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Smart contracts are required to be instantiated in the predeployed stage, which consumes computation resources from then on. It is
a big waste in the blockchain whose nodes are composed of IoT devices, as those devices often have limited resources (such as
limited power supplies or a limited number of processes to run). Meanwhile, IoT devices are heterogeneous and different smart
contracts are required. If those smart contracts are instantiated previously, numerous meaningless addresses are required. In this
paper, we propose to delay the instantiation of a smart contract when used and terminate it when not used, which is similar to
the life cycle of a variable. Then, a new kind of variable (the wrapping variable) is used to hide details of the instantiation and
the address. The smart contract is instantiated in the construction function of the wrapping variable, or even it is delayed to the
time when there are requests for it. The smart contract terminates when the variable is out of its scope. Then, different
instantiation methods are proposed. Finally, we perform the qualitative comparison between the proposed approach and the
predeployment method, and it demonstrates that the proposed methods optimize the life cycle of the smart contract and save

calculation resources.

1. Introduction

Smart contracts are widely used in the cooperation between
blockchains and IoT devices, with the aim of achieving reli-
ability, security, and trust [1, 2]. To manage numerous [oT
devices, smart contracts are used to control and configure
IoT devices in a secure way [3]. For the efficient data aggrega-
tion [4] in IoT, [5] proposes an aggregation way with privacy
preserved. As intrusion detection is important in [oT [6, 7], a
collaborative intrusion detection based on smart contracts is
proposed [8]. For the interaction with the nonblockchain
system (like IoT), [9] proposes a direct interaction way with-
out an oracle [10].

Currently, smart contracts are required to be deployed
previously [11], which preinstantiates the smart contracts
[12, 13]. The instance of a smart contract occupies calcula-
tion resources (including the memory, CPU, or disk space)
of blockchain nodes. Even when there is no request for a

smart contract, its instance is not terminated and the
resources are occupied. This is suitable in the blockchain
whose nodes have external power supplies (such as a PC or
a server), while blockchain nodes may be composed of IoT
devices [14]. The resources of IoT devices are often limited
[15, 16], such as limited power supply or a limited number
of processes to run. Then, it is fatal to delay or reduce
requests for a smart contract to save power.

Meanwhile, a unique address [17, 18] or identifier is
required to access a smart contract in the predeployment
method. IoT devices are of big amount (more than 30 bil-
lion in 2020 (https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/)) and various
types, which results in various smart contracts. If we
instantiate those smart contracts previously, users have to
use numerous meaningless addresses to interact with block-
chains. Some deployment tools [19] or platforms [20, 21]
facilitate the deployment process. However, this process
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FIGURE 1: Current process of smart contracts. The smart contract is instantiated previously, and an address is returned. The caller interacts
with the smart contract by the address. In this way, a smart contract exists even if there is no request.

makes the instantiation details being exposed to the callers
(smart contract author or its user) and forces the callers to
use the addresses of smart contracts. Figure 1 shows an
example.

In this paper, we propose the methods to delay the
instantiation of a smart contract after the smart contract
has been deployed and to perform the destruction of a smart
contract timely to save calculation resources. This way is sim-
ilar to the life cycle management of a local variable. Then, we
propose to use variables to wrap the instantiation steps of
smart contracts. The details of the deployment of a smart
contract are not exposed to the caller, which is performed
in the background.

The major contributions of this paper are as follows.

(1) We propose to create a smart contract instance when
there are requests for it and terminate the instance
when it is not used (out of its usage scope), which is
similar to a local variable. It is aimed at delaying the
instantiation of a smart contract and terminating a
smart contract in time

(2) We propose to adopt a new kind of variable to hide
the details of the instantiation and termination. This
kind of variety is called the wrapping variable. The
caller only needs to create a wrapping variable, and
in its construction, the smart contract is instantiated.
When the variable is out of its scope, the smart con-
tract terminates. It only needs to control a variable
to optimize the life cycle of a smart contract. This
method also facilitates one smart contract to invoke
another smart contract, in which the latter is a local
variable

(3) We propose two instantiation methods: instant
instantiation and postinstantiation. Instant instantia-
tion creates a smart contract instance when its wrap-
ping variable is created. Postinstantiation creates the
smart contract instance when there are real invoca-
tions to the wrapping variable

The rest of this paper is organized as follows. Section 2
describes different instantiation methods. Section 3 shows
the simulation results and the corresponding analysis. Sec-
tion 4 gives the summary and concludes the paper.

2. Instantiation Methods

2.1. Motivation. Currently, the smart contract instantiation is
done before the execution, and this procedure is called
deployment. It has some disadvantages as described in Intro-
duction. However, a smart contract can be used as the way
that a variable is used—it is dynamically instantiated and ter-
minated. It shortens the runtime of a smart contract. In this
method, the instantiation is performed when there are invo-
cations of a smart contract. When it is not used or out of its
usage scope, the termination of a smart contract is per-
formed. It also facilitates the usage of a smart contract to
use a variable instead of the global address of the deployed

smart contract.

2.2. Different Instantiation Methods. We can instantiate an
instance beforehand or delay the instantiation when there is
a function call (invocation) to the smart contract. Figure 2
shows three possible instantiation methods.

2.2.1. Preinstantiation Method. This is the currently used
method, in which the instantiation is performed before the
real execution. The instance is associated with an address
(or other unique identifiers), which is used to look up the
smart contract instance and dispatch corresponding invoca-
tions to it. However, this instance may run without any invo-
cation for a long time (in a waiting state). When there are no
invocations, the smart contract still resides in the memory
until it has been obviously been terminated. It is shown in
the “preinstantiation” part of Figure 2.

2.2.2. Instant Instantiation. In this method, a smart contract
is instantiated when it has been called by another smart con-
tract or a user. (1) If smart contract T is invoked by smart
contract S, S creates a variable V which wraps T. Variable
V instantiates smart contract T in its constructor. Successive
access to the instance of T is through variable V. (2) If it is
called by a user, the instantiation is triggered by the block-
chain platform when its user sends a transaction to trigger
its function. Then, the request is passed to the newly created
instance. In both cases, there is no need to give an address to
the caller. Then, a new kind of variety is proposed to access
the smart contract instance. In this paper, we define a new
class (Java class) to stand for this kind of variable.
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Ficure 2: Different instantiation methods.

The instance is terminated when the variable is not
required; either the calling smart contract exits or the variable
is out of its scope. The scope of a variable further shortens the
runtime of a smart contract instance. If we put the variable
into a smaller scope, the variable lives only in this scope.
There is a difference between the normal variable termina-
tion and the variable for the smart contract. The latter one
requires that the execution results of the smart contract have
been confirmed in the blockchain. After the confirmation,
the blockchain consensus protocol enforces the correctness
of this smart contract [14].

For other methods of the smart contract, the correspond-
ing variable forwards it to the smart contract. As the smart
contract is running in a different process, the method invoca-
tion is done by the interprocess communication (IPC) on
each node, while this is hidden in the implementation of
the variable. Figure 3 shows the relationship between the var-
iable and the smart contract.

Instant instantiation facilitates the invocation of different
smart contracts. The caller does not need to care about the
instantiation and termination of a smart contract. Further,
the caller is not required to access a smart contract by a string

of meaningless numbers (the address of a smart contract in
the predeployment method). Algorithm 1 is an example.

From Algorithm 1, we know that instances of smart con-
tracts SCA and SCB are created and sealed in variables at
lines 12 and 16, and then, their methods are accessed by those
two variables. Those variables are automatically decon-
structed at the end of this scope (line 18).

2.2.3. Postinstantiation (Lazy Instantiation). When some
methods of a smart contract are invoked, the instance of
the smart contract does not have to be created. For example,
a caller updates a value to a smart contract continuously and
no users retrieve this value. During this time, it is not neces-
sary to have an instance. We can cache those updating
methods in the variable and only instantiate the smart con-
tract when a user tries to get the value. Figure 4 shows this
process.

Postinstantiation is that a smart contract is instantiated
when there is a request that its instance has to be created.
The corresponding request is called the instantiation must
request or method (IMR), and other requests are called
the instantiation unnecessary request or method (IUR).
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FIGURE 3: The relationship between the variable and the smart
contract instance. The interaction among the variable and the
smart contract instance is the IPC (interprocess communication)
method.

Postinstantiation is aimed at delaying the instantiation of
the smart contract. IUR requests sent before IMR are
cached. Those logics are inside the variable, which is illus-
trated in Algorithm 2.

The postinstantiation delays the instantiation before
IMR. And if the user has not sent any IMR, the instance
can even be avoided. In this case, it is still traceable, as the
transaction to invoke the smart contract is stored in the
blockchain.

2.3. Resource Analysis. In this section, we analyze the resources
(CPU and memory) saved by the dynamical instantiation and
termination. We regard a smart contract (S) as a collection of
smart contract copies (s) running on different nodes. The
notation of s; denotes the smart contract copy (s) on different
node i shown as follows.

S R (1)

When the smart contract is instantiated, it occupies corre-
sponding resources, such as memory and CPU. We use rs; to
denote its resources on node i.

rs; = [memory, CPU, ---]. (2)

Node resources are occupied during the time from the
instantiation to the termination. We use rsi’tj to denote the

resources occupied at time 3 £ is the time of the instantiation,

and ¢, is the time of the termination. The resources over time
are shown in

TSip = | TSitg> 5 FSigp > FSiy, |- 3)

Suppose the time of the first invocation is tvg,, and the
time of the last invocation is tv,,4. Then, the relationship
between the invocation time and the resource occupation time
is shown in
if preinstantiation, (4)

ty <tV &&E, >ty

start end>
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to = 1V &&t, = tVyy, if instantinstantiation,  (5)

by = Wy &X&E, = tv,,4,  if postinstantiation. (6)

For the preinstantiated method, this may be a very long
time or even there is no invocation after the smart contract
has been instantiated. It occupies resources longer than the
instant instantiation. The postinstantiation has the least
resource occupation time, as its instantiation time (f,) is not
earlier than the time of the first IMR invocation, shown in
(6). Then, we get the conclusion that the instant instantiation
and the postinstantiation occupy the resource in less time than
the predeployment method.

We define a variable ¢, to measure the time saved by dif-
ferent instantiation methods, which is shown in (7). If its
value is positive, it saves the waiting time, which is the post-
instantiation case. If it is close to 0, the runtime of the smart
contract instance is approximately equal to the invocation
last time, which is the instant instantiation case. If its value
is negative, it spends time waiting for requests, which is the
predeployment case.

ts = (tvstart - tO) + (tvend - tn)' (7>

The total runtime saved (TS) is the summarization of all
nodes which run the smart contract, shown in (8). Thus, it
saves more resources in the larger blockchain networks as
their node number # is more.

TS=) t.. (8)

3. Verification

In this section, we show our simulation results of different
instantiation methods. As the smart contracts are required
to be preinstantiated in currently available blockchains, we
develop a blockchain that supports different instantiation
types. It removes the requirement to preinstantiate a smart
contract and keeps the procedure to put the code of a smart
contract to the blockchain in the predeployment stage.

The smart contract language is Java. There are two rea-
sons. (1) The blockchain platform is developed by Java, and
all nodes have the JRE (Java runtime environment) to run
the Java code. Then, it saves the steps to provide an extra run-
time environment for another language. (2) It is convenient
to invoke smart contracts by the reflection mechanism of
Java. User-defined smart contracts can be simply invoked
in this way.

We provide a class as the variable to wrap the smart con-
tract instance. It wraps behaviors that are required for differ-
ent instantiation methods. The instantiation type is set in the
configuration file of the smart contract. If the instantiation
type is preinstantiation, its instance is created in the code
putting procedure. If it is the instant instantiation, the
instance is created when its creation function is called. If it
is the postinstantiation, the instance is created when the spe-
cific methods are called. Those methods have calls to a plat-
form function call which creates the instances.
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1: Define smart contract SCA
2: ...

3: End Define

4:

5: Define smart contract SCB
6: ...

7: End Define

8.

9: Define smart contract SCC

10: //scope begin {

11: // create an instance (new process) of SCA
12: Variable sca = new Variable(”SCA”);

13: invoking method of sca

15: // create an instance (new process) of SCB
16: Variable scb = new Variable(”SCB”);
17: invoking method of scb

have been confirmed in blockchain (condition b)
19: End Define

18: //scope end } - sca and scb are ready to terminate (condition a), and those two smart contract instances terminate after their states

ALGORITHM 1. Smart contract invocation by a variable.

Variety
Smart contract instance
New  ---4- 4 Cache -
4 R\
Method1 Construction
Method2 IPC —» Method
e
__________________ ™ Method..

FIGURE 4: The relationship between the variable and the smart
contract instance in the postinstantiation method. The
instantiation of a smart contract can be delayed to the invocation
of specific methods, and other methods are cached before the
instantiation.

There is special handling for the termination of a vari-
able. When a variable is out of its (definition and usage)
scope, the compiler can add the corresponding code there.
As we do not want to change the Java compiler, we directly
put a function to terminate the smart contract instance at
the end of its scope. Meanwhile, the termination function
calls a function (the final checking function or FCF) which
checks whether the key states of a smart contract have been
sealed in the blockchain. If not sealed, FCF waits and checks.
Otherwise, it exits and the smart contract destructs to release
resources.

We use the file method as the interprocess communi-
cation between the process of the wrapping variable and
smart contract instance as they run in different processes.
The variable passes the function name and its parameters

1: Process(Request r)

2: ...

3:if r is IMR then

4: create instance

5: forward cached requests and r to instance
6: end if

7:if r is IUR then

8: if instance is not created then

9: cacher

10: else

11: forward r to instance
12: end if

13: end if

ArgoriTHM 2. Handling for IMR and IUR.

to corresponding request files, and the smart contract
instance reads from those files continuously. The smart
instance invokes the corresponding functions by a Java
reflect mechanism.

Two kinds of verifications are carried out. (1) We per-
form the comparative verification between the proposed
method and the preinstantiation method. It is aimed at show-
ing the benefit of the proposed instantiation methods. (2) We
also perform the verification of different instantiation
methods proposed in this paper to demonstrate the advan-
tages of different methods.

3.1. Comparison between the Preinstantiation Method and
Proposed Method. We adopt the runtime of smart contracts
to compare those two methods. The proposed instantiation
is triggered by a transaction when the first request is sent
from the user. In the preinstantiation method, the smart con-
tract is preinstantiated in the predeployment stage and its
instance keeps running from then on. Requests for both
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FIGURE 5: The accumulated runtime comparison between the proposed method and the preinstantiation method.

methods are sent out by a script in a random interval (the
interval changes from 40 seconds to 80 seconds).

Figure 5 shows the accumulated runtime (t,,,,..) of those
two methods. The accumulated runtime is the summariza-
tion of the runtime of all instances, as shown in (9). In the
proposed method, there may be several instances during a
test round and thus ¢, .. is the summarization of the run-
time of all instances. In the preinstantiation method, there
is only one instance and ¢, is equal to the runtime of that
instance. The runtime (t,,,;) of instance i is from the
moment of its instantiation to the moment of its termination,
which contains the code execution time (¢, ) and the wait-
ing time (¢ ), as shown in (10).

exec’i

waiting™i

frunAce = Z Lrunio (9)

waiting i (10)

From Figure 5, we see that the preinstantiation method
takes more runtime than the proposed method. The reason
is as follows. In (10), time ;- Of the proposed method

is less than that of the preinstantiation method, because the
waiting time is saved as each instance of the proposed
method is terminated when not used. However, time ¢, -;
of the proposed method is more, as it instantiates a smart
contract several times, while time ¢ is much bigger

than time t,,,-; in this verification.

At the first invocation, the preinstantiation method has
taken 52 seconds more. This value is the interval between
the first invocation and the preinstantiation. As there are
intervals among invocations, the additional runtime taken

by the preinstantiation increases. In fact, the runtime of the

trun’i = texec'i +1

waiting™i

TaBLE 1: Different kinds of optimization of SCX.

Instantiation type Postinstantiation Local variable Comment

A No No SCY-A
B Yes No SCY-B
C No Yes SCY-C
D Yes Yes SCY-D

preinstantiation method is the time after it has been instanti-
ated. The instance in the proposed method is only created
when there is request, and it does not occupy the interval
time between different smart contract instances.

3.2. Different Instantiation Methods. In this section, we verify
two optimizations for the proposed methods. One is the post-
instantiation, and another one is to define the variable of the
smart contract instance in a smaller scope (a local variable).
We combine those two optimizations and get four kinds of
possible instantiation optimization, shown in Table 1.

The according codes are shown in Algorithm 3. Two
smart contracts are used: smart contracts SCX and SCY.
SCY does different instantiations of SCX as shown in
Table 1. It results in four subtypes of SCY: SCY-A, SCY-
B, SCY-C, and SCY-D. SCX has two subtypes: SCXI and
SCX-Post, and the latter one is the postinstantiated. And
SCX provides two methods: the first one is not an instan-
tiation must method and the second is an instantiation
must method.

We have performed 28 test rounds. In those test rounds,
verifications of combinations A, B, C, and D are tested in
turn. The test results are shown in Figure 6. From it, we see
that smart contract SCX in type A has the longest runtime,
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: Define smart contract SCXI

1
2: ...
3: End Define

4.

5: Define smart contract SCX-Post

6: ...

7: End Define

8:

9: Define smart contract SCY-A

10: do other action

11: Variable scx = new Variable(”SCXI”);
12: invoking method1 of scx

13: do other action

14: invoke method2 of scx;

15: do other action

16: End Define

17:

18: Define smart contract SCY-B

19: do other action

22: do other action

24: do other action

25: End Define

26:

27: Define smart contract SCY-C
28: do other action

29: //scope begin {

30: Variable scx = new Variable(”SCXTI”);
31: invoking method of scx

32: do other action

33: invoke method of scx;

34: //scope end }

35: do other action

36: End Define

37:

38: Define smart contract SCY-D
39: do other action

40: //scope begin {

43: do other action
45: //scope end }

46: do other action
47: End Define

20: Variable scx = new Variable(”SCX-Post”);
21: invoking method1 of scx; // Methodl is cached

23: invoke method2 of scx; // Method2 requires to have a real SCX smart contract instance

41: Variable scx = new Variable(”SCX-Post”);
42: invoking methodl of scx; // Methodl is cached

44: invoke method2 of scx; // Method2 requires to have a real SCA smart contract instance

ArcoriTHM 3. Different instantiation combinations.

which is shown in the first part of Figure 6. SCX is created
when its according variable is created and lives until SCY-A
terminates. SCX in SCY-D has the shortest runtime, which
is shown in the last part of Figure 6. The reason is that SCX
is created until its second method is created (the instantiation
must method), and it is defined in a smaller scope, which
makes it terminate early.

The other two methods take less time than the first one
and more time than the last one. The second one delays the
instantiation time of smart contract SCX, and the third one

defines smart contract SCY in a smaller scope. Then, both
save the runtime.

We also demonstrate the accumulated runtime in
Figure 6, which is the summarization of the runtime of the
instances in previous test rounds. From it, we can see that
the accumulated runtime of SCX and SCY is very close in
case A, which indicates that SCX lives along with SCY. On
the other hand, the curve of the accumulated runtime of
SCX and SCY forms a big angle in case D, which indicates
that the execution time of SCX is shorter than that of SCY
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and it is optimized to save the additional resource occupation
time.

As the time SCY also changes with time, and to have a
more comparison of how the proportion of the runtime is
saved, we use another measurement, ratioTime, which is
the ratio of the runtime of the smart contract SCX to the run-
time of smart contract SCY, referring to (11). The result is
shown in Figure 7.

ti X
ratioTime = % . (11)
runtime(Y)

From Figure 7, we also see the same optimization results.
In method A, SCX runs at the most time when SCY runs and
has the highest ratioTime, and method D has the lowest
ratioTime. The two left methods have the medium
ratioTime.

4. Conclusion

In this paper, we address the preinstantiation issues of smart
contracts for IoT scenarios, in which blockchain nodes are
composed of resource-limited IoT devices. We propose dif-
ferent instantiation methods to optimize the instantiation
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of a smart contract, with the aim of solving the issues of the
preinstantiation (it occupies computation resources even if
there is no request and requires a global address). We adopt
a new kind of variable to wrap the instantiation and termina-
tion of a smart contract. The smart contract instantiates
when its wrapping variable is created, and it can even delay
the instantiation to the moment when an instance is a must.
The termination of a smart contract is performed when the
variable is out of scope. At last, we perform the correspond-
ing verifications, which show that our proposed methods
occupy fewer resources (measured by the runtime). More
resources can be saved if we combined different instantiation
methods.
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