations only their algebraic properties are relevant,

(g[dim])μμ = dim, (g[d]g[nǫ ])
μ

ν = 0, (2.6a)

{γ μ
[dim], γ

ν
[dim]} = 2g

μν
[dim], {γ μ

[d], γ
ν
[nǫ ]} = 0, (2.6b)

with dim ∈ {4, ds, d, nǫ}.
Furthermore, a complete definition of the various dimen-

sional schemes requires one to distinguish two classes of

vector fields (VF):4

• Vector fields associated with particles in 1PI diagrams or

with soft and collinear particles in the initial/final state

are in the following called singular VF.

• All other vector fields are called regular VF.

2 In many original references, objects such as γ̂ μ, γ̃ μ, γ̆ μ are intro-

duced with specific meanings which differ, depending on the paper,

the scheme, and the context. Hence, we avoid such short-hand nota-

tions here and stick with a more explicit one to make the meaning of

expressions more apparent.

3 In fdh and dred, ds is usually taken to be 4, and therefore nǫ = 2ǫ.

4 Note that compared to Ref. [6] we replaced the terms ‘internal’ and

‘external’ by ‘singular’ and ‘regular’, respectively, to avoid possible

confusion in later considerations.
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Table 1 Treatment of vector fields in the four different regularization

schemes, i.e. prescription which metric tensor has to be used in prop-

agator numerators and polarization sums. The quantity ds is usually

taken to be 4. This table is taken from Ref. [6]

cdr hv fdh dred

Singular VF g
μν
[d] g

μν
[d] g

μν
[ds ] g

μν
[ds ]

Regular VF g
μν
[d] g

μν
[4] g

μν
[4] g

μν
[ds ]

Since UV and IR divergences are only related to singular VF

there is some freedom in the treatment of the regular ones.

In this report, we distinguish the following four ds:

• cdr and hv are two flavours of what is commonly called

‘dimensional regularization’. They regularize algebraic

objects in d dimensions, nǫ-dimensional objects are not

used. In cdr, all VF are regularized, in hv only singular

ones.

• fdh and dred are two flavours of what is commonly

called ‘dimensional reduction’. They regularize algebraic

objects in ds dimensions. Sometimes ds is identified as

ds ≡ 4 from the beginning, but it is possible to keep it

as a free parameter, which is set to 4 only at the end of a

calculation. In dred, all VF are regularized, in fdh only

singular ones.

The definitions of these four schemes can be essentially

reduced to the treatment of vector fields; see Table 1. This

unified formulation of the four schemes makes obvious that

a calculation in dred covers all elements of a calculation in

the other schemes.

In fdh and dred, where singular vector fields are treated

in ds dimensions, the split of Eq. (2.5) can be applied to the

regularized Lagrangian and to covariant derivatives. As an

illustration, we provide here the regularized covariant deriva-

tives in QED and QCD,

QED: D
μ
[ds ]ψi = ∂

μ
[d]ψi + i(eA

μ
[d] + ee A

μ
[nǫ ])Qψi ,

(2.7a)

QCD: D
μ
[ds ]ψi = ∂

μ
[d]ψi + i(gs A

μ,a
[d] + ge A

μ,a
[nǫ ])T

a
i jψ j .

(2.7b)

It is important that the gauge-field part is not written

as a complete ds-dimensional entity but is split into d-

dimensional and nǫ-dimensional parts, and particularly with

independent couplings. Conventionally, the nǫ-dimensional

fields are called ‘ǫ-scalars’, the associated couplings are

called ‘evanescent couplings’. This split is strictly necessary

at the multi-loop level in non-supersymmetric theories since

the evanescent couplings are not protected by d-dimensional

Lorentz and gauge invariance and renormalize differently

compared to the corresponding gauge couplings. As an exam-

ple, we provide the (minimal) renormalization of the QED

gauge coupling and the corresponding evanescent coupling

in fdh/dred,

β = μ2 d

dμ2

( e

4π

)2

=−
( e

4π

)4
[
−4

3
NF

]
+· · · , (2.8a)

βe = μ2 d

dμ2

( ee

4π

)2

= −
( ee

4π

)4

[−4 − 2NF ]

−
( e

4π

)2 ( ee

4π

)2

[+6] + · · · . (2.8b)

These values can be obtained e.g. from Ref. [7] by setting

CA → 0, NF → 2NF . It is obvious that even for ee = e, the

values of β and βe are not the same.

2.2 Application example 1: electron self-energy at NLO

To illustrate the different treatment of the Lorentz algebra

in the various ds, we consider the electron self-energy at

NLO in dred; see Fig. 1. As mentioned in the previous sec-

tion, this can be seen as the most comprehensive case of the

four considered ds. For simplicity, we use massless QED as

underlying theory. On the one hand, the Lorentz algebra can

then be evaluated by applying the split of Eq. (2.5),

−i	
(1)

dred
= −i{	(1)(e2) + 	̃(1)(e2

e )}

= μ4−d
ds

∫
ddk[d]
(2π)d

{e2γ
μ
[d] γ

ν
[d] γ

ρ
[d] (g[d])μρ

Fig. 1 Diagrams contributing to the electron self-energy at the one-

and two-loop level including a quasi-d-dimensional photon (solid wavy

line) and a quasi-nǫ -dimensional ǫ-scalar (dashed wavy line), respec-

tively. The insertion of a coupling counterterm is denoted by a cross.

The ǫ-scalar diagrams only exist in fdh and dred
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+ e2
eγ

μ
[nǫ ]γ

ν
[d] γ

ρ
[nǫ ](g[nǫ ])μρ}

(k[d])ν
[k2

[d]][(k[d]+ p[d])
2]

= μ4−d
ds

∫
ddk[d]
(2π)d

{e2(−γ
μ
[d] (γ[d])μγ

ν
[d] + 2γ

ν
[d] )

+ e2
e (−γ

μ
[nǫ ](γ[nǫ ])μγ

ν
[d] )}

(k[d])ν
[. . . ][. . . ]

= μ4−d
ds

∫
ddk[d]
(2π)d

{e2(−d + 2) + e2
e (d − ds)}

×
γ ν
[d](k[d])ν

[. . . ][. . . ] , (2.9)

where Feynman gauge and the equality nǫ = (ds − d) have

been used. Setting nǫ = 0 then corresponds to the results in

cdr and hv.

On the other hand, for ee = e, the amplitude can also

be evaluated more directly by using a quasi-ds-dimensional

algebra,

−i	
(1)

dred
=μ4−d

ds

∫
ddk[d]
(2π)d

{e2γ
μ
[ds ]γ

ν
[d] γ

ρ
[ds ](g[ds ])μρ}

×
(k[d])ν

[k2
[d]][(k[d] + p[d])

2]

=μ4−d
ds

∫
ddk[d]
(2π)d

{e2(−γ
μ
[ds ](γ[ds ])μγ

ν
[ds ]+2γ

ν
[ds ])}

×
(k[d])ν

[. . . ][. . . ]

=μ4−d
ds

∫
ddk[d]
(2π)d

{e2(−ds + 2)}
γ ν
[d](k[d])ν

[. . . ][. . . ] .

(2.10)

In the second line, the identity γ ν
[d](k[d])ν = γ ν

[ds ](k[d])ν is

used which directly follows from the structure of the vector

spaces in Eq. (2.3).

When setting ds = 4, one obtains the result in fdh/dred.

Moreover, setting ee = e with α = e2/(4π), it follows that

the different treatment of the algebra in Eqs. (2.9) and (2.10)

yields the same result,

−i	
(1)

dred
= i /p[d]

(
α

4π

)[
1

ǫ
+ 2 − ln

(
−

p2
[d]

μ2
ds

)
+ O(ǫ)

]
.

(2.11)

As long as no distinction between gauge and evanescent cou-

plings is required, both approaches are therefore equivalent.

At the two-loop level, however, the different UV renor-

malization of e and ee enters via the counterterm diagrams

shown on the right of Fig. 1,

−i	
(2,ct)

dred
= −i{δ(1)e2 × 	(1)(e2) + δ(1)e2

e × 	̃(1)(e2
e )}.
(2.12)

Since no distinction between the couplings is possible when

using a quasi-ds-dimensional algebra, in this case it is manda-

tory to apply the split of Eq. (2.5). Generalizing to an arbitrary

ℓ-loop calculation, the introduction and separate treatment of

ǫ-scalars has to be considered up to (ℓ−1) loops. Genuine ℓ-

loop diagrams, on the other hand, can either be evaluated by

using the split of Eq. (2.5) or by using a quasi-ds-dimensional

Lorentz algebra. Further details regarding the UV renormal-

ization in the various ds can be found in Refs. [7–11].

2.3 Application example 2: e+e− → γ ∗ → qq̄ at NLO

Any physical observable has to be independent of the regu-

larization scheme. What is usually done in computing NLO

cross sections is to obtain the virtual corrections in cdr

(either directly, or first in another scheme and then trans-

lated to cdr) and combine them with the real corrections

calculated in cdr. As shown in Ref. [6], it is also possible to

compute the real corrections directly in schemes other than

cdr.

We use the very simple process e+e− → γ ∗ → qq̄ with

massless quarks to illustrate the interplay between the scheme

dependence in the real and virtual corrections at NLO in

QCD. To simplify further, we average over the directions of

the incoming leptons (with momenta p and p′) and actually

consider only γ ∗ → qq̄ . This is achieved by replacing the

(regularization-scheme dependent) leptonic tensor by

L
μν

ds
= (ie)2Tr[/p′γ μ

/pγ ν] → 4e2 dim − 2

2(dim − 1)

× (sg
μν
[dim] − qμqν) → 4e2

3
sg

μν
[dim], (2.13)

where s ≡ q2 = (p + p′)2. In the first step, the average

is taken in dim dimensions. However, the prefactor will be

an overall factor of the full cross section. Hence, for this

prefactor we set dim = 4 from the beginning and the only

scheme dependence that is left in L
μν

ds
is in the one in g

μν
[dim].

The following discussion might create the impression that

schemes other than cdr are complicated to use. However, this

is simply because we will give the details of the field-theoretic

background. This results in many apparent ‘complications’

that can actually be avoided at a practical level.

Let us begin with the most straightforward case of cdr,

where the regular photon is treated in d dimensions. Here,

only the left diagram in Fig. 2 contributes. According to

Table 1, the metric tensor of the photon propagator – and

hence in Eq. (2.13) – is g
μν
[d], the coupling at the vertices

is the gauge coupling e. Using Eq. (2.13), we get for the

(spin summed/averaged) squared matrix element M
(0)

ds
=

〈A(0)

ds
|A(0)

ds
〉
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Fig. 2 Tree-level diagrams contributing to the process e+e− → γ ∗ →
qq̄ . The interaction is mediated by a photon γ (left) and an ǫ-scalar pho-

ton γ̃ (right), respectively. The left diagram is present in all considered

schemes, whereas the right one only exists in dred

M
(0)

cdr
=

Q2
q Nc

3s
e4(d − 2) ≡ ω(0)e4(d − 2), (2.14a)

where Qq = −1/3, 2/3 and Nc are the electric charge and

the colour number of the quark, respectively, and the flux

factor 1/(2s) is included.

In hv and fdh, the regular photon is kept unregularized;

the related metric tensor is therefore g
μν
[4] . The squared ampli-

tudes are then given by

M
(0)

hv
= M

(0)

fdh
= ω(0)e4(4 − 2). (2.14b)

In contrast to this, in dred, the regular photon is treated

in ds dimensions and thus contains a gauge-field part and

an ǫ-scalar part. It is therefore possible to decompose the

Born amplitude into the two diagrams of Fig. 2. The crucial

point is that the diagrams involve different couplings; the

left diagram is proportional to the square of the electric gauge

coupling e as in the other schemes, whereas the right diagram

is proportional to e2
e . The result of the squared matrix element

in dred therefore reads

M
(0)

dred
= M

(0,γ )

dred
+ M

(0,γ̃ )

dred
= M

(0)

cdr
+ M

(0,γ̃ )

dred

= ω(0)[e4(d − 2) + e4
e (nǫ)]. (2.14c)

The appearance of a second contributions in dred is one of

those apparent complications mentioned above. In practice,

one usually sets ee = e from the beginning and computes the

two processes in a combined way like in Eq. (2.10). This is

possible since the different UV renormalizations of e and ee

are irrelevant in this case.

Using the results in Eq. (2.14) and integrating over the

phase space, we obtain the (scheme-independent) Born cross

section

σ (0) = �2(ǫ)

8π
M

(0)

ds

∣∣∣∣
d→4

=
Q2

q Nc

3s

(
e4

4π

)
, (2.15)

where we separate the d-dependent two-body phase space

�2(ǫ) =
(

4π

s

)ǫ
Ŵ(1 − ǫ)

Ŵ(2 − 2ǫ)
= 1 + O(ǫ). (2.16)

Virtual contributions

In a next step we consider the virtual corrections to the

(spin summed/averaged) squared matrix element, M
(1)

ds
=

2 Re〈A(0)

ds
|A(1)

ds
〉. To obtain the results of the corresponding

one-loop amplitudes, we have to evaluate the diagrams shown

in Fig. 3. There are two different vector fields in the one-loop

diagrams, a virtual photon that is ‘regular’ and a virtual gluon

that is ‘singular’. According to this, the treatment of the pho-

ton is as for the Born amplitude. For dred, this results in two

contributions, one proportional to the gauge coupling e, the

other proportional to the evanescent coupling ee. Due to the

Ward identity, only the latter coupling gets renormalized. In

the ms scheme, we obtain

(Qqee)
2 → (Qqee)

2

{
1 +

(
αs

4π

)
CF

[
−3

ǫ

]

+
( αe

4π

)
CF

4 − nǫ

2ǫ

}
. (2.17)

We remark that in schemes other than cdr, the ms countert-

erms in general can have O(nǫ) terms, as discussed e.g. in

Ref. [12]. In dred, one therefore has to consider the (finite)

counterterm

CT
dred

= M
(0,γ̃ )

dred
CF

{(
αs

4π

)[
− 6

ǫ

]
+
(

αe

4π

)
4 − nǫ

ǫ

}
;

(2.18)

see also Fig. 4. In the same way, when using fdh or dred,

the gluon can be split according to Eq. (2.5). Thus, in these

schemes we get terms proportional to αs = g2
s /(4π) and

terms proportional to αe = g2
e /(4π). The unrenormalized

virtual one-loop corrections are given by

Fig. 3 Virtual diagrams for e+e− → γ ∗ → qq̄ including a gluon g or an ǫ-scalar g̃. In cdr and hv, only the first diagram contributes, whereas

in fdh also the second diagram is present. In dred, all diagrams contribute
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Fig. 4 Counterterm diagram for e+e− → γ ∗ → qq̄ which only con-

tributes in dred

M
(1)

cdr
= ω(1)M

(0)

cdr

(αs

π

)[
− 1

ǫ2
− 3

2ǫ
− 4

]
+ O(ǫ),

(2.19a)

M
(1)

hv
= ω(1)M

(0)

hv

(
αs

π

)[
− 1

ǫ2
− 3

2ǫ
− 4

]
+ O(ǫ),

(2.19b)

M
(1)

fdh
= ω(1)M

(0)

fdh

{(
αs

π

)[
− 1

ǫ2
− 3

2ǫ
− 4

]

+
(

αe

π

)[
nǫ

4ǫ

]}
+ O(ǫ), (2.19c)

M
(1)

dred
= ω(1)M

(0,γ )

dred

{(
αs

π

)[
− 1

ǫ2
− 3

2ǫ
− 4

]

+
(

αe

π

)[
nǫ

4ǫ

]}

+ ω(1)M
(0,γ̃ )

dred

{(
αs

π

)[
− 1

ǫ2

]
+
(

αe

π

)[
− 1

ǫ

]}

+ O(ǫ), (2.19d)

with

ω(1) ≡ CF cŴ(ǫ)Re(−s)−ǫ = CF cŴ(ǫ)s−ǫ

×
[

1 − ǫ2 π2

2
+ O(ǫ4)

]
, (2.20a)

cŴ(ǫ) = (4π)ǫ
Ŵ(1 + ǫ)Ŵ2(1 − ǫ)

Ŵ(1 − 2ǫ)
= 1 + O(ǫ). (2.20b)

In Eq. (2.19), we have dropped nǫ terms that vanish after

setting nǫ = 2ǫ and taking the subsequent limit ǫ → 0.

In particular, the dred result looks awfully complicated.

However, from a practical point of view the situation is much

simpler. As discussed in the previous section, the virtual con-

tributions can be computed without distinguishing the vari-

ous couplings and without splitting the photon or the gluon.

We can simply evaluate the algebra of the single vertex dia-

gram according to the scheme and perform the integration.

The only part where the split is crucial so far is to obtain

the UV counterterm, Eq. (2.18). Thus, the computation in

schemes other than cdr is not significantly more extensive.

Computing the (IR divergent) virtual cross section by inte-

grating the properly(!) renormalized matrix element squared

over the two-parton phase space, Eq. (2.16), we get

σ
(v)

cdr
= σ (0)

(
αs

π

)
CF�2(ǫ)cŴ(ǫ)s−ǫ

×
[

− 1

ǫ2
− 1

2ǫ
− 5 − π2

2
+ O(ǫ)

]
,

(2.21a)

σ
(v)

hv
= σ (0)

(
αs

π

)
CF�2(ǫ)cŴ(ǫ)s−ǫ

×
[

− 1

ǫ2
− 3

2ǫ
− 8 − π2

2
+ O(ǫ)

]
,

(2.21b)

σ
(v)

fdh
= σ

(v)

dred
= σ (0)

(
αs

π

)
CF�2(ǫ)cŴ(ǫ)s−ǫ

×
[

− 1

ǫ2
− 3

2ǫ
− 7 − π2

2
+ O(ǫ)

]
,

(2.21c)

where we have set nǫ = 2ǫ and ge = gs .

Real contributions

Finally we have to face the real corrections. In cdr, the ampli-

tude consists of two diagrams (one of which is depicted in

Fig. 5). The matrix element squared, expressed in terms of

si j ≡ 2pi · p j reads

M
(0)

cdr
(qq̄g)

= ω(r)e4g2
s (d − 2)

×
{[

(s12 + s13)
2

s13s23
+ d − 4

2

s13 + s23

s23

]
+ [1 ↔ 2]

}
,

(2.22a)

Fig. 5 Real diagrams for e+e− → qq̄g and e+e− → qq̄ g̃. In cdr and hv there is only the first diagram, whereas in fdh also the second diagram

is present. In dred, all diagrams contribute. An analogous diagram where the gluon couples to the other quark leg is understood
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where ω(r) = ω(0)2CF/s. In hv, the same diagrams con-

tribute. One might be tempted to assume that M
(0)

hv
(qq̄g) can

be obtained from Eq. (2.22a) simply by setting d → 4. How-

ever, this is incorrect. In the regime where the gluons become

collinear, they have to be treated as singular gluons. Thus, in

hv they are d-dimensional. The same is true in principle for

the soft region, but at one loop, there is no scheme dependence

in the soft singularities. This corresponds to the statement

that the cusp anomalous dimension is scheme independent at

the one-loop level [13,14]. Treating the gluons properly, we

obtain

M
(0)

hv
(qq̄g) = 2

d − 2
M

(0)

cdr
(qq̄g). (2.22b)

In the case of fdh we get contributions ∼gs and ∼ge. Again,

the gluon has to be treated as a singular one. Hence, it is split

into a d-dimensional gluon and an ǫ-scalar, resulting in

M
(0)

fdh
(qq̄g) + M

(0)

fdh
(qq̄ g̃) = M

(0)

hv
(qq̄g)

+ ω(r)e4g2
e nǫ

(s13 + s23)
2

s13s23
.

(2.22c)

Finally, as illustrated in Fig. 5, in dred the matrix element

squared is formally decomposed into four parts,

M
(0)

dred
(qq̄g) = M

(0,γ )

dred
(qq̄g) + M

(0,γ )

dred
(qq̄ g̃)

+ M
(0,γ̃ )

dred
(qq̄g) + M

(0,γ̃ )

dred
(qq̄ g̃)

= M
(0)

cdr
(qq̄g) + e4

e g2
s nǫ

× 4ss12 + (2 − nǫ)(s13 + s23)
2

2s13s23

+ d − 2

2
M

(0)

fdh
(qq̄ g̃) + e4

e g2
e nǫ

× −4s13s23 + nǫ(s13 + s23)
2

2s13s23
. (2.22d)

Note that if we set ee = e and ge = gs , the matrix element

in dred corresponds to the usual four-dimensional matrix

element,

M
(0)

dred
(qq̄g)

∣∣∣∣ee=e
ge=gs

= M
(0)

cdr
(qq̄g)

∣∣∣∣
d=4

= ω(r)e4g2
s 4

(
− 1

y13
− 1

y23
+ y13

2y23
+ y23

2y13
+ 1

y13 y23

)
,

(2.23)

with yi j ≡ si j/s. This is generally true for arbitrary tree-level

amplitudes in dred, but not necessarily in any of the other

schemes. For the considered process, it happens to be true

also in fdh.

The real cross section can now be obtained in any scheme

by integrating the corresponding matrix element over the d-

dimensional real phase space,

σ
(r)

ds
= s

2(4π)3
�3(ǫ)

∫ 1

0
dy13

×
∫ 1−y13

0
dy23 y−ǫ

13 y−ǫ
23 (1 − y13 − y23)−ǫ M

(0)

ds
(qq̄g)

(2.24a)

≡ s

2(4π)3
�3(ǫ)

∫∫

y13 y23

y−ǫ
13 y−ǫ

23 (1−y13−y23)−ǫ M
(0)

ds
(qq̄g).

(2.24b)

Similar to the two-particle phase space, we extract a d-

dependent factor

�3(ǫ) =
(

4π

s

)2ǫ
1

Ŵ(2 − 2ǫ)
= 1 + O(ǫ). (2.25)

For future reference, we explicitly list the integrals needed

to evaluate Eq. (2.24),

∫∫

y13 y23

y−ǫ
13 y−ǫ

23 (1 − y13 − y23)
−ǫ 1

y13
= −1

ǫ
− 3 + O(ǫ),

(2.26a)
∫∫

y13 y23

y−ǫ
13 y−ǫ

23 (1 − y13 − y23)
−ǫ y23

y13
= − 1

2ǫ
− 7

4
+ O(ǫ),

(2.26b)
∫∫

y13 y23

y−ǫ
13 y−ǫ

23 (1 − y13 − y23)
−ǫ 1

y13 y23
= 1

ǫ2
− π2

2
+ O(ǫ).

(2.26c)

Using these results for the calculation of the real corrections

in the various schemes and setting ee = e, ge = gs , nǫ = 2ǫ,

we obtain

σ
(r)

cdr
= σ (0)

(
αs

π

)
CF�3(ǫ)

×
[

1

ǫ2
+ 1

2ǫ
+ 13

4
− π2

2
+ O(ǫ)

]
,

(2.27a)

σ
(r)

hv
= σ (0)

(
αs

π

)
CF�3(ǫ)

×
[

1

ǫ2
+ 3

2ǫ
+ 19

4
− π2

2
+ O(ǫ)

]
,

(2.27b)

123



Eur. Phys. J. C (2017) 77 :471 Page 9 of 39 471

σ
(r)

fdh
= σ

(r)

dred
= σ (0)

(
αs

π

)
CF�3(ǫ)

×
[

1

ǫ2
+ 3

2ǫ
+ 17

4
− π2

2
+ O(ǫ)

]
.

(2.27c)

And, at long last, we find the well-known regularization-

scheme independent physical cross section

σ (1) = σ (0) + σ
(v)

ds
+ σ

(r)

ds

∣∣∣∣
d→4

=
Q2

q Nc

3s

(
e4

4π

)

×
[

1 +
(

αs

4π

)
3CF

]
. (2.28)

The expressions for the virtual and the real cross sections,

Eqs. (2.21) and (2.27), have been obtained setting ee = e

and ge = gs . We reiterate that the fdh/dred computa-

tion can be done in a much simpler way by directly iden-

tifying these couplings from the beginning. The only place

where it is crucial to distinguish them is for the proper

UV (sub)renormalization, i.e. to obtain the counterterm in

Eq. (2.18). If we had kept the couplings apart to the very end,

the final result would have been unaffected. In other words,

terms involving the ‘unphysical’ couplings ee and ge drop

out when adding the virtual, the real, and the counterterms

contributions. For our example this can easily be verified

by using the expressions in Eqs. (2.14), (2.18), (2.19), and

(2.22).

2.4 Established properties and future developments of DS

As mentioned in the introduction, regularization schemes

should not only simplify practical calculations but also satisfy

certain basic requirements. For decades, dimensional regu-

larization in the two flavours cdr and hv has been the most

commonly used regularization, not only because it allows for

the use of powerful calculational techniques but also because

many all-order statements have been rigorously proved in

these schemes.

Using an infinite-dimensional vector space as domain, a

definition of the formally d-dimensional objects and oper-

ations is given in Refs. [3,4]. Among the implications are

mathematical consistency and the absence of possible ambi-

guities. The equivalence to bphz renormalization and the reg-

ularized and renormalized quantum action principle is shown

in Refs. [15,16]. As a caveat, however, in chiral theories

these statements rely on the use of a non-anticommuting γ5

as defined e.g. in Refs. [2,16]. In non-chiral theories like

QCD, the quantum action principle makes it obvious that

non-Abelian gauge invariance is manifestly preserved such

that the regularized QCD Green functions automatically sat-

isfy the Slavnov–Taylor identities at all orders.

The situation regarding dred and fdh has been consid-

erably more complicated in the past. However, now these

schemes have reached a similar status as cdr and hv. After

first one- and two-loop applications of dred [8], the equiv-

alence of fdh/dred and cdr is shown in Refs. [9,10], indi-

rectly proving that these schemes are compatible with uni-

tarity and causality. In Ref. [5], it is shown how the spaces in

Eq. (2.3) can be defined in a rigorous way, avoiding mathe-

matical ambiguities and excluding the possible inconsistency

found before in Ref. [17]. In this way also an earlier puzzle

regarding unitarity of dred discussed in Ref. [18] is resolved.

The key ingredient for the solution is the introduction and

separate treatment of ǫ-scalar fields. One important conse-

quence of the additional scalars is the need to distinguish

gauge couplings from evanescent couplings during the renor-

malization procedure, as indicated in Eq. (2.7). The relation

between unitarity and the correct renormalization of evanes-

cent couplings in fdh/dred has been further stressed and

exemplified with explicit calculations in Refs. [7,11].

Apart from the UV properties of the dimensional schemes

also IR divergences and their scheme dependence have been

investigated up to the multi-loop regime. The separate treat-

ment of ǫ-scalars has been used in Ref. [19] to clarify a

seeming non-factorization of QCD amplitudes observed ear-

lier in Refs. [20–22]. In Refs. [6,23], it is shown how dred

and fdh can be applied in the computation of NLO cross

sections in massless QCD. The scheme independence of a

cross section at NLO has also been studied in Ref. [24].

Regarding virtual contributions, these considerations have

been extended to NNLO in Refs. [12–14,25,26]. Moreover,

the latter references provide NNLO transition rules for trans-

lating UV-renormalized virtual amplitudes from one dimen-

sional scheme to another. The IR factorization properties of

QCD including massive partons have been investigated at

NLO in Ref. [27] and recently up to NNLO in Ref. [28]. For

the real corrections, a formulation of the sector-improved

residue subtraction scheme in the hv scheme is presented in

Ref. [29].

Regarding supersymmetry, dred and fdh have signifi-

cant advantages as in many cases supersymmetry is mani-

festly preserved although an all-order proof does not exist.

For reviews regarding applications of these schemes to super-

symmetry, we refer to Refs. [30,31].

3 FDF, SDF: four- and six-dimensional formalism

In the following we discuss some new (re-)formulations

of ds. In Sects. 3.1–3.3, we describe fdf, a strictly four-

dimensional formulation of the fdh scheme. The remaining

two subsections are dedicated to topics that are not directly

fdf but that are closely related to it, namely automated NLO
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calculations using GoSam and the six-dimensional formal-

ism.

3.1 FDF: four-dimensional formulation of FDH

The four-dimensional formulation of the fdh scheme (fdf)

is a novel implementation of fdh. Its aim is to achieve the d-

dimensional regularization of one-loop scattering amplitudes

in a purely four-dimensional framework [32]. The starting

point for the formulation of the scheme is the structure of the

quasi-ds-dimensional fdh space, Eq. (2.3), which we write

as

QS[ds ] = QS[d] ⊕ QS[nǫ ]
= S[4] ⊕ QS[−2ǫ] ⊕ QS[nǫ ] ≡ S[4] ⊕ QS[nǫ−2ǫ].

(3.1)

Accordingly, the underlying space of the fdh scheme is writ-

ten as an orthogonal sum of a strictly four-dimensional space

S[4] and a quasi-(nǫ−2ǫ)-dimensional space QS[nǫ−2ǫ]. Sim-

ilar to Eq. (2.5), metric tensors and γ matrices can then be

decomposed as

g
μν
[ds ] = g

μν
[4] + g

μν
[nǫ−2ǫ], γ

μ
[ds ] = γ

μ
[4] + γ

μ
[nǫ−2ǫ], (3.2)

with

(g[4])
μ

μ = 4 (g[4]g[nǫ−2ǫ])
μ

ν = 0, (3.3a)

(g[nǫ−2ǫ])
μ

μ = (nǫ − 2ǫ)
ds→4→ 0. (3.3b)

The algebraic properties of the matrices γ
μ
[nǫ−2ǫ] can be

obtained from Eq. (3.3) and read

{γ μ
[nǫ−2ǫ], γ

ν
[nǫ−2ǫ]} = 2g

μν
[nǫ−2ǫ], (3.4a)

{
γ

μ
[4], γ

ν
[nǫ−2ǫ]

}
= 0, [γ 5

[4], γ
μ
[nǫ−2ǫ]] = 0, (3.4b)

Loop momenta, on the other hand, are treated in d dimensions

like in any dimensional scheme,

k
μ
[d] = k

μ
[4] + k

μ
[−2ǫ], (3.5)

with

k2
[d] = (k[4] + k[−2ǫ])2 = k2

[4] + k2
[−2ǫ] ≡ k2

[4] − μ2. (3.6)

Here and in the following, the square of the (−2ǫ)-

dimensional component of a loop momentum is identified

with −μ2. The decomposition of the space-time dimension

in Eq. (3.6) then suggests that any integral of the form

I d
i1···ik

[N (k[d])] =
∫

ddk[d]
(2π)d

Ni1···ik
(k[d])

Di1 · · · Dik

(3.7)

can be split according to

I d
i1···ik

[N (k[4], μ2)] =
∫

d4k[4]
(2π)4

×
∫

d−2ǫk[−2ǫ]
(2π)−2ǫ

Ni1···ik
(k[4], μ2)

Di1 · · · Dik

, (3.8)

where i1 . . . ik are indices labeling the loop propagators. With

the decomposition of the integral measure in Eq. (3.8), any

one-loop integral in d dimensions has a four-dimensional

integrand, depending on an additional length μ2. The (radial)

integration over μ2 can be carried out algebraically by

redefining the number of dimensions [33],

I d
i1···ik

[(μ2)r ] = (2π)r I d+2r
i1···ik

[1]
r−1∏

j=0

(d − 4 + 2 j), (3.9)

so that powers of μ2 in the numerator of the integrand gener-

ate integrals in shifted dimensions which are responsible for

the rational terms of one-loop amplitudes.

We remark that an (nǫ − 2ǫ)-dimensional metric tensor

cannot have a four-dimensional representation. This is due

to the fact that according to Eq. (3.3b), its square vanishes.

Additionally, in four dimensions the only non-null matrices

compatible with conditions (3.4) are proportional to γ 5
[4],

γ[nǫ−2ǫ] ∼ γ 5
[4]. (3.10)

However, the matrices γ[nǫ−2ǫ] fulfill the Clifford alge-

bra (3.4a), and thus

γ
μ
[nǫ−2ǫ](γ[nǫ−2ǫ])μ

= (nǫ − 2ǫ)
ds→4→ , while (γ 5

[4])
2 = I[4]. (3.11)

Equations (3.10) and (3.11) are therefore not compatible

with each other. Finally, the component k
μ
[−2ǫ] of the loop

momentum vanishes when contracted with a strictly four-

dimensional metric tensor, i.e. k
μ
[−2ǫ](g[4])μν = 0. In four

dimensions, the only four vector fulfilling this relation is the

null one.

The above arguments exclude any four-dimensional repre-

sentation of the (nǫ−2ǫ)- and (−2ǫ)-dimensional subspaces.

It is possible, however, to find a representation by introducing

additional rules, in the following called (−2ǫ) selection rules,

(−2ǫ)-SRs. Indeed, the Clifford algebra (3.4a) is equivalent
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to

· · · (γ[nǫ−2ǫ])
μ · · · (γ[nǫ−2ǫ])μ · · · ds→4→ ,

/k[−2ǫ]/k[−2ǫ] = −μ2. (3.12)

Therefore, any regularization scheme which is equivalent

of fdh has to fulfill conditions (3.3)–(3.6), and (3.12).

The orthogonality conditions (3.3) and (3.6) are fulfilled by

splitting a ds-dimensional vector field into a strictly four-

dimensional one and a scalar field, while the other conditions

are fulfilled by performing the substitutions

g
αβ

[nǫ−2ǫ] → G AB, γ α
[nǫ−2ǫ] → γ 5

[4]Ŵ
A, kα

[−2ǫ] → iμQ A.

(3.13)

The (nǫ − 2ǫ)-dimensional and (−2ǫ)-dimensional indices

are thus traded for (−2ǫ)-SRs such that

G AB G BC = G AC , G AA = 0, G AB = G B A,

G ABŴA = ŴB, ŴAŴA = 0, {ŴA, ŴB} = 2G AB,

G AB Q A = Q B, Q A Q A = 1, Q AŴA = 1. (3.14)

The exclusion of terms containing odd powers of μ com-

pletely defines the fdf scheme. It allows one to build inte-

grands which, upon integration, yield the same results as in

the fdh scheme. As mentioned before, the fdf scheme is

closely connected to the introduction of an additional scalar

field. The role of this field and its relation to the ǫ-scalar

present in the fdh scheme will be discussed in Sect. 3.3.

The rules in Eq. (3.14) constitute an abstract algebra which

is similar to an algebra related to internal symmetries. For

instance, in a Feynman diagrammatic approach, the (−2ǫ)-

SRs can be handled as the colour algebra and performed for

each diagram once and for all. In each diagram, the indices of

the (−2ǫ)-SRs are fully contracted and the outcome of their

manipulation is either 0 or ±1. It is worth to remark that

the replacement of γ α
[nǫ−2ǫ] with γ 5

[4] takes care of the ds-

dimensional Clifford algebra automatically. Thus, we do not

need to introduce any additional scalar field for each fermion

flavour.

Depending on the gauge we use, further simplifications

can arise. In Feynman gauge, for example, there are no contri-

butions coming from scalar loops, which is due to the (−2ǫ)-

SRs,

G A1 A2 G A2 A3 . . . G Ak A1 = G A1 A1 = 0. (3.15)

Similarly, for diagrams with internal scalars and fermions we

get the same cancellation,

ŴA1 G A1 A2 . . . G Ak−1 Ak ŴAk = ŴA1ŴA1 = 0. (3.16)

With the use of axial gauge, we obtain the opposite behaviour

since contributions from internal scalars have to be taken in

account,

G A1 A2 Ĝ A2 A3 . . . G Ak−1 Ak Ĝ Ak A1 = G A1 A2 Ĝ A2 A1

= −Q A1 Q A1 = −1, (3.17)

where Ĝ AB ≡ G AB − Q A Q B . Diagrams that contain inter-

actions between generalized gluons and scalars are dropped

according to the (−2ǫ)-SRs,

Q A1 Ĝ A1 A2 . . . Q Am . . . Ĝ Ak A1 = Ĝ A1 A2 Q A2 = 0. (3.18)

3.2 Wave functions in FDF

Generalized-unitarity methods in dimensional regularization

require an explicit representation of the polarization vec-

tors and the spinors of ds-dimensional particles. The latter

ones are essential ingredients for the construction of the

tree-level amplitudes that are sewn along the generalized

cuts. In this respect, the fdf scheme is suitable for the four-

dimensional formulation of d-dimensional generalized uni-

tarity. The main advantage of fdf is that the four-dimensional

expression of the propagators in the loop admits an explicit

representation in terms of generalized spinors and polariza-

tion expressions which is collected below.

In the following discussion, the d-dimensional momen-

tum k[d] will be put on-shell and decomposed according

to Eq. (3.5). Its four-dimensional component, k[4], will be

expressed as

k[4] = k
♭
[4] + q̂[4], with q̂[4] ≡ m2 + μ2

2k[4] · q[4]
q[4], (3.19)

in terms of the two massless momenta k
♭
[4] and q[4].

Spinors

The spinors of a ds-dimensional fermion have to fulfill a

completeness relation which reconstructs the numerator of

the cut propagator,

2(ds−2)/2∑

λ=1

uλ,[ds ](k[d])ūλ,[ds ](k[d]) = /k[d] + m, (3.20a)

2(ds−2)/2∑

λ=1

vλ,[ds ](k[d])v̄λ,[ds ](k[d]) = /k[d] − m. (3.20b)
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The substitutions (3.13) allow one to express the r.h.s. of

Eq. (3.20) as,

/k[d] + m = /k[4] + /k[−2ǫ] + m = /k[4] + iμγ 5
[4] + m

=
∑

λ=±
uλ

(
k[4]
)

ūλ

(
k[4]
)
, (3.21a)

/k[d] − m = /k[4] + /k[−2ǫ] − m = /k[4] + iμγ 5
[4] − m

=
∑

λ=±
vλ

(
k[4]
)
v̄λ

(
k[4]
)
, (3.21b)

in terms of generalized four-dimensional massive spinors

defined as

u+(k[4]) = |k♭
[4]〉 + (m − iμ)

[k♭
[4]q[4]]

|q[4]],

u−(k[4]) = |k♭
[4]] + (m + iμ)

〈k♭
[4]q[4]〉

|q[4]〉,

v−(k[4]) = |k♭
[4]〉 − (m + iμ)

[k♭
[4]q[4]]

|q[4]],

v+(l) = |k♭
[4]] − (m − iμ)

〈k♭
[4]q[4]〉

|q[4]〉, (3.22a)

ū+(k[4]) = [k♭
[4]| + (m + iμ)

〈q[4]k
♭
[4]〉

〈q[4]|,

ū−(k[4]) = 〈k♭
[4]| + (m − iμ)

[q[4]k
♭
[4]]

[q[4]|,

v̄−(k[4]) = [k♭
[4]| − (m − iμ)

〈q[4]k
♭
[4]〉

〈q[4]|,

v̄+(k[4]) = 〈k♭
[4]| − (m + iμ)

[q[4]k
♭
[4]]

[q[4]|. (3.22b)

The spinors in Eq. (3.22a) are solutions of the tachyonic Dirac

equations [34–37]

(/k[4] + iμγ 5
[4] + m)uλ

(
k[4]
)

= 0,

(/k[4] + iμγ 5
[4] − m)vλ

(
k[4]
)

= 0. (3.23)

It is worth to notice that the spinors in Eq. (3.22) fulfill the

Gordon identities

ūλ(k[4]) γ ν
[4] uλ(k[4])

2
=

v̄λ(k[4]) γ ν
[4] vλ(k[4])

2
= kν

[4].

(3.24)

Polarization vectors

The ds-dimensional polarization vectors of a spin-1 particle

fulfill the relation

ds−2∑

i=1

ε
μ
i,[ds ](k[d], η)ε∗ν

i,[ds ](k[d], η)=−g
μν
[ds ]+

k
μ
[d]η

ν +kν
[d]η

μ

k[d] · η
,

(3.25)

where η is an arbitrary d-dimensional massless momentum

such that k ·η = 0. Gauge invariance in d dimensions guaran-

tees that the cut is independent of η. In particular the choice

ημ = k
μ
[4] − k

μ
[−2ǫ], (3.26)

allows one to disentangle the four-dimensional contribution

from the (−2ǫ)-dimensional one:

ds−2∑

i=1

ε
μ

i(ds )
(k, η) ε∗ν

i(ds )
(k, η) =

(
−g

μν
[4] +

k
μ
[4]k

ν
[4]

μ2

)

−
(

g
μν
[nǫ−2ǫ] +

k
μ
[−2ǫ]k

ν
[−2ǫ]

μ2

)
. (3.27)

The first term is related to the cut propagator of a massive

gluon and can be expressed as

−g
μν
[4] +

k
μ
[4]k

ν
[4]

μ2
=
∑

λ=±,0

ε
μ
λ (k[4])ε∗ν

λ (k[4]) (3.28)

in terms of the four-dimensional polarizations of a vector

boson of mass μ [38],

ε
μ
+(k[4]) = −

[k♭
[4] |γ μ| q̂[4]〉√

2μ
,

ε
μ
−(k[4]) = −

〈k♭
[4] |γ μ| q̂[4]]√

2μ
, ε

μ
0 (k[4]) =

k
♭μ
[4] − q̂

μ
[4]

μ
.

(3.29)

The latter fulfill the well-known relations

ε2
±(k[4]) = 0, ε±(k[4]) · ε∓(k[4]) = −1,

ε2
0(k[4]) = −1,

ε±(k[4]) · ε0(k[4]) = 0, ελ(k[4]) · k[4] = 0. (3.30)

The second term of the r.h.s. of Eq. (3.27) is related to

the numerator of cut propagator of the scalar and can be

expressed in terms of the (−2ǫ)-SRs as:

g
μν
[nǫ−2ǫ] +

k
μ
[−2ǫ]k

ν
[−2ǫ]

μ2
→ Ĝ AB ≡ G AB − Q A Q B . (3.31)
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Therefore, we can define the cut propagators as

a, A b, B
= Ĝ

AB
δ

ab
.

(3.32)

The generalized four-dimensional spinors and polarization

vectors defined above can be used for constructing tree-level

amplitudes with full μ-dependence.

3.3 Established properties and future developments of FDF

At one-loop, fdf has been successfully applied to compute

the scattering amplitudes for multi-gluon scattering gg →
n gluons with n = 2, 3, 4, and for gg → H + n gluons

with n = 2, 3 [39,40]. The use of dimensionally regularized

tree-amplitudes within fdf has been employed to study the

colour-kinematics duality [41] for one-loop dimensionally

regularized amplitudes [42].

The extension of fdf beyond the one-loop level is cur-

rently under investigation. In particular at two loops, fdf

should be able to capture the dependence of the integrand

on the extra dimensional terms of the loop momenta, namely

on two mass-like variables, say μ2
1 and μ2

2, as well as on the

scalar product μ1 · μ2.

Equivalence of FDF and FDH at NLO: virtual contributions

to e+e− → γ ∗ → qq̄

To show that the strictly four-dimensional Feynman rules

of fdf together with the (−2ǫ)-SRs indeed reproduce the

corresponding results in the fdh scheme for αe = αs ,

we consider virtual one-loop contributions to the process

e+e− → γ ∗ → qq̄ .

According to the discussion in Sect. 3.1, in fdf each vec-

tor field is split into a strictly four-dimensional field and a

corresponding scalar field. The vertex correction subgraph

γ ∗ → qq̄ therefore receives two contributions in fdf; see

Fig. 6. The diagram including an internal fdf-scalar vanishes

according to the (−2ǫ)-SRs since in Feynman gauge it is pro-

portional to ŴAŴB G AB = ŴAŴA = 0. Using only strictly

four-dimensional quantities, the amplitude is then given

by

(A
(1)

fdf
)μ = −eQq g2

s CF

∫
dd k[d]
(2π)d

ū(pq )γ ν
(
/k[4]+ /pq,[4]+iμγ5

)
γμ

(
/k[4] − /pq̄,[4]+iμγ5

)
γνu(pq̄ )

[
k2
[4]−μ2

][
(k[4]+ pq,[4])2 − μ2

][
(k[4] − pq̄,[4])2 − μ2

] ,

(3.33)

where pq and pq̄ denote the four-momenta of the massless

quarks. Evaluating the strictly four-dimensional algebra and

Fig. 6 Virtual diagrams contributing to γ ∗ → qq̄ at NLO including

a strictly four-dimensional photon γ (wavy line) and an fdf scalar γ ′

(dashed line), respectively. Using Feynman gauge, the right diagram

vanishes according to the (−2ǫ)-SRs

performing a tensor integral decomposition in d dimensions,

the amplitude can be written as

(A
(1)

fdf
)μ = −i(A

(0)

fdf
)μg2

s CF

{
d

d − 4
I d
2 [1] − 2I d

3 [μ2]
}
,

(3.34)

with

I d
2 [1] =

∫
ddk[d]
(2π)d

1

(k[d] + pq,[d])2(k[d] − pq̄,[d])2
,

(3.35a)

I d
3 [μ2] =

∫
ddk[d]
(2π)d

μ2

(k[d] + pq,[d])2(k[d] − pq̄,[d])2(k[d])2
.

(3.35b)

Note that in the denominators we used Eq. (3.6). In this way,

the integral in Eq. (3.35a) is an ordinary d-dimensional one.

The integral in Eq. (3.35b), on the other hand, can be evalu-

ated by using Eq. (3.9),

I d
3 [μ2] = (2π)(−2ǫ)I d+2

3 [1] = i

(4π)2

1

2
+ O(ǫ). (3.36)

For the virtual corrections to the (spin summed/averaged)

squared matrix element M
(1)

fdf
= 2 Re〈A(0)

fdf
|A(1)

fdf
〉, we then

obtain5

M
(1)

fdf
= ω(1)M

(0)

fdf

(
αs

π

)[
− 1

ǫ2
− 3

2ǫ
− 7

2
+ O(ǫ)

]
.

(3.37)

Renormalization of the FDF-scalar–fermion coupling

In the following we determine the β function related to the

coupling of the fdf-scalar to fermions in QED with NF

5 Since M
(0)

fdf
≡ M

(0)

fdh
, this result coincides with the one obtained in

fdh for nǫ = 2ǫ and ge = gs at least up to O(ǫ0), compare with

Eq. (2.19c).
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Fig. 7 One-loop diagrams contributing to the self-energy of the quark (left and middle) and of the fdf-scalar (right). The diagram with the internal

fdf scalar vanishes according to the (−2ǫ)-SRs

Fig. 8 Diagrams contributing to the interaction of the fdf scalar with

fermions at the one-loop level. The right diagram vanishes according

to the (−2ǫ)-SRs

fermion flavours, and compare it to the known renormal-

ization of the gauge and the evanescent coupling in the fdh

scheme given in Eq. (2.8).

To start, we consider the fermion self-energy, where two

diagrams contribute at the one-loop level; see Fig. 7. Using

the Feynman rules of Ref. [32] together with the (−2ǫ)-SRs,

we obtain for the case of massless fermions

−i	
(1)

fdf
= μ4−d

ds

∫
dd k[d]
(2π)d

{
(−i)4e2γ

μ
[4]

/k[4] + iμγ5

k2
[4] − μ2

× γ
ρ
[4]

(g[4])μρ

(k[4] + p[4])2 − μ2

}

= μ4−d
ds

∫
dd k[d]
(2π)d

{
e2γ

μ
[4] γ

ν
[4] γ

ρ
[4] (g[4])μρ

}

×
(k[4])ν

[k2
[4] − μ2][(k[4] + p[4])

2 − μ2]

= μ4−d
ds

∫
dd k[d]
(2π)d

{
e2

(
− γ

μ
[4] (γ[4])μγ

ν
[4] + 2γ

ν
[4]

)}

×
(k[4])ν

[k2
[d]][(k[d] + p[d])2]

= μ4−d
ds

∫
dd k[d]
(2π)d

{
e2

(
− 4 + 2

)}

×
γ

ν
[4] (k[4])ν

[k2
[d]][(k[d] + p[d])2]

. (3.38)

In particular, we applied relation (3.6) and made use of the

fact that terms containing odd powers of μ are set to zero. The

diagram including an internal fdf-scalar vanishes according

to the (−2ǫ)-SRs since it is proportional to ŴAŴB G AB =

ŴAŴA = 0. Evaluating the d-dimensional integral in Eq.

(3.38), we then obtain6

−i	
(1)

fdf
= i /p[4]

(
α

4π

)[
1

ǫ
+ 2 − ln

(
−

p2
[d]

μ2
ds

)
+ O(ǫ)

]
.

(3.39)

Using minimal subtraction, the renormalization of the fermion

field is therefore given by

Z2 = 1 +
(

α

4π

)[
− 1

ǫ

]
+ O(α2). (3.40a)

A calculation similar to Eq. (3.38) yields for the renormal-

ization of the fdf-scalar field

Z ′
3 = 1 +

(
α

4π

)[
− 2

ǫ
NF

]
+ O(α2). (3.40b)

Finally, we consider the vertex correction. Again, in fdf two

diagrams contribute at the one-loop level; see Fig. 8. Accord-

ing to the (−2ǫ)-SRs, the diagram with an internal fdf-scalar

is proportional to ŴBŴAŴB = −ŴBŴBŴA + 2ŴB G AB =
2ŴA. Evaluating the strictly four-dimensional Lorentz alge-

bra and performing the d-dimensional loop integration, the

renormalization of the vertex is given by

Z ′
1 = 1 +

(
α

4π

)[
− 4

ǫ

]
+ O(α2). (3.40c)

In a similar way, the renormalization constants can be

obtained for the case of massive fermions. In the on-shell

scheme (os) they read,7

Z2|os = 1 +
(

α

4π

)[
− 3

ǫ
+ ln

(
m2

e

μ2

)
− 5

]
+ O(α2),

(3.41a)

6 This result can be compared to the one obtained in fdh; see Eq. (2.11).

After subtraction of the UV divergence, the limit d → 4 can be taken and

both results coincide. However, due to the vanishing scalar contribution

it is clear that the additional scalar field in fdf is different from the

ǫ-scalar of fdh.

7 The result of Z2 in the on-shell scheme has already been obtained in

Ref. [28] for the case of fdh. It coincides with Eq. (3.41a) for nǫ = 2ǫ

and the case of equal couplings.
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Z ′
3|os = 1 +

(
α

4π

)
NF

[
− 2

ǫ
+ 2ln

(
m2

e

μ2

)
− 2

3

]
+ O(α2),

(3.41b)

Z ′
1|os = 1 +

(
α

4π

)[
− 4

ǫ
+ 4ln

(
m2

e

μ2

)
− 8

]
+ O(α2).

(3.41c)

Combining the results in Eqs. (3.40) or (3.41), the β function

of the fdf-scalar coupling to fermions is finally given by

β ′ = −
(

α

4π

)2

[2 − 2NF ] + O(α3), (3.42)

and therefore identical to the renormalization of the evanes-

cent coupling in fdh for ee = e, compare with Eq. (2.8b).

According to the discussion in Sect. 2.2, the different renor-

malization of the couplings in the fdh scheme (and therefore

in fdf) does not play any role at the one-loop level. At higher

perturbative orders, however, it can lead to a breaking of uni-

tarity [25]. The way, how the different renormalization of the

scalar coupling can be consistently implemented beyond one

loop in the fdf framework is currently under investigation.

3.4 Automated numerical computation

To build a fully consistent procedure that is valid for every

Lagrangian is an issue for the complete automation of higher

order computations via numerical recipes. In the GoSam [43]

actual architecture we adopted a scheme that naturally pro-

duces results in fdh.8 In this scheme, GoSam can gener-

ate the full one-loop amplitude for every process originating

from every Lagrangian with the only condition that the power

of the loop momentum in the numerator of a diagram can-

not exceed the number of loop denominators plus one. On

the other hand, we still do not have a completely general

procedure for the renormalization. Technically, the algebraic

implementation of our procedure is extremely simple and can

be summarized in the following three points:

1. Assume that all Lorentz indices are four-dimensional,

even if in a following step the loop momentum k will be

treated as d-dimensional.

2. In all fermion chains, also in fermion loops, bring all

chiral projectors to the left and all loop momenta to the

right.

3. Apply the rule /k/k = k[d] · k[d] = k[4] · k[4] − μ2.

This is a simplified version of what is effectively coded,

which has the same algebraic content and produces the same

8 The scheme is actually called dimensional reduction in GoSam and

in Ref. [23], but corresponds to what we call fdh in this article.

result. The μ2 parameter represents the length of the loop

momentum into the ǫ-dependent dimensions.

In GoSam, the generation of amplitudes starts from dia-

gram generation with QGRAF [44] that searches for topolo-

gies and fills them with fields in all possible ways. This con-

struction paired with the few rules given above guarantees

that no spurious anomalies are generated and, most impor-

tant, it provides the correct result for all the computations

that are anomaly free. In full generality, for every diagram

we are then left with two ingredients: a number of non-

vanishing integrals with μ2, and a polynomial of the four-

dimensional part of the loop momentum sitting on every num-

ber of denominators. Loop integrals with μ2 in the numera-

tor have been computed analytically since long, so that their

implementation is trivial. Furthermore, reduction programs

like Golem95 [45,46], Ninja [47–49] or Samurai [50] reduce

them easily. The polynomial in the four-dimensional compo-

nent of the loop momentum is the optimal representation of

the loop integral for the numerical reduction with programs

like CutTools [51], Golem95, Ninja or Samurai.

When we are computing higher-order differential cross

sections using some subtraction scheme [52,53] to regular-

ize IR divergences, the choice of the dimensional scheme

adopted is restricted to the virtual integration, and one can

exploit unitarity to derive the transition rules among renor-

malized amplitudes computed in different (unitary) schemes;

see Refs. [23,24] for more details. For this reason it is triv-

ial to derive transition rules from fdh to cdr for example

deducing them from the different finite part of the integrated

dipoles computed in the two schemes. We refer to the dipoles-

subtraction technique, but the reasoning is completely gen-

eral and provides the same conversion factors irrespective

of the subtraction scheme. To be definite, to convert a one-

loop amplitude in the Standard Model, one can start from

the massless gauge-boson emissions from QCD radiation to

determine the shift as nlqCF/2 + ngCA/6 times the under-

lying tree-level interference, where nlq(ng) is the number

of the external light quarks (gluons) being part of the hard

scattering amplitude. This agrees with the shift found in

Ref. [23]. Similarly, for QED radiation the shift is again the

underlying tree-level interference times the sum of factors

δRS = −qiσi qkσk/2 for each pair of emitter (i) with electric

charge qi and spectator (k) with electric charge qk andσ being

1(−1) for an incoming fermion and outgoing anti-fermions

(vice versa).

Now we come to the renormalization. In GoSam, this is

still not fully automated. For the QCD part of the Lagrangian

that is renormalized with the ms prescription, subtracting

only the poles, with fdh or dred one is left with a different

definition for the renormalized coupling constants w.r.t. cdr.

A finite renormalization is needed to restore the customary

definition (cdr). There is of course no such problem with the

on-shell renormalization that is often used for electroweak
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corrections. In GoSam we computed and implemented all the

renormalization constants of the Standard Model Lagrangian

and derived the conversion factors from fdh to cdr. They

can be found in Ref. [54].

To conclude, the fdh scheme appears optimal for numer-

ical computations and the conversion rules to other schemes

can easily be worked out once and for all exploiting unitarity.

Finally, we stress that on the path towards fully automated

computations for every Lagrangian, the automated compu-

tation of the renormalization constants is mandatory.

3.5 SDF: six-dimensional formalism

In this section we discuss the possibility of implementing

dimensional regularization schemes via an embedding of the

loop degrees of freedom in a de-dimensional space, where de

(e stands for embedding) is an integer greater than 4 which

depends on the loop order. This is possible in dimensional

schemes such as fdh and hv, where the degrees of freedom

of the external particles live in the genuine four-dimensional

space S[4]. In particular, we focus on the case de = 6, which

is sufficient up to two loops [55].

Having a finite integer-dimensional embedding of the

loop degrees of freedom is especially useful in the con-

text of integrand reduction via generalized unitarity [56–

64], which provides an efficient way of generating loop inte-

grands from products of tree-level amplitudes summed over

the internal helicity states. In particular, the possibility of

using a de-dimensional spinor-helicity formalism provides a

finite-dimensional (six-dimensional in our case) representa-

tion of both external and internal states. The six-dimensional

spinor-helicity formalism has been extensively developed in

Ref. [65], and used in the context of multi-loop general-

ized unitarity for producing analytic results for five- and six-

point two-loop all-plus amplitudes in (non-supersymmetric)

Yang–Mills theory [64,66,67].

A useful property of this approach is that it gives both

internal and external states an explicit finite-dimensional rep-

resentation. This means that one can perform both analytic

and numerical calculations by working directly with the com-

ponents of momenta and spinors. Numerical calculations can

in turn be used to infer properties of the result before a full

analytic calculation, or in order to employ functional recon-

struction techniques (see e.g. Ref. [68]) which allow one to

reconstruct full analytic results from numerical calculations

over finite fields.

As mentioned, in this section we focus on a dimensional

regularization scheme where the external states live in the

physical four-dimensional space S[4], while we keep the

dimension ds of the space QS[ds ] undetermined. The spe-

cial cases of fdh and hv can be obtained by setting ds = 4

and ds = d, respectively, at the end of the calculation.

Internal degrees of freedom

We consider a generic contribution to an ℓ-loop amplitude

∞∫

−∞

(
ℓ∏

i=1

ddki

)
N (ki )∏
j D j (ki )

, (3.43)

where N and D are polynomials in the components of the

loop momenta ki (a rational dependence on the external

kinematic variables is always understood). In particular, the

denominators Di correspond to loop propagators and have

the generic quadratic form

Di = ℓ2
i − m2

i , l
μ
i =

ℓ∑

j=1

αi j k
μ
j +

n∑

j=1

βi j p
μ
j ,

αi j , βi j ∈ {0,±1}, (3.44)

with p j being the external momenta. It is often useful to split

the loop momenta k
μ
i into a four-dimensional part k

μ
i,[4] and

a (d − 4)-dimensional part k
μ
i,[d−4] as

k
μ
i = k

μ
i,[4] + k

μ
i,[d−4]. (3.45)

In a regularization scheme where the external states are four-

dimensional, a loop integrand can only depend on the (d −4)

extra-dimensional components of each loop through scalar

products μi j defined as

μi j = −(ki,[d−4] · k j,[d−4]). (3.46)

The scalar products μi j can in turn be reproduced by embed-

ding the loop momenta in an integer-dimensional space with

dimension de ≥ 4 + ℓ. In particular, as stated, the choice

de = 6 is sufficient up to two loops. Although we will focus

on the case de = 6 and scattering amplitudes at one loop or

two loops, unless stated otherwise our statements are valid

for any multi-loop amplitude, provided that the integer de is

sufficiently large.

In order to correctly reconstruct the dependence of the

integrand on the dimension ds of the space QS[ds ] where

internal gluon polarizations live, we add (ds −de) flavours of

scalar particles to the theory, which represent gluon polariza-

tions orthogonal to both the external and the loop momenta.

The Feynman rules for these scalars can easily be derived

from the ones of gluons (see e.g. Ref. [64]).

Internal states: six-dimensional spinor-helicity formalism

External states of helicity amplitudes can be efficiently

described using the well-known four-dimensional spinor-

helicity formalism [69,70]. After a higher-dimensional embed-
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ding of internal states, one can similarly describe these by

means of a higher-dimensional spinor-helicity formalism.

In particular, the spinor-helicity formalism in six dimen-

sions has been developed in Refs. [65,71,72]. While a

comprehensive treatment of the subject is beyond the pur-

pose of this report (we refer the reader to Ref. [65] for

more details), it is worth pointing out a few properties of

six-dimensional spinors which are useful for providing an

integer-dimensional embedding of the loop internal states, in

particular for applications in the context of integrand reduc-

tion via generalized unitarity, as we shall see in the next

section.

Six-dimensional Weyl spinors |pa〉 and |pȧ] (with a, ȧ ∈
{0, 1} ≡ {+,−}) are defined as independent solutions of the

six-dimensional Dirac equation

pμσ (6)
μ |pa〉 = pμσ̃ (6)

μ |pȧ] = 0, (3.47)

where σ
(6)
μ and their dual σ̃

(6)
μ are six-dimensional general-

izations of the Pauli matrices (see Ref. [65] for an explicit

representation). Six-dimensional momenta can be built from

spinors,

pμ = −1

4
〈pa |σμ|pb〉ǫab, pμ = −1

4
[pȧ |σ̃μ|pḃ]ǫȧḃ.

(3.48)

Similarly, given a six-dimensional momentum pμ, a repre-

sentation for the spinors |pa〉 and |pȧ] satisfying the previous

equations, while not unique, is not hard to find. Note that,

when building loop integrands, the internal spinors always

combine as on the r.h.s. of Eq. (3.48), hence the physical

results are always unambiguous and independent of the cho-

sen representation. Moreover, a subset of the six-dimensional

spinor components can be identified with the components of

four-dimensional Weyl spinors |p〉 and |p], which ensures a

smooth four-dimensional limit.

Internal gluon states are described by six-dimensional

polarization vectors, which can be built out of these

spinors

ǫ
μ
aȧ(p, η) = 1√

2(p · η)
〈pa |σμ|ηb〉〈ηc|pȧ]ǫbc (3.49)

with

(aȧ) ∈ {(00), (11), (01), (10)}
≡ {(++), (−−), (+−), (−+)}. (3.50)

While (++) and (−−) correspond to positive and neg-

ative helicity in the four-dimensional limit, respectively,

the polarizations (+−), (−+) only exist in six dimen-

sions. One can show [65] that these polarization vectors sat-

isfy all the expected properties, including the completeness

relation

ǫ
μ
aȧ(p, η)ǫνaȧ(p, η) = gμν − 1

(p · η)
(pμην + pνημ).

(3.51)

When building an integrand via generalized unitarity, internal

polarization states always combine as on the l.h.s. of the

previous equation.

Applications to integrand reduction via generalized unitarity

Integrand reduction methods rewrite loop integrands as a sum

of irreducible contributions,

N (ki )∏
j D j (ki )

=
∑

T

�T (ki )∏
j∈T D j (ki )

, (3.52)

where the sum on the r.h.s. runs over the non-vanishing

sub-topologies of the parent topology identified by a set

of denominators {D j }. The on-shell numerators or residues

�T can be written as a linear combination of polynomials

qT = {qT,1, qT,2, . . .} which can be combined to form an

integrand basis up to terms proportional to the denominators

of the corresponding sub-topology T ,

�T (ki ) =
∑

α

cT,α(qT (ki ))
α, qα

T ≡
∏

j

q
α j

T, j , (3.53)

where α = (α1, α2, . . .) runs over an appropriate set of multi-

indices. Techniques for choosing an appropriate integrand

basis have been proposed e.g. in Refs. [61–63,67].

The coefficients cT,α only depend on the external kine-

matics (they also have a polynomial dependence on ds) and

they can be determined by evaluating the integrand on values

of the loop momenta such that the propagators of the corre-

sponding loop sub-topology are put on-shell {D j = 0} j∈T .

These constraints are also known as multiple cuts. On these

values of the loop momenta, the integrand factorizes as a

product of tree-level amplitudes summed over the internal

helicities corresponding to the cut on-shell loop momenta.

Hence, an efficient way of computing the integrands on the

cut conditions is by sewing together tree-level amplitudes.

This is known as generalized unitarity. As explained, by

means of a higher-dimensional spinor-helicity formalism,

one can build products of trees which contain the full depen-

dence of the integrand on the loop degrees of freedom.

More explicitly, the solutions of the cut conditions in de

dimensions can be expressed as a linear combination of terms

of a de-dimensional vector basis {ei j }de

j=1,
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k
μ
i =

de∑

j=1

yi j e
μ
i j , (3.54)

where, in turn, the coefficient of this linear combination

can be expressed as yi j = yi j ({τk}), where {τk} is a set

of free variables which are not constrained by the cut con-

ditions. From these de-dimensional on-shell momenta, we

thus build the corresponding de-dimensional spinors, which

in turn are used to evaluate the tree-level helicity ampli-

tudes which define the integrand on the considered multiple

cut.

As we mentioned, the correct dependence of the integrand

on ds is obtained by adding to the theory (ds − de) flavours

of scalars representing additional polarizations of the inter-

nal gluons. At two loops, an integrand can have at most a

quadratic dependence on scalar flavours

�T = �
(de,0)
T + (ds − de)�

(de,1)
T + (ds − de)

2�
(de,2)
T .

(3.55)

More in general, each scalar loop can add at most one power

of (ds −de). We stress that the result for �T does not depend

on the dimension de of the chosen embedding, unlike each

of the terms on the r.h.s. of the previous equation.

This setup has been used for the calculation of pla-

nar five- and six-point two-loop amplitudes in Yang–Mills

theory presented in Refs. [64,66,67], as well as for the

first application of multivariate reconstruction techniques

to generalized unitarity presented in Ref. [68]. The latter

includes the calculation of the on-shell integrands of the

maximal cuts of the two-loop planar pentabox and the non-

planar double pentagon topology, for a complete set of inde-

pendent helicity configurations. This shows that this strat-

egy is suitable for performing complex multi-leg calcula-

tions at two loops, which is currently a very active field of

research.

4 IREG: implicit regularization

4.1 Introduction to IREG and electron self-energy at NLO

Implicit regularization (ireg) is a regularization framework

proposed by the end of the 1990s [73–75] as an alternative

to well-known dimensional schemes. A main characteristic

of the method is that it stays in the physical dimension of

the underlying quantum field theory, avoiding, in principle,

some of the drawbacks of ds such as the mismatch between

fermionic and bosonic degrees of freedom which leads to

the breaking of supersymmetry. ireg is proposed to work in

momentum space and relies on the following observation:

the UV divergent piece of any Feynman integral should not

depend on physical parameters such as external momenta or

particles masses.9 This simple fact leads to profound conse-

quences as we are going to see.

For ease of the reader, we will develop the basic concepts

of ireg by considering a familiar example of massless QED,

the one-loop corrections to the fermion propagator. We write

the initial (unregularized) expression as

−i	(1)(p) = −e2
∫

d4k

(2π)4
γ μ 1

/k
γμ

1

(k − p)2
, (4.1)

where p is an external momentum. The first step is to perform

simplifications using Dirac algebra in strictly four dimen-

sions. In this example, the result is particularly simple

−i	(1)(p) = 2e2γμ

∫
d4k

(2π)4

kμ

k2(k − p)2
. (4.2)

The next step is just to introduce a fictitious mass in the propa-

gators which will allow us to control spurious IR divergences

introduced in the course of the evaluation. Thus, the integral

can be rewritten as

− i	(1)(p)

= lim
μ2→0

2e2γμ

∫
d4k

(2π)4

kμ

(k2 − μ2)[(k − p)2 − μ2]
≡ lim

μ2→0
[−i	

(1)
ireg

(p, μ)]. (4.3)

At this point one uses the main observation of iregthat the

intrinsic divergent integral should not depend on physical

parameters, the external momentum in this case. To achieve

that, one just uses the following identity as many times as

necessary to isolate the physical parameters in the finite

part:

1

(k − p)2 − μ2
= 1

(k2 − μ2)
+ (−1)(p2 − 2p · k)

(k2 − μ2)[(k − p)2 − μ2] .
(4.4)

In our example, one ends up with the following divergent

expression:

−i	
(1)
ireg

(p, μ)|div = 2e2γμ

[ ∫
d4k

(2π)4

kμ

(k2 − μ2)2

+ 2pν

∫
d4k

(2π)4

kμkν

(k2 − μ2)3

]
, (4.5)

9 This point of view is shared by other methods as well, for instance by

fdr which is described in Sect. 5. In the latter scheme, these intrinsic

divergent pieces are called ‘vacua’.
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in which all dependence on the external momenta is only

in the numerator. The latter can be therefore pulled outside

the integration. Focusing on the divergences, one notices the

existence of linear and logarithmic terms. The first piece is

automatically null (as in cdr) and we are left with only the

logarithmic term, whose integral is a particular example of

the general expression

I
ν1···ν2N

log (μ2) ≡
∫

d4k

(2π)4

kν1 · · · kν2N

(k2 − μ2)N+2
. (4.6)

This is a characteristic of ireg that the UV divergence can be

always expressed in terms of a precise set of Basic Divergent

Integrals (BDI), composed of scalar and tensorial ones. How-

ever, it can be shown that all tensorial integrals can be further

expressed in terms of the scalar ones plus surface terms. In

our particular example one has

ϒ
μν
0 =

∫
d4k

(2π)4

∂

∂kμ

kν

(k2 − μ2)2
= gμν Ilog(μ

2)

− 4I
μν
log (μ2) ≡ gμνυ0,2, (4.7)

where ϒ
μν
0 is a surface term, arbitrary in principle. More

comments regarding the surface terms and their relation to

momentum routing invariance will be given at the end of this

section.

After all UV divergences are taken care of, one needs to

evaluate the finite part, for which we obtain

− i	
(1)
ireg

(p, μ)

∣∣∣∣
fin

= 2e2γμ

[
− p2

∫
d4k

(2π)4

kμ

(k2 − μ2)3

+
∫

d4k

(2π)4

kμ(p2 − 2p · k)2

[k2 − μ2]3[(k − p)2 − μ2]

]

= e2b/p

[
2 − ln

(
− p2

μ2

)]
+O(μ2), with b= i

(4π)2
.

(4.8)

It should be noticed that the limit μ2 → 0 has still to be

taken in the final result. However, it can easily be seen that

both Ilog(μ
2) and the logarithm term then develop an IR

singularity which is spurious since our starting integral was

IR safe. To avoid this issue, one still needs to introduce a

scale λ2 = 0, which plays the role of a renormalization scale

in renormalization-group equations,

Ilog(μ
2) = Ilog(λ

2) − b ln

(
μ2/λ2

)
. (4.9)

Combining the divergent and finite part and writing the

dimension of the external momentum explicitly, one finally

gets10

− i	
(1)
ireg

(p, λ) = i /p[4]

(
α

4π

)[
b−1 Ilog(λ

2)

+ 2 − ln

(
−

p2
[4]
λ2

)
− b−1υ0,2 + O(λ)

]
. (4.10)

In summary, the treatment of UV divergent amplitudes in

ireg can be described as follows:

1. Introduce a fictitious mass μ2 in propagators to avoid

spurious IR divergences in the course of the evaluation.

2. Use Eq. (4.4) as many times as necessary to free the diver-

gent part from physical parameters like external momenta

and masses. In the case of massive theories, a similar

identity can be applied; see Ref. [76] for details.

3. Express the divergent part in terms of scalar and tensorial

basic divergent integrals.

4. Reduce tensorial BDIs to the scalar ones plus surface

terms.

5. Remove the μ2 dependence by introducing a scale λ2

which plays the role of a renormalization scale on

renormalization-group equations.

At this point, we would like to emphasize the role played

by the surface terms which, as defined, are just differences

between integrals with the same degree of divergence. As

shown in Ref. [77], these objects are at the root of momen-

tum routing invariance (the freedom one has in the assign-

ment of internal momenta inside a given Feynman diagram).

This can only be respected when the surface terms are set to

zero. It can also be shown that the same conclusion holds

for Abelian gauge invariance, allowing one to conjecture

that surface terms are at the root of symmetry breaking in

general. In Ref. [77], it is shown that this conjecture may

hold for supersymmetric theories as well. Similar analyses,

in many different theories and contexts, have been carried

out in Refs. [78–91].

4.2 Application example: e+e− → γ ∗ → qq̄ at NLO

In this section we perform the computation of the total cross

section of the process e+e− → γ ∗ → qq̄ , showing an exam-

ple on how ireg deals with different kinds of divergences.

We divide the presentation in two parts, as usual.

10 This result can be compared with the corresponding one obtained

in fdh; see Eq. (2.11). Setting the surface term υ0,2 to zero which is

necessary to preserve gauge invariance; see also Sect. 4.3, the finite

terms of the electron self-energy in ireg and ds are the same for

d = 4 and λ = μ
ds

. The relation for the UV divergence is given

by b−1 Ilog(λ
2) ↔ 1

ǫ
.
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Virtual contributions

The (unregularized) amplitude for the one-loop vertex cor-

rection subgraph γ ∗ → qq̄ reads

A
(1)
μ = −eQq g2

s CF

×
∫

d4k

(2π)4

ū(pq)γ ν(/k + /pq
)γμ(/k − /pq̄

)γνu(pq̄)

k2(k + pq)2(k − pq̄)2
,

(4.11)

where pq and pq̄ denote the four-momenta of the massless

quarks. Using the Dirac equation for massless quarks, the

integral can be decomposed as

A
(1)
μ = −4eQq g2

s CF {ū(pq)γμu(pq̄)

× [(pq · pq̄)I − (pq,α − pq̄,α)I α − I2/2]
+ ū(pq)γαu(pq̄)

× [(pq,μ − pq̄,μ)I α + I α
μ]}, (4.12)

with

{I, I α, I αβ} =
∫

d4k

(2π)4

{1, kα, kαkβ}
k2(k + pq)2(k − pq̄)2

, (4.13a)

I2 =
∫

d4k

(2π)4

k2

k2(k + pq)2(k − pq̄)2

=
∫

d4k

(2π)4

1

(k + pq)2(k − pq̄)2
. (4.13b)

One notices the prescription of ireg to cancel denominators

as in I2 before introducing a regulating mass in the propaga-

tors.11

The integrals in Eq. (4.13) are IR divergent for p2
q = p2

q̄ =
0. In addition, the integral in Eq. (4.13a) carrying two Dirac

indices and the integral in Eq. (4.13b) are logarithmically

UV divergent. To deal with the latter, a regulating mass μ is

introduced in all propagators,

{I
ireg

, I α
ireg

, I
αβ
ireg

}

=
∫

d4k

(2π)4

{1, kα, kαkβ}
[k2−μ2][(k+ pq)2−μ2][(k− pq̄)2−μ2] ,

(4.14)

and, after cancellation of one of the denominators, also in

I2,ireg =
∫

d4k

(2π)4

1

[(k + pq)2 − μ2][(k − pq̄)2 − μ2] .

(4.15)

11 This is a crucial difference compared to fdr, where μ2-terms remain

in the numerators. In a second step, they are then removed by so-called

‘extra integrals’. Further discussions can be found in Sect. 4.3

The limit μ2 → 0 in the divergent contributions is only to be

taken after the cross section of the whole process has been

evaluated. Endowed with the regulating mass, all integrals are

IR finite. Using μ0 ≡ μ2/s and s ≡ (pq + pq̄)2 = 2pq · pq̄ ,

one obtains12

Iireg|
p2

q=p2
q̄=0

= i

(4π)2

1

s

×
[

ln2(μ0)

2
+ iπ ln(μ0) − π2

2
+ O(μ0)

]
,

(4.16a)

Iα
ireg

|
p2

q=p2
q̄=0

= i

(4π)2

(pq − pq̄ )α

s

× [ln(μ0) + iπ + 2 + O(μ0)], (4.16b)

I
αβ
ireg

|
p2

q=p2
q̄=0

= gαβ

4
{Ilog(μ2)+ i

(4π)2
[ln(μ0)+iπ+3]}

− i

(4π)2

1

2s
{pq

α(pq̄
β + pq

β [ln(μ0)+iπ+2])

+ (q, q̄) → (q̄, q)}+O(μ0), (4.16c)

I2,ireg|
p2

q=p2
q̄=0

= Ilog(μ2)+ i

(4π)2
[ln(μ0)+iπ+2+O(μ0)].

(4.16d)

In the UV divergent integrals, the BDI Ilog(μ
2) has been

isolated, according to the rules of ireg. Inserting the integrals

from Eq. (4.16) into Eq. (4.12) and performing the remaining

contractions, one obtains for the one-loop vertex correction

(A
(1)
ireg

)μ = (A
(0)
ireg

)μ

(
αs

π

)
CF

[
− ln2(μ0)

4
− 3 + 2iπ

4

× ln(μ0) − 7 − π2 + 3iπ

4
+ O(μ0)

]
, (4.17)

where the UV divergent contributions ∼ Ilog(μ
2) are

dropped. Taking twice the real part of the one-loop correc-

tion, the virtual contribution to the total cross section is then

given by13

12 The results of the ireg integrals can be compared with the corre-

sponding ones in ds. Setting μ2
ds

= s, the integrals in Eqs. (4.16a) and

(4.16b), for example, are given by I
ds

∣∣
p2

q =p2
q̄ =0

= cŴ(ǫ) i
(4π)2

1
s

[
1
ǫ2 +

iπ
ǫ

− π2

2
+O(ǫ)

]
and I α

ds

∣∣
p2

q =p2
q̄ =0

= cŴ(ǫ) i
(4π)2

(pq −pq̄ )α

s

[
1
ǫ
+iπ +2+

O(ǫ)
]
. Using cŴ(ǫ = 0) = 1, the one-to-one correspondence between

double and single IR poles in ds and ireg then reads 1
ǫ2 ↔ 1

2
ln2(μ0)

and 1
ǫ

↔ ln(μ0); see also Sect. 5.4.

13 The virtual cross section in ireg can be compared with the ones

obtained in ds; see Eq. (2.21). Using the aforementioned translation

rules for IR divergences in ireg and ds, and �2(ǫ = 0) = cŴ(ǫ =
0) = 1, it follows that Eq. (4.18) coincides with the results obtained in

fdh and dred, Eq. (2.21c). In Sect. 5.3, it will be shown that the result

of the virtual cross section in ireg also coincides with the one obtained

in fdr.
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σ
(v)
ireg

= σ (0)

(
αs

π

)
CF

[
− ln2(μ0)

2
− 3

2
ln(μ0)

− 7 − π2

2
+ O(μ0)

]
, (4.18)

with σ (0) given in Eq. (2.15). The divergences occurring in

the limit of a vanishing regulator mass μ0 will be exactly

canceled by the cross section related to the bremsstrahlung

diagrams, as shown in the next section.

Real contributions

In the following we obtain the bremsstrahlung contribution

to the total cross section, using the same regulator mass μ for

the gluon and the quarks, as in the previous section. At least at

NLO, apart from minor technical differences, the treatment

of IR singularities in ireg is equivalent to the fdr solution

proposed in Ref. [92] (see also Sect. 5.3).

The total cross section pertaining to the real emission

process e+(p′)e−(p) → γ ∗(q) → q(k1)q̄(k2)g(k3) is

obtained:

σ
(r)
ireg

= 1

2s

∫
d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

×
∫

d3k3

(2π)32ω3
(2π)4δ(4)(q − k1 − k2 − k3)

× M
(0)
ireg

(qq̄g), (4.19)

in terms of k0
i = ωi =

√
�k2

i + μ2.

Let us first analyze how the regulating mass enters the

phase-space integration boundaries. Using the CM frame of

the virtual photon, δ(4)(q − k1 − k2 − k3) = δ(q0 − ω1 −
ω2 − ω3)× δ(3)(�k1 + �k2 + �k3), and after integrating out the

three-momentum of the gluon, the phase-space integration

P reduces to

P =
∫

d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

×
∫

d3k3

(2π)32ω3
(2π)4δ(4)(q − k1 − k2 − k3), (4.20a)

=
∫

d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

(
π

ω3

)

× δ(q0 − ω1 − ω2 − ω3), (4.20b)

with ω3 =
√

(�k1 + �k2)2 + μ2. The integration over the angle

θ between �k1 and �k2 is performed, noting that ω3dω3 =
|�k1||�k2|dcos(θ). In addition, with |�ki |d|�ki | = ωi dωi we

get

P = 1

32π3

∫ ω1M

ω1m

dω1

∫ ω2M

ω2m

dω2

×
∫ ω3M

ω3m

dω3 δ(0)(q0 − ω1 − ω2 − ω3). (4.21)

The boundary values for the ω3 integration can be traced

back from the range of allowed θ angle values. At fixed �k1

and �k2 one thus obtains ω3m =
√

μ2 + (|�k1| − |�k2|)2 cor-

responding to θ = π and ω3M =
√

μ2 + (|�k1| + |�k2|)2 for

θ = 0. In the first case, the quark and antiquark have oppo-

site momenta and thus a soft gluon momentum �k3 can be

emitted together with hard fermion momenta. In the second

case, the fermions move parallel and soft gluon emission is

accompanied with soft fermion momenta. Introducing now

dimensionless variables

χi = (ki − q)2

q2
− μ2

q2
(4.22)

with k2
i = μ2 and q2 = q2

0 , one gets χi = 1 − 2ωi

q0
and

dχi = −2 dωi

q0
. In these variables, the phase-space integral

becomes

P = q2
0

(4π)3

∫ χ1M

χ1m

dχ1

∫ χ2M

χ2m

dχ2, (4.23)

keeping in mind the interval allowed for non-vanishing con-

tributions of the δ-integration. The latter restrict the bound-

aries of the χ2 integration to

χ±
2 = 1 − χ1

2
±
√

(χ1 − 3μ0)[(1 − χ1)2 − 4μ0]
4(χ1 + μ0)

, (4.24)

with the notation χ+
2 = χ2M , χ−

2 = χ2m . Finally, the

χ1 integration boundaries are obtained as follows. From

χ1 = 1−2ω1
q0

, the upper limit is easily extracted, given when

�k1 = 0,

χ1M = 1 − 2
√

μ0. (4.25a)

The lower boundary is obtained for maximal ω1, i.e. for

ω1 M = μ2 + |�k1M |2 = μ2 + (|�k2| + |�k3|)2, achieved when

the angle θ23 between the fermion and the gluon is zero.

Using further that energy conservation is expressed in the χ

variables as 1 = χ1 + χ2 + χ3 and rewriting Eq. (4.22) as
|�ki |2
q2

0

= (1−χi )
2

4
− μ2

q2
0

, one can express ω1 M only in terms

of the variables χ1, χ2, μ0. The minimum value of χ1 then

occurs for χ2 = (1−3μ0)
2

, leading to

χ1m = 3μ0. (4.25b)
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Using Eqs. (4.25) and (4.24) together with q2
0 = q2 = s, we

obtain for the phase-space integral

P = s

(4π)3

∫ 1−2
√

μ0

3μ0

dχ1

∫ χ2M

χ2m

dχ2 ≡ s

(4π)3

∫∫

χ1χ2

.

(4.26)

We now turn back to Eq. (4.19) and evaluate the matrix

element squared. Following Sect. 2.3, it can be written as

M
(0)
ireg

(qq̄g) = e2g2
s ω(r)LμνGμν, (4.27)

with

Gμν = −1

8
Tr
[
/k1�

μ
λ

/k2�
νλ
]
, (4.28a)

�λμ = − 1

(k1 + k3)2
γλ(/k1 + /k3)γμ

+ 1

(k2 + k3)2
γμ(/k2 + /k3)γλ, (4.28b)

where we use the leptonic tensor of Eq. (2.13) and ω(r) =
2Q2

qCF/s2.

The result can be simplified by considering gauge invari-

ance, which implies that Gμν , after phase-space integration,

must be transverse to the photon momentum q. Thus, the

total cross section due to real contribution can be expressed

as

σ
(r)
ireg

= σ (0)

(
αs

π

)
CF

∫∫

χ1χ2

[
− 1

2
gμνGμν

]
. (4.29)

After a tedious, yet straightforward computation, one obtains

− 1

2
gμνGμν = −

[
1

μ0 + χ1
+ 1

μ0 + χ2

]

+ 1

2

[
χ2

μ0 + χ1
+ χ1

μ0 + χ2

]

+ 1

(μ0 + χ1)(μ0 + χ2)
+ O(μ0), (4.30)

where we use the definition of χi in Eq. (4.22) and k2
i = μ2.

Finally, the integrals can be evaluated with14

∫∫

χ1χ2

1

μ0 + χ1
=
∫∫

χ1χ2

1

μ0 + χ2
=− ln(μ0) − 3 + O(μ0),

(4.31a)

14 These integrals are the same in ireg and fdr; see e.g. Eqs. (34)

and (35) of Ref. [92]. They can be compared with the corresponding

ones obtained in ds; see Eqs. (2.26). Again, the transition rules for the

IR divergences between ds and ireg/fdr read 1
ǫ2 ↔ 1

2
ln2(μ0) and

1
ǫ

↔ ln(μ0).

∫∫

χ1χ2

χ2

μ0 + χ1
=
∫∫

χ1χ2

χ1

μ0 + χ2
= − ln(μ0)

2
− 7

4
+ O(μ0),

(4.31b)
∫∫

χ1χ2

1

(μ0 + χ1)(μ0 + χ2)
= ln2(μ0)

2
− π2

2
+ O(μ0).

(4.31c)

Finally, the total cross section due to the real contribution is

given by15

σ
(r)
ireg

= σ (0)
(αs

π

)
CF

×
[

ln2(μ0)

2
+ 3

2
ln(μ0) + 17

4
− π2

2
+ O(μ0)

]
.

(4.32)

The procedure of obtaining the real corrections in ireg can be

summarized as follows: compute the matrix element squared

for massless external and internal particles as in Eq. (4.28b).

However, the on-shell limit k2
i = 0 should not be applied.

Instead, wherever a squared momentum appears it should

be replaced by k2
i = μ2. The phase-space integration is to

be carried out for massive external particles. IR divergences

appear as ln(μ0) terms.16

Finally, adding the virtual contribution, Eq. (4.18), one

obtains the well-known UV and IR finite result

σ (1) = σ (0) + σ
(v)
ireg

+ σ
(r)
ireg

|μ0→0 =
Q2

q Nc

3s

(
e4

4π

)

×
[

1 +
(

αs

4π

)
3CF

]
. (4.33)

4.3 Established properties of IREG

Gauge invariance

In gauge theories, the initial structure of a given Feynman

diagram contains Dirac matrices, Lorentz contractions, etc.

These operations may generate terms with squared momenta

in the numerator which must be canceled against propaga-

tors before applying the rules of ireg. This point was first

emphasized in differential regularization whose rules have a

one-to-one correspondence with the ireg prescription [78].

15 This result can be compared with the ones obtained in ds; see

Eq. (2.27). Using the rules for translating IR divergences between ireg

and ds together with �3(ǫ = 0) = 1, it follows that Eq. (4.32) coin-

cides with the results in fdh and dred, Eq. (2.27c). In Sect. 5.3, it will

be shown that Eq. (4.32) also coincides with the corresponding result

in fdr.

16 The only technical difference from the evaluation of real corrections

in fdr is that in fdr the matrix elements are computed in the strict

massless limit, i.e. using k2
i = 0. Thus, at least at NLO the two schemes

differ at most by terms O(μ0).
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As an example, consider the (unregularized) off-shell vac-

uum polarization tensor in massless QED at one loop

�μν = −e2i4Tr

∫
d4k

(2π)4
γ μ 1

/k
γ ν 1

/k − /p
, (4.34)

which, after evaluating the Dirac algebra, can be expressed
as

�μν = −4e2

∫
d4k

(2π)4

2kμkν −gμνk2−kμ pν −kν pμ+gμν(k · p)

k2(k− p)2
,

(4.35a)

≡−4e2
[
2I μν − gμν J − I μ pν − I ν pμ + gμν(Iα pα)

]
.

(4.35b)

The integrals, after applying the rules of ireg, are given as

Jireg =
∫

d4k

(2π)4

k2

k2(k − p)2

=
∫

d4k

(2π)4

1

(k − p)2
= −p2υ0,2, (4.36a)

I
μ
ireg

=
∫

d4k

(2π)4

kμ

k2(k − p)2

= pμ

2

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b − υ0,2

]
,

(4.36b)

I
μν
ireg

=
∫

d4k

(2π)4

kμkν

k2(k − p)2

= 1

3
pμ pν

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 11

6
b

]

− 1

12
gμν p2

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 4

3
b

]

− gμν

2
υ2,2 − 1

6
(gμν p2 + 2pμ pν)υ0,4

+ 1

4
gμν p2υ0,2, (4.36c)

where we have suppressed quadratic divergences (in the

example they cancel exactly), and νi, j are surface terms

defined as

g{ν1···ν j }υi, j ≡ ϒ
ν1···ν j

i ≡
∫

d4k

(2π)4

∂

∂kν1

kν2 · · · kν j

(k2 − μ2)
2+ j−i

2

,

(4.37)

where we use g{ν1···ν j } ≡ gν1ν2 · · · gν j−1ν j + symmetric com-

binations. Inserting all results in �μν , one obtains

�
μν
ireg

= −4

3
e2(gμν p2 − pμ pν)

×
[

Ilog(λ
2) − b ln

(
− p2

λ2

)
+ 7

3
b

]

− 4e2

[
− 1

3
(gμν p2 + 2pμ pν)υ0,4

+ pμ pνυ0,2 − gμνυ2,2

]
. (4.38)

As can be seen, to enforce gauge invariance (expressed in

the transversality of �
μν
ireg

), surface terms should be null as

previously discussed [77].

We remark the appearance of a k2 term in Eq. (4.35),

defined as the divergent J integral, and the importance

of applying ireg rules only after cancelling such term

against propagators. Proceeding otherwise, by rewriting

k2 = gμνkμkν for instance, one would obtain

∫
d4k

(2π)4

k2

k2(k − p)2
= gμν

∫
d4k

(2π)4

kμkν

k2(k − p)2

= p2

6
b − 2υ2,2 − p2(υ0,4 − υ0,2), (4.39)

which is different from the J integral, Eq. (4.36a), not only

by arbitrary terms encoded in the υi, j but also by a finite

term. In this way, gauge invariance would be broken even if

the surface terms are systematically set to zero. It should be

emphasized that the discussion above is restricted to diver-

gent integrals.

UV renormalization

We would also like to briefly show how renormalization-

group functions can be computed in the framework of ireg.

For simplicity, we adopt the background field method [93]

which relates the wave function renormalization of the back-

ground field, B0 = Z B B, with the coupling renormalization,

e0 = Zee, through the equation Ze = Z
−1/2
B . Therefore, by

applying this method to QED, the β function can be obtained

only with the knowledge of the vacuum polarization tensor.

Performing a minimal subtraction, which in ireg amounts

to subtract only basic divergent integrals as Ilog(λ
2), and

remembering that λ plays the role of a renormalization-group

scale, one obtains17

β = λ2 ∂

∂λ2

(
e

4π

)2

= e4

(4π)2

4

3
NF iλ2 ∂

∂λ2
Ilog(λ

2) + O(e6)

= −
(

e

4π

)4[
− 4

3
NF

]
+ O(e6). (4.40)

Further examples can be found in Refs. [79,81,89,94,95].

17 This result coincides with the well-known value of the QED β func-

tion of the gauge coupling obtained in ds; see Eq. (2.8a).
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5 FDR: four-dimensional

regularization/renormalization

fdr [96] is a fully four-dimensional framework to compute

radiative corrections in QFT. The calculation of the loop cor-

rections is conceptually simplified with respect to more tradi-

tional approaches in that there is no need to include UV coun-

terterms in the Lagrangian L. In fact, the outcome of an fdr

calculation at any loop order is directly a UV-renormalized

quantity. Moreover, this particular way of looking at the UV

problem may open new perspectives in the present under-

standing of fundamental and effective QFTs [97]. In the fol-

lowing, we review the fdr treatment of UV and IR diver-

gences, also using the e+e− → γ ∗ → qq̄(g) process as an

explicit example.

5.1 FDR and UV infinities

Let J (q1, . . . , qℓ) be an integrand depending on ℓ integration

momenta q1, . . . , qℓ. The fdr integral over J is defined as

follows:

∫
[d4q1] · · · [d4qℓ]J (q1, . . . , qℓ, μ

2)

≡ lim
μ→0

∫
d4q1 · · · d4qℓ JF(q1, . . . , qℓ, μ

2), (5.1)

where JF(q1, . . . , qℓ, μ
2) is the UV-finite part of J (q1, . . . ,

qℓ, μ
2) (specified below), μ is an infinitesimal mass needed

to extract JF from J , and
∫
[d4qi ] denotes the fdr integration.

The integrands J (q1, . . . , qℓ, μ
2) and JF(q1, . . . , qℓ, μ

2) are

obtained from J (q1, . . . , qℓ) with the help of the following

rules:

(i) Squares of integration momenta appearing both in the

denominators of J (q1, . . . , qℓ) and in contractions gen-

erated in the numerator by Feynman rules are shifted by

μ2,

q2
i → q2

i − μ2 ≡ q̄2
i . (5.2)

This replacement is called global prescription.

(ii) A splitting

J (q1, . . . , qℓ, μ
2) = [JINF(q1, . . . , qℓ, μ

2)]
+ JF(q1, . . . , qℓ, μ

2) (5.3)

is performed in such a way that UV divergences are

entirely parametrized in terms of divergent integrands

contained in [JINF], which solely depend on μ2. By con-

vention, we write divergent integrands in square brack-

ets and call them fdr vacua, or simply vacua.

(iii) The global prescription in Eq. (5.2) should be made

compatible with a key property of multi-loop calculus:

In an ℓ-loop diagram, one should be able to

calculate a subdiagram,

insert the integrated form into the full diagram

and get the same answer. (5.4)

We dub this subintegration consistency.

Finally, after limμ→0 is taken, ln μ → ln μR is understood

on the r.h.s. of Eq. (5.1), where μR is an arbitrary renormal-

ization scale. Note that inserting Eq. (5.3) into Eq. (5.1) gives

an alternative definition

∫
[d4q1] · · · [d4qℓ]J (q1, . . . , qℓ, μ

2)

= lim
μ→0

∫

r

d4q1 · · · d4qℓ{J (q1, . . . , qℓ, μ
2)

− [JINF(q1, . . . , qℓ, μ
2)]}, (5.5)

where r denotes an arbitrary UV regulator. Equation (5.5)

tells us that the UV subtraction is directly encoded in the

definition of fdr loop integration: no divergent integrand is

considered separately from its subtraction term.

fdr integration preserves shift invariance which is easy to

prove when using Eq. (5.5) with r = ds,

∫
[d4q1] . . . [d4qℓ]J (q1, . . . , qℓ, μ

2)

=
∫

[d4q1] . . . [d4qℓ]J (q1 + p1, . . . , qℓ + pℓ, μ
2),

(5.6)

and the possibility of cancelling numerators and denomina-

tors

∫
[d4q1] · · · [d4qℓ]

q̄2
i − m2

i

(q̄2
i − m2

i )
m · · ·

=
∫

[d4q1] · · · [d4qℓ]
1

(q̄2
i − m2

i )
m−1 · · · , (5.7)

which are properties needed to retain the symmetries of L

[98]. From Eqs. (5.6) and (5.7) it follows that algebraic

manipulations in fdr integrands are allowed as if they where

convergent ones. This authorizes one to reduce complicated

multi-loop integrals to a limited set of Master integrals

(MI) by using four-dimensional tensor decomposition [99]

or integration-by-parts identities [100]. In other words, the

definition in Eq. (5.1) [or Eq. (5.5)] can be applied just at the

end of the calculation, when the actual value of the MIs is

needed.
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An important subtlety implied by Eq. (5.7) is that the

needed cancellation works only if integrands involving

explicit powers of μ2 in the numerator are also subtracted

as if μ2 = q2
i , where q2

i is the momentum squared which

generates μ2. For instance, one computes

∫
[d4q] μ2

(q2 − M2)3

= lim
μ→0

μ2

∫
d4q

{
1

(q2 − M2)3
−
[

1

q̄6

]}
= iπ2

2
, (5.8)

in accordance with Eq. (5.5). In this case both integrals on

the r.h.s. are UV convergent and the only contribution which

survives the μ → 0 limit is generated by the subtraction term.

As a consequence, although only one kind of μ2 exists, one

has to keep track of its origin when it appears in the numerator

of J (q1, . . . , qℓ, μ
2). For this purpose we use the notation

μ2|i , which understands the same subtraction required for

the case μ2 = q2
i . fdr integrals with powers of μ2|i in the

numerator are called ‘extra integrals’.18 Their computation

is elementary, as illustrated by Eq. (5.8). Additional one- and

two-loop examples can be found in Refs. [96,99]. fdr extra

integrals play an important role in maintaining the theory

unitary without the need of introducing counterterms in L,

as will be discussed in Sect. 5.4.

As a simple example of an fdr integration, we consider the

scalar one-loop integrand

J (q) = 1

(q2 − M2)2
, (5.9)

which diverges logarithmically for q → ∞. The steps to

define its fdr integral are as follows:

• Shift squares of the integration momentum,

J (q) → J (q, μ2)

≡ 1

(q̄2 − M2)2
, with q̄2 ≡ q2 − μ2. (5.10)

• Subtract the divergent part of the integrand [JINF(q, μ2)]
=
[

1
q̄4

]
in the μ → 0 limit, setting μ → μR in the

logarithms

18 This is different compared to ireg where no extra integrals are intro-

duced. While extra integrals are not strictly needed in fdr, they are

introduced for convenience to allow the decomposition of fdr tensor

integrals into MIs and to avoid introducing counterterms in L.

∫
[d4q] 1

(q̄2 − M2)2

≡ lim
μ→0

∫

r

d4q

{
1

(q̄2 − M2)2
−
[

1

q̄4

]}∣∣∣∣
μ→μR

.

(5.11)

• The dependence on r is eliminated by using the partial

fraction identity

1

q̄2 − M2
= 1

q̄2

(
1 + M2

q̄2 − M2

)
(5.12)

in the first integrand on the r.h.s. of Eq. (5.11). This

exactly cancels the divergent term
[

1
q̄4

]
before integra-

tion, leaving the UV-finite result19

∫
[d4q] 1

(q̄2 − M2)2
≡ lim

μ→0

×
∫

d4q

{
M2

q̄4(q̄2 − M2)
+ M2

q̄2(q̄2 − M2)2

}∣∣∣∣
μ→μR

(5.13a)

= −iπ2 ln
M2

μ2
R

. (5.13b)

In practice, one can directly start from the integrand in

Eq. (5.10) and expand it by means of Eq. (5.12). This proce-

dure allows one to naturally separate [JINF(q1, . . . , qℓ, μ
2)]

from any integrand J (q1, . . . , qℓ, μ
2) and write down def-

initions analogous to Eq. (5.13) at any loop order. Explicit

examples for the extraction of fdr vacua from two-loop inte-

grands are presented in Ref. [99].

Given the fact that the definition of fdr loop integra-

tion is compatible with a graphical proof of the Slavnov–

Taylor identities through Eqs. (5.6) and (5.7) and can be made

congruent with the subintegration consistency of Eq. (5.4)

without the need of introducing UV counterterms in L (see

Sect. 5.4 and Ref. [101] for more details on this point),

fdr quantities are directly interpretable as UV-renormalized

ones. As an example, the correspondence between off-shell

two-loop QCD correlators computed in fdr and ds has been

worked out in Ref. [101].

5.2 FDR and IR infinities

The modification of the propagators induced by Eq. (5.2)

also regularizes soft and collinear divergences in the virtual

19 The alternative definition in Eq. (5.11) with, for example, r = ds

gives the same result,
∫
[d4q] 1

(q̄2−M2)2 = μ4−d
ds

∫
ddq 1

(q2−M2)2 −

limμ→0 μ4−d
ds

∫
ddq 1

q̄4

∣∣∣∣
μ→μ

ds

= −iπ2 ln M2

μ2
ds

. In the first integral, μ

can be directly set to zero since it is IR convergent.
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Fig. 9 Massless scalar one-loop three-point function. Thick internal

lines denote the insertion of the infinitesimal mass μ, which generates

μ-massive propagators

integrals [92]. As an example, the massless one-loop three-

point function corresponding to the Feynman diagram shown

in Fig. 9 is interpreted in fdr as

I
fdr

=
∫

[d4q] 1

q̄2 D̄1 D̄2

= lim
μ→0

∫
d4q

1

q̄2 D̄1 D̄2

, (5.14a)

with q̄2 = q2 − μ2 and D̄i = (q + pi )
2 − μ2. It is worth

noticing that this is the same definition as given in Eq. (5.5).

In fact, there is no [JINF] term to subtract in this case since

the integrand is UV finite. It is easy to compute

I
fdr

= iπ2

s

[
ln2(μ0)

2
+ iπ ln(μ0) − π2

2
+ O(μ0)

]
,

(5.14b)

with s = (p2 − p1)
2 and μ0 = μ2/s. Thus, IR diver-

gences take the form of logarithms of μ0. In the case at

hand, the squared logarithm is generated by an overlap of

soft and collinear divergences when q → 0 and q is collinear

to pi .

This prescription certainly allows one to assign a pre-

cise meaning to virtual integrals also in the presence of

IR singularities. Nevertheless, the correct final result is

obtained only if the real part of the radiative corrections

is treated likewise. This is obtained by carefully analyzing

the Cutkowsky rules [102] relating real and virtual contri-

butions with different cuts of diagrams at a higher perturba-

tive level, where cutting a propagator means going on-shell,
i

q2+i0
→ (2π)δ(q2)θ(q0). This correspondence is linked to

the identity20

i

q2 + i0
= (2π)δ(q2)θ(q0) + i

q2 − i0q0
. (5.15)

In fact, IR singularities on the l.h.s. of Eq. (5.15) manifest

themselves as pinches of the integration path by two (or

more) singularities in the q0 complex plane, which occur

in the virtual part of the radiative corrections. On the other

hand, the first term on the r.h.s. gives end-point singularities,

20 This relation is also one of the starting points of the fdu scheme

described in Sect. 6.

Fig. 10 Splitting regularized by μ-massive (thick) unobserved parti-

cles. The one-particle cut contributes to the virtual part, the two-particle

cut to the real radiation

typical of the real radiation, and the last term generates IR

finite contributions. It is then clear that the fdr modification
i

q2+i0
→ i

q̄2+i0
in the virtual contribution is matched by the

μ-massive version of Eq. (5.15), namely

i

q̄2 + i0
= (2π)δ(q̄2)θ(q0) + i

q̄2 − i0q0
, (5.16)

which in turn is responsible for the correspondence i
q̄2+i0

→
(2π)δ(q̄2)θ(q0) depicted in Fig. 10; see also Ref. [92]. For

example, Eq. (5.16) can be used to rewrite the real part of

Eq. (5.14a) as an integral over an eikonal factor

π2

4
Re

(
1

iπ2

∫
[d4q] 1

q̄2 D̄1 D̄2

)
= lim

μ→0

∫

�̄3

1

s̄13s̄23
, (5.17)

where s̄i j = ( p̄i + p̄ j )
2, p̄2

i, j = μ2 → 0 and �̄3 denotes the

μ-massive 3-particle phase space.

In summary, the IR divergent 1 → 2 massless splitting

gets regularized by the introduction of an infinitesimal mass

μ for all unobserved particles. In the case of external parti-

cles, this is equivalent to trade a massless phase space for a

μ-massive one. Furthermore, IR infinities cancel when sum-

ming real and virtual contributions, for instance

σ =
∫

�m

dσ (v) + lim
μ→0

∫

�̄m+1

dσ (r)({s̄i j }) = σ (v) + σ (r),

(5.18)

as illustrated in Fig. 11. Finally, when dσ (r)({si j }) is analyti-

cally known in terms of massless invariants si j = (pi + p j )
2

with p2
i, j = 0, Eq. (5.18) prescribes the replacement si j →

s̄i j . If, instead, dσ (r) is known only numerically, one can con-

struct a mapping from a massive to a massless phase space,

�̄m+1

mapping→ �m+1, use �m+1 to compute massless invari-

ants and rewrite the real contribution as

σ (r) = lim
μ→0

∫

�̄m+1

dσ (r)({si j })
∏

i< j

si j

s̄i j

. (5.19)
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Fig. 11 IR divergences drop

out when summing the

m-particle virtual piece σ (v) and

its real (m + 1)-particle

counterpart σ (r). Adding the

contributions gives the fully

inclusive NLO cross section

In this way, dσ (r)({si j }) is gauge invariant, since it is com-

puted with massless kinematics and the fudge factor
∏

i< j

si j

s̄i j

effectively replaces si j → s̄i j in all relevant IR singular

configurations. This is because dσ (r)({si j }) ∼ 1
si j

when

si j → 0.

5.3 Application example: e+e− → γ ∗ → qq̄ at NLO

Virtual contributions

In this section we perform the computation of the total cross

section of the process e+e− → γ ∗ → qq̄ in QCD to illus-

trate a typical fdr calculation. As for the virtual part of the

corrections, scaleless integrals vanish. More precisely, in fdr

they are proportional to ln μR/μ (where μ is the IR regula-

tor), which gives zero when choosing μR = μ [99]. Thus,

only the vertex diagram where a virtual gluon connects the

quark with the antiquark has to be considered. The only sub-

tle point of the calculation is the replacement

/qγ α/q = −q2γ α + 2γβqαqβ → −q̄2γ α + 2γβqαqβ

(5.20)

in the fermion string, dictated by the global prescription. Note

that this is fully equivalent to the ireg recipe of performing

simplifications before introducing μ2 in the denominators. In

fact, the replacement in Eq. (5.20) produces a contribution

proportional to

∫
[d4q]−q̄2γ α + 2γβqαqβ

q̄2 D̄1 D̄2

= −γ α

∫
[d4q] 1

D̄1 D̄2

+ 2γβ

∫
[d4q] qαqβ

q̄2 D̄1 D̄2

, (5.21)

which is the same result one would obtain by simplifying

before introducing μ-massive propagators. In both cases,

the gauge-preserving simplification between the numera-

tor and the denominator of the first integral on the r.h.s.

of Eq. (5.21) is achieved. Differences between fdr and

ireg start when evaluating the second integral. A custom-

ary Passarino–Veltman tensor decomposition is possible in

fdr before using the definition of the fdr integral given in

Eq. (5.1):21

Cαβ ≡
∫

[d4q] qαqβ

q̄2 D̄1 D̄2

= C00(g
αβ) + C11(pα

1 p
β
1 )

+ C22(pα
2 p

β
2 ) + C12(pα

1 p
β
2 + pα

2 p
β
1 ). (5.22)

To obtain the coefficients Ci j , one needs to contract Cαβ with

gαβ , resulting in

Cα
α =

∫
[d4q] q2

q̄2 D̄1 D̄2

. (5.23)

Since q2 in the numerator is not generated by Feynman rules,

now it would be incorrect to simplify it with the q̄2 denomi-

nator, in the sense that one would not obtain the correct value

of Cαβ . Here is the place where the fdr ’extra integrals’ play

an active role. In fact, by adding and subtracting μ2, one

rewrites

Cα
α =

∫
[d4q] q̄2 + μ2

q̄2 D̄1 D̄2

=
∫

[d4q] 1

D̄1 D̄2

+
∫

[d4q] μ2

q̄2 D̄1 D̄2

, (5.24)

which produces the correct answer in terms of a minimum

set of scalar MIs. In other words, thanks to the introduction

of extra integrals, Eq. (5.1) can be considered as a convenient

way to define a loop integration for divergent integrals that

survives algebraic four-dimensional manipulations. This is a

peculiar property of fdr.

In the computation at hand, only C00 and C12 are needed.

The reduction gives

C00 = I2,fdr

4
+ E I

2
, C12 = E I

s
, (5.25)

21 In ireg, Cαβ is directly computed by subtracting its UV divergent

part.
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with22

I2,fdr
=
∫

[d4q] 1

D̄1 D̄2

=
∫ 1

0

dx

∫
[d4q]

× 1

[q̄2 + sx(1 − x) + i0]2

= −π2

(
ln

−s − i0

μ2
R

− 2

)
, (5.26a)

E I =
∫

[d4q] μ2

q̄2 D̄1 D̄2

= iπ2

2
; (5.26b)

see Eqs. (5.13) and (5.8). Analogously, one reduces the rank-

one tensor

Cα ≡
∫

[d4q] qα

q̄2 D̄1 D̄2

= C1 pα
1 + C2 pα

2 , (5.27)

obtaining

C1 = C2 = I2,fdr

s
. (5.28)

In summary, the virtual amplitude can be expressed as a linear

combination of the scalar integrals in Eqs. (5.14b) and (5.26).

Multiplying with the Born amplitude and taking the real part,

one obtains23

σ
(v)

fdr
= σ (0)

(
αs

π

)
CF

[
− ln2(μ0)

2
− 3

2
ln(μ0)

− 7 − π2

2
+ O(μ0)

]
, (5.29)

where σ (0) is the Born total cross section given in Eq. (2.15)

and ln μ0 is the IR logarithm. The process at hand is UV

finite, so that the dependence on the logarithms has to drop

in the final result. As a consequence, the effect of all scale-

less integrals (nullified by our particular choice μR = μ) is

nothing but ln s/μ2
R → ln s/μ2 in Eq. (5.26a), as can easily

be checked with an explicit calculation.

Real contributions

As for the bremsstrahlung contribution e+e− → γ ∗ →
q(p1)q̄(p2)g(p3), a tensor decomposition of the three-

22 The value of the ‘extra integral’ E I is the same as the one of

(2π)4 I d
3 [μ2] obtained in fdf; see Eq. (3.36).

23 This result is identical to the one obtained in ireg, compare with

Eq. (4.18).

particle phase-space integrals produces the matrix element

squared24

M
(0)

fdr
(s12, s13, s23) = 16παs

s
CF M

(0)

fdr
(s)

(
− s

s13
−

× s

s23
+ s13

2s23
+ s23

2s13
+ s2

s13s23

)
, (5.30)

where M
(0)

fdr
(s) is the fully inclusive Born matrix element

squared of e+e− → γ ∗ → q(k1)q̄(k2),

M
(0)

fdr
(s) = 2

π

∫

�2

M
(0)

fdr
(k1, k2). (5.31)

In accordance with Eq. (5.18), we now replace all the invari-

ants by their massive counterparts, si j → s̄i j , and integrate

over a μ-massive three-body phase space,

∫

�̄3

M
(0)

fdr
(s̄12, s̄13, s̄23) = 4π3αs

s2
CF M

(0)

fdr
(s)

×
∫

R̄3

ds̄13ds̄23

(
− s

s̄13
− s

s̄23
+ s̄13

2s̄23
+ s̄23

2s̄13
+ s2

s̄13s̄23

)
.

(5.32)

The quantity R̄3 represents the physical region of the

Dalitz plot for the μ-massive three-particle phase-space

parametrized in terms of s̄13 and s̄23. The limit μ → 0

is understood from now on. The needed integrals can be

expressed in terms of the scaled invariants

x̄ = s̄13

s
− μ0, ȳ = s̄23

s
− μ0,

z̄ = s̄12

s
− μ0, with μ0 = μ2

s
, (5.33)

and they are listed in Ref. [92]. We report them here for

completeness25

∫

R̄3

ds̄13ds̄23
1

s̄13
=
∫

R̄3

ds̄13ds̄23
1

s̄23

= s

∫

R̄3

dx̄d ȳ
1

ȳ + μ0
= s

[
− ln(μ0) − 3 + O(μ0)

]
,

(5.34a)

24 This corresponds to the usual matrix element squared for massless

particles computed in four dimensions, as given in Eq. (2.23).

25 Similar integrals have to be evaluated when using the ireg frame-

work to determine the real contributions; see Eqs. (4.31). Their coun-

terparts in ds are given in Eqs. (2.26).
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∫

R̄3

ds̄13ds̄23
s̄13

s̄23
=
∫

R̄3

ds̄13ds̄23
s̄23

s̄13

= s2

∫

R̄3

dx̄d ȳ
ȳ

x̄ + μ0
= s2

[
− ln(μ0)

2
− 7

4
+ O(μ0)

]
,

(5.34b)
∫

R̄3

ds̄13ds̄23
1

s̄13s̄23
=
∫

R̄3

dx̄d ȳ
1

(x̄ + μ0)(ȳ + μ0)

= ln2(μ0)

2
− π2

2
+ O(μ0). (5.34c)

The final result of the bremsstrahlung contribution reads26

σ
(r)

fdr
= σ (0)

(αs

π

)
CF

[
ln2(μ0)

2
+ 3

2
ln(μ0)

+ 17

4
− π2

2
+ O(μ0)

]
. (5.35)

Adding the virtual contribution given in Eq. (5.29) produces

the total NLO correction,

σ (1) = σ (0) + σ
(v)

fdr
+ σ

(r)

fdr

∣∣∣∣
μ0→0

=
Q2

q Nc

3s

(
e4

4π

)

×
[

1 +
(

αs

4π

)
3CF

]
. (5.36)

Finally, we remark that it is possible to set up the entire

calculation in a fully local fashion. To achieve this, one has to

rewrite the double and single logarithms in Eq. (5.29) as local

counterterms to be added to the real integrand. For instance,

Eq. (5.34c) gives

ln2(μ0) − π2 = 2

∫

R̄3

ds̄13ds̄23
1

s̄13s̄23
. (5.37)

The full counterterm needed for the case at hand can be

inferred uniquely from the factorization properties of the

matrix element squared,

Mct

fdr
(p1, p2, p3)

= 16παs

s
CF M

(0)

fdr
( p̂1, p̂2)

×
(

− s

s̄13
− s

s̄23
+ s̄13

2s̄23
+ s̄23

2s̄13
+ s2

s̄13s̄23
− 17

2

)
.

(5.38)

26 This result is identical to the one obtained in ireg, compare with

Eq. (4.32).

This equation is in agreement with Eq. (5.30) when inte-

grating over p̂1 and p̂2. The constant 17
2

is chosen in

such a way that only the logarithms and the π2 term in

Eq. (5.35) are reproduced upon integration over R̄3. The

quantity M
(0)

fdr
( p̂1, p̂2) is computed with mapped quark and

antiquark momenta defined as

p̂α
1 = κ�α

β p
β
1

(
1 + s23

s12

)
, p̂α

2 = κ�α
β p

β
2

(
1 + s13

s12

)
,

κ =
√

ss12

(s12 + s13)(s12 + s23)
, (5.39)

where �α
β is the boost that brings the sum of the momenta

back to the original center of mass frame, p̂1 + p̂2 =
(
√

s, 0, 0, 0). After subtracting Mct

fdr
(p1, p2, p3) from the

exact matrix element squared, μ can be set to zero before inte-

gration. In this case, an analytic knowledge of M
(0)

fdr
(s12, s13,

s23) is not necessary. A simple flat Monte Carlo with 105

phase-space points reproduces the result in Eq. (5.36) at the

1 per mil level in a quarter of second.

5.4 Established properties and future developments of FDR

Correspondence between integrals in FDR and DS

At one loop, a one-to-one correspondence exists between

integrals regularized in fdr and ds. More precisely, accord-

ing to the definition of fdr, any result of a loop integration is

UV finite, whereas IR divergences are expressed in powers of

(logarithms of) μ0 = μ2/s. In ds, on the other hand, results

of an integration in d dimensions can be expanded in powers

of ǫ; UV and IR divergences are then parametrized as poles

1/ǫn .

To provide an example for the relation between IR diver-

gences of integrals in fdr and ds, we consider the integral in

Eq. (5.14). Using d-dimensional integration, its result reads

I
ds

= cŴ(ǫ)
iπ2

s

[
1

ǫ2
+ iπ

ǫ
− π2

2
+ O(ǫ)

]
. (5.40)

The factor cŴ(ǫ) is directly related to integration in d dimen-

sions. It is given in Eq. (2.20b). Comparing the result in

Eq. (5.40) with Eq. (5.14b), the relation between the (reg-

ularized) IR divergences is given by

1

ǫ2
↔ 1

2
ln2(μ0),

1

ǫ
↔ ln(μ0). (5.41)

Extending this to the ‘finite’ terms, the following generalized

relation for a (potentially UV and IR divergent) integral over

a generic integrand F holds:
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[
1

(2π)4

∫
[d4q]F(q̄2, q)

]

μ0

=
[

cŴ(ǫ)−1μ4−d

∫
ddq

(2π)d
F(q2, q)

]

ǫ0

. (5.42)

Analogously, for the real contribution one finds

[ ∫

R̄3

dx̄d ȳd z̄ F(x̄, ȳ, z̄) δ(1 − x̄ − ȳ − z̄)

]

μ0

=
[(

μ2

s

)ǫ ∫

R3

dxdydz F(x, y, z)
δ(1 − x − y − z)

(xyz)ǫ

]

ǫ0

,

(5.43)

where R3, x, y, and z are the massless counterparts of

R̄3, x̄, ȳ, and z̄, respectively; see also Eq. (5.33).

Finally, there exists a connection between the fdr ‘extra

integrals’ and fdf integrals containing powers of the (−2ǫ)-

dimensional part of the loop momentum, q[−2ǫ] ≡ q̃ ,

∫
[d4q]F(q̄2, q,−μ2) = μ4−d

∫
ddq F(q2, q, q̃2).

(5.44)

For more comments on the interplay −μ2 ↔ q̃2; see also

the discussion around Eq. (3.6) and Ref. [96].

Gauge invariance, unitarity, and extra integrals

Global prescriptions, such as the one described at one loop

in Eq. (5.20), can be defined at any loop order. Their role is

maintaining the needed gauge cancellations. However, this

is not enough to guarantee that results are compatible with

unitarity. In fact, in a unitary QFT, all perturbative orders are

linked by unitarity relations, and any renormalization pro-

cedure compatible with unitarity has to fulfill the following

two requirements:

(a) The UV divergences generated at any perturbative level

should have no influence on the next perturbative orders.

(b) The subintegration consistency in Eq. (5.4) should hold

true.

Schemes based on ds automatically respect subintegration

consistency when all objects (including γ matrices) are

treated in d dimensions, while requirement (a) is fulfilled

only if 1/ǫ poles are subtracted order by order by introducing

counterterms in L. This forbids one to define ds loop inte-

grals beyond one loop by simply dropping 1/ǫ poles. See the

discussion is Section 2.5 of Ref. [99] for more details.

On the other hand, fdr automatically respects requirement

(a) since the UV subtraction is embedded in the definition

of the fdr integral, so that there is no room for any UV

divergence to have any influence at higher perturbative levels.

For instance, products of two one-loop fdr integrals give the

same result at any perturbative order, which is not the case

in ds.

On the contrary, subintegration consistency is not auto-

matically obeyed in fdr. The reason for this can be traced

back to the fact that the global prescription needed at the level

of divergent subdiagrams (sub-prescription) clashes with the

global prescription required at the level of the full diagram

(full-prescription), so that one has to correct for this mis-

match. However, this can be done directly at a diagrammatic

level. This is possible thanks to the fdr extra integrals. They

can be used to parametrize, in an algebraic way, the dif-

ference between the result one gets when cancellations do

or do not take place between numerators and denominators,

as illustrated, for example, in Eq. (5.24). In practice, one

looks at all possible UV divergent subdiagrams, adds the

piece needed to restore the sub-prescription and subtracts

the wrong behaviour induced in the subdiagram by the full-

prescription. The net result of this process is the addition

of fdr extra–extra integrals to the amplitude that enforce

requirement (b) without the need of an order-by-order renor-

malization [101]. For example, a two-loop extra–extra inte-

gral can be defined as the insertion of a one-loop extra inte-

gral into a two-loop fdr integral. Thus, an fdr calculation

directly produces renormalized quantities, which is a unique

property of the fdr formalism.

Work is in progress to find the connection between fdr

extra–extra integrals and evanescent fdh couplings. Prelimi-

nary results indicate that the introduction of fdr extra–extra

integrals is equivalent to a restoration of the correct behaviour

under renormalization in an fdh calculation in which one sets

equal gauge and evanescent couplings from the beginning.

6 FDU: four-dimensional unsubtraction

The four-dimensional unsubtraction (fdu) [103–107] appr-

oach constitutes an alternative to the traditional subtraction

method. It is based on the loop–tree duality (LTD) theorem

[108–111], which establishes a connection among loop and

dual integrals, the latter being similar to standard phase-space

integrals. In this way, the method provides a natural way to

implement an integrand-level combination of real and virtual

contributions, thus leading to a fully local cancellation of IR

singularities. Moreover, the addition of local UV countert-

erms allows one to reproduce the proper results in standard

renormalization schemes.

In the following, we describe briefly the general facts

about the method, using the computation of the NLO QCD

corrections to γ ∗ → qq̄(g) as a practical guideline.
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6.1 Introduction to LTD

The LTD theorem is based on Cauchy’s residue theorem.

Let us consider a generic one-loop scalar integral for an N -

particle process, where the external momenta are labeled

as pi with i ∈ {1, 2, . . . N }, whilst the loop momentum is

denoted by ℓ. With these conventions, the internal virtual

momenta become qi = ℓ + ki where ki = p1 + · · · + pi and

kN = 0 because of momentum conservation. If the mass of

the internal particles is mi , a scalar integral can be expressed

as

L(1)(p1, . . . , pN ) =
∫

ℓ

N∏

i=1

G F (qi ), (6.1)

with the Feynman propagators G F (qi ) = (q2
i − m2

i + i0)−1.

As usual, qi represents a four momentum which can be

decomposed as qi,μ = (qi,0, qi ), independently of the spe-

cific space-time dimension.27 The energy component is qi,0,

whilst qi denotes the spatial components.

At one-loop level, the dual representation of the loop inte-

gral is obtained by cutting one by one all the available internal

lines and applying the residue theorem accordingly. The cut

condition is implemented by restricting the integration mea-

sure through the introduction of

δ̃ (qi ) ≡ 2π iθ(qi,0)δ(q
2
i − m2

i ), (6.2)

which transforms the loop integration domain into the pos-

itive energy section (i.e. qi,0 > 0) of the corresponding on-

shell hyperboloid (i.e. q2
i = m2

i ). When the scattering ampli-

tude under consideration is composed of single powers of

the propagators, the computation of the residue simplifies to

removing the cut propagator and replacing the uncut ones

with their duals, i.e.

G D(qi ; q j ) = 1

q2
j − m2

j − i0η · k j i

, (6.3)

where i, j ∈ {1, 2, . . . N }, k j i = q j −qi and η is an arbitrary

future-like or light-like vector, η2 ≥ 0, with positive definite

energy η0 > 0. It is worth noticing that the dual prescrip-

tion takes care of the multiple-cut correlations introduced in

the traditional Feynman-tree theorem (FTT) [112,113], thus

allowing one to prove their formal equivalence.

In this way, the dual integrand looks like a tree-level

amplitude whose building blocks are the same as in the stan-

27 In other words, we could be working in any of the ds schemes men-

tioned in this article, with the only requirement that the associated man-

ifold is Lorentzian, i.e. that it only contains time component and an

arbitrary number of spatial ones.

dard theory with a modified i0 prescription. Thus, the one-

loop scalar integral in Eq. (6.1) reads

L(1)(p1, . . . , pN ) = −
N∑

i=1

∫

ℓ

δ̃ (qi )
∏

j =i

G D(qi ; q j ). (6.4)

The existence of a dual representation for loop integrals

straightforwardly leads to a dual representation for loop scat-

tering amplitudes. As explained in Ref. [108], any loop con-

tribution to scattering amplitudes in any relativistic, local,

and unitary quantum field theory can be computed through

the decomposition into dual contributions. Of course, this

idea generalizes to multi-loop amplitudes, where dual con-

tributions involve iterated single-cuts [108,110].

For amplitudes containing higher powers of the propa-

gators, the previous result can be extended, as studied in

Ref. [111]. It is worth appreciating that higher powers of

the propagators explicitly manifest when dealing with self-

energy corrections at one loop, self-energy insertions at

higher orders, and when computing the local version of the

UV counterterms [104,105].

6.2 Momentum mapping and IR singularities

The application of the LTD theorem to a virtual amplitude

leads to a set of dual contributions. From them, we can extract

useful information as regards the location of the singulari-

ties in the corresponding integration domain, as well as the

components (or cuts) that originate them. As explained in

Refs. [114–116], the intersection of forward and backward

hyperboloids defined by the on-shell conditions allows one

to identify the IR (and threshold) singularities. Moreover,

this study is crucial to prove the compactness of the region

developing IR divergences [103–105], which constitutes a

very important result by itself. This is because the real-

radiation contributions are computed on a physical phase

space, which is also compact.28 In consequence, since the

Kinoshita–Lee–Nauenberg (KLN) theorem states that there

is a cross-cancellation of IR singularities between real and

virtual terms, the compactness of the IR region inside the

dual integration domain allows one to implement a local real-

virtual cancellation of singularities by applying a suitable

momentum mapping. In this way, the singularities in the real

phase space (PS) are mapped to the dual integration domain

where the corresponding virtual singularities are generated;

then an integrand-level cancellation takes place and there is

no need of introducing any external regulator to render the

combination integrable.

In order to connect the Born kinematics (m-particle PS)

with the real- emission one ((m + 1)-particle PS), we rely on

28 This assumption is true whenever the incoming particles have fixed

momentum, thus leading to a global constraint on the energy available

for generating final-state radiation.
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Fig. 12 Diagrammatic contributions in the collinear limit, for both the dual one-loop (left) and the real-emission tree-level squared amplitudes

(right). The lines that are crossed by a dashed line correspond to on-shell states. When particles are collinear, the parent becomes on-shell and the

diagrams factorize

techniques similar to those applied for the dipole method [53,

117]. To be more concrete, let us start thinking about the

virtual contribution. After obtaining the dual amplitudes, we

have a set of m external momenta and a free on-shell loop

momentum. In this way, the dual amplitudes introduce an

extra on-shell momentum. Since there are (m + 1) on-shell

momenta available, the kinematics of the dual components

exactly matches the kinematics of the real contribution.

Then it is necessary to isolate the real-emission IR sin-

gularities by properly splitting the complete real PS. If p
′μ
i

are the momenta of the real-emission partons, we start by

defining the partition

Ri = {y′
ir < miny′

jk},
m∑

i=1

Ri = 1, (6.5)

where y′
i j = 2p′

i ·p′
j/Q2, r is the radiated parton from parton

i , and Q is the typical hard scale of the scattering process.

It is important to notice that, inside Ri , the only allowed

collinear/soft configurations are i ‖ r or p
′μ
r → 0. Thus,

collinear singularities manifest in non-overlapping regions

of the real-emission PS which allows one to introduce an

optimized transformation to describe the collinear configu-

ration.

On the other hand, there are m dual contributions, each one

associated with a single cut of an internal line. So, we can

establish an identification among partitions and dual ampli-

tudes, based on the picture shown in Fig. 12. Concretely, the

cut-line in the dual amplitude must be interpreted as the extra-

radiated particle in the real contribution; i.e. qi ↔ p′
r . Then

we settle in one of the partitions, for instance Ri . Because

the only collinear singularity allowed is originated by i ‖ r ,

we distinguish particle i and call it the emitter. After that,

we single out all the squared amplitude-level diagrams in the

real contribution that become singular when i ‖ r and cut

the line i . These have to be topologically compared with the

dual-Born interference diagrams whose internal momenta qi

are on-shell (i.e. the line i is cut), as suggested in Fig. 12.

In conclusion, the dual contribution i is to be combined with

the real contribution coming from region Ri .

The required momentum mapping is motivated by general

factorization properties in QCD [114,118] and the topologi-

cal identification in Fig. 12. Explicitly, let us take the (m+1)-

particle real-emission kinematics, with i as the emitter and r

as the radiated particle, and we introduce a reference momen-

tum, associated to the spectator j . For the massless case, the

generic multi-leg momentum mapping with qi on-shell is

given by

p
′μ
i = p

μ
i − q

μ
i + αi p

μ
j , p

′μ
j = (1 − αi )p

μ
j ,

p
′μ
k = p

μ
k k = i, j,

p′μ
r = q

μ
i , αi = (qi − pi )

2

2p j · (qi − pi )
, (6.6)

with the primed momenta associated to the particles involved

in the real-emission process. In this case, note that p′2
i =

p′2
j = p′2

r = 0 because we restrict ourselves to massless

particles. On the other hand, the initial-state momenta (pa

and pb) are not altered by the transformation, neither is p′
k

with k = i, j . Besides that, since

pi + p j +
∑

k =i, j

pk = p′
i + p′

r + p′
j +

∑

k =i, j,r

p′
k , (6.7)

the transformation shows momentum conservation. It is

worth appreciating that this momentum mapping can be

extended to the massive case, even if the involved particles

have different masses, as we explained in Ref. [105].

6.3 Integrand-level renormalization and self-energies

Besides dealing with IR singularities, any attempt to provide

a complete framework for higher-order computations must be

able to treat UV divergences. In this case, a suitable local ver-

sion of the UV counterterms is required. This topic is deeply

discussed in Ref. [104] for the massless case, whilst the mas-

sive one is studied in Ref. [105]. In the last case, the self-

energy and vertex corrections become non-trivial and some

technical subtleties arise: there are noticeable changes in the

IR singular structure compared to the massless case. On one

hand, the mass acts as an IR regulator, preventing collinear

singularities to emerge. But, on the other hand, soft singu-

larities arising from gluon emissions become non-vanishing

because they are proportional to the mass of the emitting
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leg. Since we are looking for a complete local cancellation

of singularities and a smooth massless transition, it is nec-

essary that the expressions for the massive case reduce to

those already available for massless processes, even at the

integrand level.

Let us start with the well-known expression for the wave-

function renormalization. Working in Feynman gauge with

on-shell renormalization conditions, its integrated form is

given by29

�Z2 =
(

αs

4π

)
CF

[
− 1

ǫuv

− 2

ǫir

+ 3 ln

(
M2

μ2

)
− 4

]
,

(6.8)

where we kept track of the IR and UV origin of the ǫ poles

within ds. The unintegrated expression [105] is given by

�Z2(p1)

= −g2
s CF

∫

ℓ

G F (q1)G F (q3)

×
[
(d − 2)

q1 · p2

p1 · p2
+ 4M2

(
1 − q1 · p2

p1 · p2

)
G F (q3)

]
,

(6.9)

which includes higher-order powers of the propagators, and

where we define q1 = ℓ + p1, q2 = ℓ + p1 + p2, and

q3 = ℓ. It is worth appreciating that there are many equiva-

lent integrand-level expressions to describe �Z2(p1), but the

one presented in Eq. (6.9) develops the proper IR behaviour

to cancel singularities coming from real-emission processes.

Besides this, notice that the corresponding formula for the

massless case [104] is simply recovered by considering

M → 0 at the integrand level. The term proportional to

M2 is responsible for soft divergences that appear when q1

is set on-shell, and it vanishes as M → 0 since soft sin-

gularities are absent in the massless self-energy computa-

tion. On the contrary, the collinear singularities that appear in

�Z2(M = 0) manifest themselves as quasi-collinear diver-

gences, i.e. terms that behave like ln(M2/μ2), as shown in

Eq. (6.8). Once we combine the self-energy contributions

with the virtual matrix elements, there are still UV sin-

gularities present. These have to be removed by perform-

ing an expansion around the UV propagator G F (quv) =
(q2

uv
− μ2

uv
+ i0)−1,

G F (qi ) = G F (quv)
(

1 −
2quv · ki,uv + k2

i,uv
+ μ2

uv
− m2

i

q2
uv

− μ2
uv

+ i0
+ . . .

)
,

(6.10)

29 The result of the field renormalization coincides with the one of cdr

and not with the one of fdh. In the latter scheme, the constant ‘−4’

would be replaced by ‘−5’; see e.g. Eq. (2.24) of Ref. [28].

with the renormalization scale μuv and ki,uv = qi − quv.

A similar expansion is carried out in the numerator, which

leads to the UV counterterm for the wave-function renormal-

ization,

�Zuv

2 (p1)

= (2 − d)g2
s CF

∫

ℓ

[
G F (quv)

]2

×
(

1 + quv · p2

p1 · p2

)
[1 − G F (quv)(2quv · p1 + μ2

uv
)]

= −(4π)ǫŴ(1 + ǫ)
αs

4π
CF

(
μ2

uv

μ2

)−ǫ
1 − ǫ2

ǫ
. (6.11)

The integrated form exactly reproduces the UV pole present

in Eq. (6.8). The subleading terms proportional to μ2
uv

are

chosen to subtract only the pole part from Eq. (6.8) and, in

this way, settle in the ms scheme. Finally, we define the UV-

free wave-function renormalization

�Z ir

2 = �Z2 − �Zuv

2 , (6.12)

that only contains IR singularities. To conclude this discus-

sion, it is important to emphasize that this construction is

completely general and that the subleading terms can be

adjusted to reproduce the desired scheme-dependent contri-

butions.

Besides the wave-function renormalization, it is also nec-

essary to remove the UV singularities associated to the vertex

corrections. The corresponding renormalization counterterm

in its unintegrated form is given by

Ŵ
(1)
A,uv

= g2
s CF

∫

ℓ

[
G F (quv)

]3

×
(
γ ν

/q
uv

Ŵ
(0)
A /q

uv
γν − dA,uv

μ2
uv

Ŵ
(0)
A

)
, (6.13)

where Ŵ
(0)
A represents the tree-level vertex. Again, the term

proportional to μ2
uv

in the numerator is subleading in the UV

limit and its coefficient, dA,uv, must be adjusted in order to

implement the desired renormalization scheme [105].

6.4 Application example: e+e− → γ ∗ → qq̄ at NLO

In order to compute the NLO QCD corrections to e+e− →
γ ∗ → qq̄ , we start from the complete set of O(α2

s ) real and

virtual diagrams, including the self-energy ones. The total

unrenormalized virtual cross section is

σ
(v)

fdu
= 1

2s12

∫
d�1→2{2 Re〈A(0)

fdu
|A(1)

fdu
〉

+
[
�Z2(p1) + �Z2(p2)

]
M

(0)

fdu
}, (6.14)
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where we distinguish contributions originated in the trian-

gle diagram from those related to self-energies. After that,

we must introduce the local UV counterterms which imple-

ments the desired renormalization scheme and replace the

self-energy contributions by the wave-function renormaliza-

tion constants, �Z ir

2 . In this case, we apply LTD to Eq. (6.14)

and obtain a set of three dual contributions, σ̃
(v)

i,fdu
.

Once the dual contributions are computed, we turn atten-

tion to the real-emission terms. As explained in Sect. 6.2, we

need to isolate the different collinear singularities by intro-

ducing a partition of the real phase space. This leads to

σ̃
(r)

i,fdu
= 1

2s12

∫
d�1→3 M

(0)

fdu
(qq̄g)θ(y′

jr − y′
ir )

i, j ∈ {1, 2}, i = j, (6.15)

which fulfills σ̃
(r)

1,fdu
+σ̃

(r)

2,fdu
= σ

(r)

fdu
. After that, we apply the

real-virtual mapping in each partition. This converts the real

terms into fully local IR counterterms for the dual contribu-

tions; this guarantees a complete cancellation of IR singular-

ities at the integrand level, thus rendering the full expression

integrable in four dimensions. This is a really important fact,

because it allows one to put aside ds safely by directly con-

sidering the limit ǫ → 0 at the integrand level [103]. Finally,

the master formula for computing the finite cross-section cor-

rection is

σ (1) = T

⎛
⎝

3∑

i=1

σ̃
(v)

i,fdu
+

2∑

j=1

σ̃
(r)

j,fdu

⎞
⎠− σ̃uv, (6.16)

where σ̃uv is the dual representation of the local UV coun-

terterms and T is an operator that implements the unification

of dual coordinates at the integrand level (with the corre-

sponding Jacobians). If we add all the contributions at the

integrand level and deal with a single master integration, the

expression in Eq. (6.16) is directly implementable in four

space-time dimensions and leads to the correct result after

numerical computation. It is worth mentioning that, in order

to improve the numerical stability, it helps to compactify the

integration domain, applying a transformation as suggested

in Ref. [105].

6.5 Further considerations and comparison with other

schemes

As we depicted in the previous paragraphs, the fdu approach

is based on a fully local cancellation of IR and UV singulari-

ties in strictly four dimensions. In this way, we avoid many of

the practical/conceptual problems related to the extension of

physical properties to d space-time dimensions. In particular,

the γ 5 issue is naturally absent here. Moreover, the idea of

using the mapped real contributions as local IR counterterms

for the dual part simplifies the treatment of IR divergences,

as well as it provides a better understanding of their origin.

On the other hand, the application of the traditional

renormalization procedure within this framework implies to

recompute the renormalization constants in an unintegrated

form (i.e. for the integrand-level implementation). In any

case, by fixing subleading terms in the UV expansion it is pos-

sible to specify the finite part of the counterterms, thus repro-

ducing the results in any scheme (for instance, in MS). More-

over, this algorithm is completely process-independent and,

in consequence, fully compatible with higher-order computa-

tions. In this sense, the treatment of UV divergences is similar

to the procedure proposed within fdr. The main difference

is that we transform the local counterterms to the dual space,

in order to combine it with virtual amplitudes.

Besides this, it is worth mentioning that LTD can handle

loop amplitudes, as any other method described in this report,

but fdu is designed to work directly with physical observ-

ables. For instance in Ref. [119], we applied our framework

to deal with the Higgs boson decay to massless gauge bosons,

which although known to be finite still requires a proper reg-

ularization due to the fact that the amplitudes are UV singular

locally.

Finally, we would like to emphasize that fdu is compatible

with the desired requirements mentioned in the introduction.

In fact, since it is a four-dimensional approach which relies on

proper physically motivated changes of variables, fdu does

not alter the four-dimensional properties of the underlying

theory (i.e. unitarity, causality, and associated symmetries).

Moreover, it fulfills the crucial requirement of mathematical

consistency because singularities are completely removed by

a local mapping. In this way, all the singularities are canceled

before they manifest themselves in the integration.

7 Summary and outlook

The vast majority of higher-order calculations are done using

cdr. While there is no doubt that this made possible impres-

sive progress in perturbative calculations, there is a certain

danger that this success stifles the progress of other methods.

Whether such alternative methods will ever result in a viable

way to perform actual computations can only be established

by actually using them. In order to facilitate this, this article

provides an overview of recent (and not so recent) develop-

ments of regularization schemes other than cdr. Some are

very close to cdr, for others the differences are much larger.

Using simple examples, we have illustrated the differences

and similarities of these methods and their relation to cdr.

Let us summarize the key points by means of the following

list.
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FDH and DRED are perfectly consistent regularizations

schemes, at least up to NNLO. However, they require the

introduction of additional (evanescent) couplings with (in

general) different counterterms. In non-supersymmetric

theories, for dred this is already mandatory at NLO, for

fdh this is unavoidable only at NNLO and beyond. Super-

symmetry might protect the equivalence of the couplings

even beyond these approximations. Statements in the lit-

erature that fdh is inconsistent always refer to ‘naive

fdh’, i.e. fdh without distinguishing the couplings.

Conversions between results in cdr, hv, fdh, and dred

can be made for individual parts contributing to a cross

section. For the virtual contributions this is known to

NNLO and can be elegantly described solely through

the scheme dependence of β functions and anomalous

dimensions. For real corrections and initial-state factor-

ization terms the explicit scheme dependence is only

known to NLO. These results have been used to explicitly

demonstrate the scheme independence of a cross section

at NLO.

FDF is an adaption of the (naive) fdh scheme that can be

used in strictly four dimensions. This enables the use of

unitarity methods, writing loop integrands as products of

tree-level amplitudes and performing numerical calcula-

tions with the components of spinors and momenta. At

NLO, fdf gives results that are equivalent to fdh. How to

extend this beyond NLO is currently under investigation.

The scalars of fdf are not identical to the ǫ-scalars of

fdh.

GoSam makes use of fdf and other four-dimensional

techniques. The one-loop virtual amplitudes that are

called ‘dred’ and ‘cdr’ in GoSam correspond to what

we call ‘naive fdh’ and ’hv’, respectively, in this arti-

cle. Virtual one-loop amplitudes in other schemes are

obtained indirectly through conversion formulae.

SDF is based on the same idea as fdf. However, having

two-loop amplitudes in mind, the integer dimension is

set to de = 6. Hence, the spinor formalism has to be

extended to 6 dimensions.

UV singularities in IREG and FDR The basic idea of

ireg and fdr is similar and based on the observation that

UV singularities are independent of the kinematics. This

is used to isolate the UV singular part of loop integrals.

In ireg, the UV singular part is expressed in terms of

(implicit) integrals Ilog and boundary terms (which have

to be set to zero to respect gauge invariance), whereas in

fdr they are set to zero. The resulting UV-finite integrals

are evaluated in (strictly) four dimensions.

IR singularities in IREG and FDR are also treated in

strictly four dimensions. The matrix elements squared

are computed for massless particles (in four dimensions)

and the phase-space integration is also carried out in four

dimensions. IR singularities are regularized by modify-

ing the phase-space boundaries through a shift q → q+μ

and result in logarithms ln(μ0) = ln(μ2/s). In this sense

the method is similar to the introduction of a photon or

gluon mass. However, the procedures used by ireg and

fdr are superior as they preserve gauge invariance.

Differences between IREG and FDR In ireg, gauge

invariance is achieved by performing first the Dirac alge-

bra in the numerator and then cancel terms in the numer-

ator and denominator before the shift q → q +μ. In fdr,

the shift is done universally in the numerator and denom-

inator. Then additional terms with μ2 in the numera-

tor (called ‘extra integrals’) are included. ireg produces

expressions where the UV singularities are still present

in the form of implicit integrals Ilog. They have to be

removed by a suitable renormalization procedure, as in

ds. Applying fdr, on the other hand, results directly in

UV renormalized quantities.

Relation between IREG/FDR and dimensional schemes:

In ireg and fdr, ‘singularities’ related to real contribu-

tions are encoded in powers of ln(μ0). At NLO, there is a

direct mapping between these terms and the 1/ǫn singu-

larities in the fdh scheme, namely 1/ǫ2 ↔ 1/2 ln2(μ0)

and 1/ǫ ↔ ln(μ0). The extension to NNLO of such a

correspondence between the four-dimensional schemes

and the traditional dimensional schemes is under active

investigation. This also includes on how to compensate

for the absence of evanescent couplings in ireg and fdr.

FDU is an even more radical method in that it does

not split a cross section into (potentially IR divergent)

virtual and real parts. Rather, the combination of the

two parts (and thus the cancellation of IR singularities)

is done at the integrand level. Local counterterms are

used to perform ms renormalization. The extension to

initial-state singularities is also possible; the application

of a slightly modified momentum mapping allows one to

cancel the soft singularities. The remaining initial-state

collinear singularities can be canceled by adding uninte-

grated initial-state counterterms. This is currently under

investigation.

Evanescent couplings are a fact of life! Even though they

can be avoided at NLO in some four-dimensional formu-

lations (like fdh) or do not show up in some particular

processes even at NNLO (like gg → gg in fdh), they

are present in all (partly) four-dimensional regulariza-

tions of QED and QCD. In particular, they have an effect

at NNLO in fdh (like e.g. for gg → qq̄). The connec-

tion of these effects to the ‘extra–extra integrals’ in fdr

is under investigation.

The list above illustrates that there are promising alternatives

available that at least at NLO are well understood. They can

and have been used for NLO calculations and in some cases

have proved to be more efficient.
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Currently, a huge effort in perturbative calculations is

made going beyond NLO towards automated computations

at NNLO. Many of the schemes above have been revisited

in the hope they provide a smoother road towards this goal.

We are convinced that this deserves to be investigated more

thoroughly. In any case, for an alternative scheme to be con-

sistent, there must – at least in principle – exist a well-defined

relation to cdr. At NNLO, these relations are fairly well

established for other traditional dimensional schemes like

hv, fdh, and dred. Regarding new formulations of dimen-

sional schemes like fdf or non-dimensional schemes such as

ireg and fdr, first steps towards establishing such relations

have been made. fdu has the advantage that a separate regu-

larization of the final-state IR singularities is not required, but

only the UV singularities have to be treated in a well-defined

way, such as ms.

Comparing to the impressive list of NNLO calculations

for physical cross sections that have been made using cdr, it

is fair to say, that none of the other methods has had a similar

impact so far. Since cdr is the best established scheme, it is

tempting to keep using it. However, it is not clear at all, if cdr

is really the most efficient scheme. Hence, the investigation

of other regularization schemes is an important aspect of

making further progress in perturbative computations. Are

there more efficient dimensional schemes? Or is it ultimately

advantageous to work completely in four dimensions?

That is the question.
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