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Abstract 

Background: The recent blooming of metabarcoding applications to biodiversity 

studies comes with some relevant methodological debates. One such issue concerns 

the treatment of reads by denoising or by clustering methods, which have been 

wrongly presented as alternatives. It has also been suggested that denoised sequence 

variants should replace clusters as the basic unit of metabarcoding analyses, missing 

the fact that sequence clusters are a proxy for species-level entities, the basic unit in 

biodiversity studies. We argue here that methods developed and tested for ribosomal 

markers have been uncritically applied to highly variable markers such as cytochrome 

oxidase I (COI) without conceptual or operational (e.g., parameter setting) adjustment. 

COI has a naturally high intraspecies variability that should be assessed and reported, 

as it is a source of highly valuable information. We contend that denoising and clus-

tering are not alternatives. Rather, they are complementary and both should be used 

together in COI metabarcoding pipelines.

Results: Using a COI dataset from benthic marine communities, we compared two 

denoising procedures (based on the UNOISE3 and the DADA2 algorithms), set suitable 

parameters for denoising and clustering, and applied these steps in different orders. 

Our results indicated that the UNOISE3 algorithm preserved a higher intra-cluster vari-

ability. We introduce the program DnoisE to implement the UNOISE3 algorithm taking 

into account the natural variability (measured as entropy) of each codon position in 

protein-coding genes.  This correction increased the number of sequences retained by 

88%. The order of the steps (denoising and clustering) had little influence on the final 

outcome.

Conclusions: We highlight the need for combining denoising and clustering, with 

adequate choice of stringency parameters, in COI metabarcoding. We present a pro-

gram that uses the coding properties of this marker to improve the denoising step. We 

recommend researchers to report their results in terms of both denoised sequences (a 

proxy for haplotypes) and clusters formed (a proxy for species), and to avoid collapsing 

the sequences of the latter into a single representative. This will allow studies at the 

cluster (ideally equating species-level diversity) and at the intra-cluster level, and will 

ease additivity and comparability between studies.
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Operational taxonomic units

Background

�e field of eukaryotic metabarcoding is witnessing an exponential growth, both in 

the number of communities and substrates studied and the applications reported 

(reviewed in [1–4]). In parallel, technical and conceptual issues are being discussed 

(e.g., [5, 6]) and new methods and pipelines generated. In some cases, however, new 

practices are established after a paper reporting a technique is published and followed 

uncritically, sometimes pushing its application outside the context in which it was 

first developed.

A recently debated matter concerns the treatment of reads by denoising procedures or 

by clustering techniques [7]. Both methods are often presented as alternative approaches 

to the same process (e.g., [7–11]). However, both are philosophically and analytically dif-

ferent [12]. While denoising strives to detect erroneous sequences and to merge them 

with the correct “mother” sequence, clustering tries to combine a set of sequences (with-

out regard to whether they contain or not errors) into meaningful biological entities, 

ideally approaching the species level, called OTUs or MOTUs (for Molecular Opera-

tional Taxonomic Units). Usually only one representative sequence from each MOTU 

is kept (but note that this is only common practice, not a necessary characteristic of the 

method). �us, while both procedures result in a reduced dataset and in error correction 

(by merging reads of erroneous sequences with the correct one or by combining them 

with the other reads in the MOTU), they are not equivalent. More importantly, they are 

not incompatible at all and can (and should) be used together.

A recent paper [13] proposes that denoised sequences should replace MOTUs as the 

unit of metabarcoding analyses. We contend that it may be so for ribosomal DNA data-

sets such as the one used in that paper, but this notion has gained momentum also in 

other fields of metabarcoding for which it is not adequate. In particular, when it comes 

to highly variable markers such as COI. �is proposal misses the fact that sequence clus-

ters are a proxy for species-level entities, the basic unit in eukaryotic biodiversity stud-

ies. �e 3′ half (also called Leray fragment) of the standard barcode fragment of COI 

(Folmer fragment) is becoming a popular choice for metabarcoding studies addressed at 

metazoans or at eukaryotic communities at large [14], reaching now 28% of all metabar-

coding studies [15]. Metabarcoding stems from studies of microbes where 16S rRNA is 

the gene of choice, and the concept was then applied to analyses of the 18S rRNA gene  

of eukaryotes. With the recent rise of COI applications in metabarcoding, programs 

and techniques developed for rDNA are sometimes applied to COI without reanalysis 

and with no parameter adjusting given the highly contrasting levels of variation of these 

markers.

�e idea that denoising should be used instead of clustering has been followed by 

some (e.g., [16–20]), while other authors have combined the two approaches (e.g., [21–

23]). Indeed, denoising has the advantages of reducing the dataset and to ease pooling or 

comparing studies, which is necessary in long term biomonitoring applications. How-

ever, with COI there is a wealth of intraspecific information that is missed if only denois-

ing is applied [24]. COI has been a prime marker of phylogeographic studies to date [25, 
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26], and these studies can be extended to metabarcoding datasets by mining the distri-

bution of haplotypes within MOTUs (metaphylogeography [12]). �e latter authors sug-

gested to perform clustering first, and that denoising should be done within MOTUs to 

provide the right context of sequence variation and abundance skew. �ey also advised 

to perform a final abundance filtering step. In other studies, denoising is performed first, 

followed by clustering and refining steps (e.g., [22, 23]).

�ere are several methods for denoising (reviewed in [27]) and for clustering 

(reviewed in [28]). We will use two of the most popular denoising techniques, based on 

the DADA2 algorithm (Divisive Amplicon Denoising Algorithm, [29]) and the UNOISE3 

algorithm [30]. �e results of the former are called Amplicon Sequence Variants (ASVs) 

and those of the latter ZOTUs (zero-radius OTUs). In practice, the terminology is mixed 

and ASV, ZOTU, ESV (Exact Sequence Variant), sOTU (sub-OTU) or ISU (Individual 

Sequence Variant), among others, are used more or less interchangeably. For simplic-

ity, as all of them are equivalent, we will use henceforth the term ESV. Clustering, on 

the other hand, can be performed using similarity thresholds (e.g., [31, 32]), Bayesian 

Methods (CROP, [33]), or methods based on single-linkage-clustering (SWARM, [34]), 

among others. We will focus on de novo clustering methods (i.e., independent of a refer-

ence database), while denoising is always de novo by its very nature [13]. We will here 

use SWARM as our choice of clustering program due to its good performance compared 

to other methods [28]. It is noteworthy that all these programs were originally developed 

and tested on ribosomal DNA datasets. When applied to other markers, often no indi-

cation of parameter setting is given (i.e., omega_A for DADA2, α for UNOISE3, d for 

SWARM), suggesting that default parameter values are used uncritically.

In this article, we aim to use a COI metabarcoding dataset of benthic littoral commu-

nities to (1) set the optimal parameters of the denoising and clustering programs for COI 

markers, (2) compare results of the DADA2 algorithm with the UNOISE3 algorithm, (3) 

compare the results of performing only denoising, only clustering, or combining denois-

ing with clustering in different orders, and (4), suggest and test improvements in the 

preferred denoising algorithm to take into account the fact that COI is a coding gene. 

We implement these modifications in the new program DnoisE. Our aims are to provide 

guidelines for using these key bioinformatic steps in COI metabarcoding and metaphy-

logeography. �e conceptual framework of our approach is sketched in Fig. 1.

Methods

The dataset

We used as a case study an unpublished dataset of COI sequences obtained from benthic 

communities in 12 locations of the Iberian Mediterranean. Information on the sampling 

and sample processing is given in Additional File 1. Sequences were obtained in a full 

run of an Illumina MiSeq (2 * 250 bp paired-end reads).

Bioinformatic analyses

�e initial steps of the bioinformatic pipeline followed [12] and were based on the 

OBItools package [35]. Reads were paired and quality filtered, demultiplexed, and 

dereplicated. A strict length filter of 313 bp was used. We also eliminated sequences 

with only one read. Chimera detection was performed on the whole dereplicated 
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dataset with uchime3_denovo as embedded in unoise3 (USEARCH 32-bit free ver-

sion, [36]). We used minsize = 2 to include all sequences. �ose identified as chimeras 

were recovered from the –tabbedout file and eliminated from the dataset. Sequences 

with small offsets (misaligned), identified as shifted in the output, were likewise 

deleted. �e working dataset thus comprised well-aligned, chimera-free, unique 

sequences which had appeared with at least two reads in the samples.

Note that for this technical study we didn’t consider the sample distribution of the 

reads. A complete biogeographic study of the samples is ongoing and will be pub-

lished elsewhere. For the present analysis, for each unique sequence only the actual 

DNA sequence and the total number of reads were retained.

The denoisers: UNOISE3 and DADA2

Comparing denoising algorithms is challenging because each method comes with 

a different software suite with embedded features and recommendations [27]. 

For instance, uchime3_de novo is embedded in the unoise3 command as imple-

mented in USEARCH, while a chimera removal procedure (removeBimeraDenovo) 

is an optional feature in the DADA2 pipeline. Furthermore, while UNOISE3 uses  

paired  reads, DADA2 recommends denoising forward and reverse reads separately, 

clustering

denoising & 

clustering

MOTU-level ( ̴̴̴species) analyses

ESV-level ( ̴̴̴haplotypes) analyses

MOTUs

• α-diversity

• β-diversity

• Biogeography

• Func�onal analyses

• Ecological indices

• Indicator species

• Metaphylogeography

• Haplotype networks

• Popula�on gene�cs

• Connec�vity

• Selec�on

• Indicator haplotypes

sequence space

denoising

ESVs

Fig. 1 Conceptual overview of the denoising and clustering processes. The oval on the left sketches a 

fragment of the sequence space with four biological species plus an artefact divergent sequence (denoted 

by colours). Correct sequences are indicated by filled circles and artefacts by empty circles, with indication 

of abundance (circle size). Denoising results in the detection of putatively correct sequences to which the 

reads of putatively incorrect sequences are merged (leading to a reduced dataset). The outcome of denoising 

should ideally approach the true haplotype composition of the samples. Clustering generates MOTUs 

without regard as to whether the grouped sequences are erroneous or not. This is usually accompanied by 

read pooling and keeping only one representative sequence per MOTU (leading to a reduced dataset). The 

outcome of clustering should ideally approach the species composition of the samples. Combining both 

processes results in a dataset that is reduced in size, comparable across studies, and amenable to analyses 

at the MOTU (species) and ESV (haplotype) levels. Note that errors likely persist in the final dataset both as 

artefact MOTUs and artefact ESVs within MOTUs, and carefully designed filters should be used to minimize 

them (abundance filtering, chimera filtering, numts removal)
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and then performing a merging step. We have tried to isolate the algorithms from 

their pipelines for comparability. �is was done by generating a Python script [37] 

that implements the algorithm described in [30] and by using DADA2 from its R 

package v. 1.14.1 and not as embedded into the qiime2 pipeline [38].

For UNOISE3, our program (henceforth DnoisE) was compared on the working data-

set described above with command unoise3 in USEARCH with minsize = 2, alpha = 5 

and without the otutab step. �at is, we recovered the ESV composition and abundance 

with an R script directly from the output of unoise3 (using the output files –tabbed-

out and –ampout), without a posterior re-assignment of sequences to ESVs via otutab. 

�is step was not necessary as all sequences were included in the ESV calculations. 

�e results of DnoisE and unoise3 were > 99.99% identical in ESVs recovered and reads 

assigned to them, so we continued to use our script for performing the comparisons and 

for further improvements of the algorithm (see below).

�e recommended approach for DADA2 is to denoise separately the forward and 

reverse reads of each sequence. �is complicates the technical comparison, as all ini-

tial filtering steps cannot be equally performed (e.g., we won’t know if there is just one 

read of a particular sequence, or if the merged pair will be discarded for low quality of 

the assembly or for unsuitable final length) and thus we cannot have two identical start-

ing datasets. More importantly, we cannot use this procedure when we test the effects 

of denoising at later steps (i.e., after clustering), so we would be unable to compare the 

denoisers at this level. �us, for our comparative analysis we need to use DADA2 on 

paired reads. According to Callahan et al. [29], this can result in a loss of accuracy, but 

this point has never been tested to our knowledge. We addressed this issue by compar-

ing denoising before and after pairing on half of the reads in the final dataset. After this 

analysis, we decided to continue our comparison of DADA2 and UNOISE3 on paired 

reads.

Additionally, denoising before pairing is not optimal if a PCR-free library preparation 

protocol is used, as in our case, because half of the reads are in one direction and the 

other half are in the opposite direction (hence the use of half of the reads in the above 

comparison). Forward and reverse reads can of course be recombined to generate new 

files with all reads in the same direction, but the quality of the reads with original for-

ward and reverse orentation is different. Alternatively, two rounds of DADA2 (one per 

orientation) must be performed and combined at later steps.

To run DADA2 on  paired reads, we entered them in the program as if they were the 

forward reads and did not use a merging step after denoising. In all DADA2 runs we 

did not perform the recommended chimera removal procedure as the input sequences 

were already chimera-free according to uchime3_de novo. Note that, when denoising 

was done after clustering, we used error rates calculated for the whole dataset, and not 

for each MOTU separately (most of them do not have enough number of sequences for a 

reliable estimation of error rates).

UNOISE3 relies heavily on the stringency parameter α, which weights the distance 

between sequences as a function of the number of differences between them [30]. In 

short, lower values of α tend to merge sequences more strongly, while higher values 

recovered higher numbers of ESVs. �e default, and the value used in most studies 

with ribosomal DNA, is 2. However, for COI three independent approaches, based on 
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mock communities [39], entropy changes [12], and co-sequenced control DNA [40] sug-

gested that for this marker α = 5 is the optimal value. For DADA2 the key parameter is 

omega_A, which indicates the probability threshold at which a sequence i is considered 

an error derived from another sequence j given their abundance values and the inferred 

error rates. If the observed value is higher than omega_A, then sequence i is consid-

ered an error of sequence j. Omega_A is by default set to a very low value  (10–40), but 

no study has analysed the impact of changing this parameter for COI datasets. To our 

knowledge, only [41], based on a comparison of 3 values, concluded that the default 

value of omega_A was adequate for a marker based on the control region of the mito-

chondrial DNA.

The clustering algorithm

Our preferred clustering method is SWARM v3 [42], as it is not based on a fixed distance 

threshold and is independent of input order. It is a very fast procedure that relies on a 

single-linkage method with a clustering distance (d), followed by a topological refining 

of the clusters using abundance structures to divide MOTUs. As we were interested in 

keeping all sequences within MOTUs, and not just a representative sequence, we mined 

the SWARM output with an R script to generate MOTU files, each with its sequence 

composition and abundance.

�e crucial parameter in this approach is d, the clustering distance threshold for the 

initial phase. �e default value is 1 (that is, amplicons separated by more than one differ-

ence will not be clustered together), and this value has been tested in ribosomal DNA. 

However, Mahé et  al. [42] pointed out that higher d values can be necessary for fast 

evolving markers (such as COI) and advised to analyse a range of d to identify the best 

fitting parameter (i.e., avoiding over- or under-clustering) for a particular dataset or sci-

entific question. A d value of 13 (thus, allowing 13 differences over ca. 313 bp to make a 

connection) has been recently used for the Leray fragment of COI (e.g., [43–47]), but a 

formal study of its adequacy has not been published yet.

Setting the right parameters

With our dataset, we assessed the best-fitting parameters for UNOISE3, DADA2 and 

SWARM as applied to COI data. For the first two, we used changes in diversity values 

per codon position (measured as entropy, [48]), as calculated with the R package entropy 

[49]. Coding sequences have properties that can be used in denoising procedures [12, 

41]. �ey have naturally a high amount of variation concentrated in the third position 

of the codons, while errors at any step of the metabarcoding pipeline would be ran-

domly distributed across codon positions. �us, examining the change in entropy values 

according to codon position can guide the choice of the best cleaning parameters. Turon 

et al. [12] suggested to use the entropy ratio (Er) between position 2 of the codons (least 

variable) and position 3 (most variable). In a simulation study these authors showed that 

Er decreased as more stringent denoising was applied until reaching a plateau, which 

was taken as the indication that the right parameter value had been reached.

Using the Er to set cut-points, we re-assessed the adequate value of α in UNOISE3 

testing the interval of α = 1 to 10. With the same procedure, we tested DADA2 for values 

of omega_A between  10–0.05 (ca. 0.9) and  10–90.
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For SWARM, we compared the output of SWARM with a range of values of d from 1 

to 30 applied to our dataset (prior to denoising). We monitored the number of MOTUs 

generated and the mean intra- and inter-MOTU distances to find the best-performing 

value of d for our fragment.

The impact of the steps and their order

With the selected optimal parameters for each method, we combined the two denois-

ing procedures and the clustering step in different orders. We therefore combined 

denoising (Du for UNOISE3 algorithm implemented in DnoisE, Da for DADA2) 

and clustering with SWARM (S) and generated and compared datasets of ESVs and 

MOTUs as follows (for instance, Da_S means that the dataset was first denoised with 

DADA2, then clustered with SWARM):

For comparison of datasets, we used Venn diagrams and an average match index of 

the form

where  Nmatch_A is the number of a particular attribute in dataset A that is shared with 

dataset B, and  NA is the total number of that attribute in dataset A. �e same for  Nmatch_B 

and  NB. �e matches can be the number of ESVs shared, the number of MOTUs shared, 

the number of ESVs in the shared MOTUs, or the number of reads in the shared ESVs or 

MOTUs, depending on the comparison.

Improving the denoising algorithm

�e preferred denoising algorithm (UNOISE3, see Results) has been further modi-

fied in two ways. Let i be a potential error sequence derived from sequence j. �e 

UNOISE3 procedure is based on two parameters: the number of sequence differences 

between i and j (d, as measured by the Levenshtein distance) and the abundance skew 

(β, abundance i/abundance j) between them. �ese parameters are related by the sim-

ple formula [30]:

where β(d) is the threshold abundance skew allowed between two sequences sepa-

rated by distance d so that below it the less abundant would be merged with the more 

abundant, and α is the stringency parameter. �us, presumably incorrect “daughter” 

sequences are merged with the correct “mother” sequences if the number of sequence 

differences (d) is small and the abundance of the incorrect sequence with respect to the 

correct one (abundance skew) is low. �e higher the number of differences, the lower the 

skew should be for the sequences to be merged.

ESVs: Du, Da

MOTUs: Du_S, Da_S, S_Du, S_Da

Match Index (A,B) =
(

Nmatch_A/NA + Nmatch_B/NB

)

/2

β(d) = 1/2αd+1
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For COI, however, the fact that it is a coding gene is a fundamental difference with 

respect to ribosomal genes. In a coding fragment, the amount of variability is substan-

tially different among codon positions. �is is not considered in the UNOISE3 formu-

lation (nor in DADA2 or other denoising programs that we knew of, for that matter). 

We suggest to incorporate this information in DnoisE by differentially weighting the 

d values according to whether the change occurs in the first, second, or third codon 

position. Note that our sequences are all aligned and without indels, which makes this 

weighting scheme straightforward. �e differences in variability can be quantified as 

differences in entropy values [48]; position 3 of the codons has the highest entropy, 

followed by position 1 and position 2. In other words, two sequences separated by n 

differences in third positions are more likely to be naturally-occurring sequences than 

if the n differences happen to occur in second positions, because position 3 is natu-

rally more variable. To weight the value of d, we first record the number of differences 

in each of the three codon positions (d(1) to d(3)), we then correct the d  value using 

the formula

where i is the position in the codon, and  dcorr is the corrected distance that will be used 

in the UNOISE3 formula instead of d.

With this formula, two sequences separated by just one difference in each codon 

position will continue to have a d of 3, but a change in a high entropy position (3) will 

translate in a higher d than the same change in a low entropy position (2), thus the 

program will tend to keep the former and to merge the later. �e entropy of the three 

positions of the codons for the weighting was obtained from the original dataset prior 

to any denoising, thus entropy(1) = 0.473, entropy(2) = 0.227, and entropy(3) = 1.021. 

Note that d(i) is based on the number of differences occurring at each codon position. 

�e Levenshtein distance used in the non-corrected d measures is not adequate for 

this purpose, as it cannot keep track of codon positions. However, for sequences of 

equal length, aligned, and without indels, as in our case, the number of differences is 

in practice equivalent to the Levenshtein distance.

�e present algorithm of UNOISE3 gives precedence to the abundance skew over 

the number of differences (d) because sequences are considered in order of decreas-

ing abundance. �us, a very abundant sequence will form a centroid that can “cap-

ture” a rare one even if d is relatively high. Other, somewhat less abundant, sequences 

can be more similar (less d) to the rare sequence and can fulfil the conditions to cap-

ture it, but this will never happen as the rare sequence will be incorporated to the 

first centroid and will become unavailable for further comparisons. In our modifica-

tion, DnoisE does not automatically join sequences to the first centroid that fits the 

condition. Rather, for each sequence the potential “mothers” are stored (with their 

abundance skew and d) and the sequences are left in the dataset. After the round of 

comparisons is completed, for each daughter sequence we can choose, among the 

potential mothers, the one whose abundance skew is lower (precedence to abundance 

skew, corresponding to the usual UNOISE3 procedure), the mother with the lowest 

dcorr =

3
∑

i=1

d(i)*entropy(i)*3/
(

entropy(1) + entropy(2) + entropy(3)
)
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distance (precedence to d), or the one for which the ratio (abundance skew/max 

abundance skew for the observed d, β(d)) is lower, thus combining the two criteria.

We compared in our dataset the results of the different formulations of DnoisE: 

precedence to abundance skew, precedence to distance, combined precedence, and 

correcting distances according to codon position of the differences. A beta version of 

DnoisE is available from [37].

Benchmarking

Ground truthing is a difficult task in metabarcoding studies. Constructing mock com-

munities is the most common method. However, mock communities, even the largest 

ones, are orders of magnitude simpler than complex biological communities. �us, 

some technical aspects cannot be tested accurately. For instance, metabarcoding 

results of mock communities in general lack true sequences at very rare abundances 

(the most problematic ones). For complex communities, we need to rely on metrics 

that can evaluate the fit of denoising and filtering procedures. �e coding properties 

of COI can help design useful parameters, such as the entropy ratio mentioned above. 

Another possible metric stems from the evaluation of the prevalence of incorrect 

ESVs (defined by having indels or stop codons) across denoising and filtering proce-

dures [50].

In this work, we have performed two benchmarking procedures that rely on taxo-

nomic assignment of the MOTUs. �is assignment was done using the ecotag pro-

cedure in  OBItools  against the db-COI_MBPK database [51], containing 188,929 

eukaryote COI reference sequences (available at [52]). Ecotag assigns a sequence to 

the common ancestor of the candidate sequences selected in the database, using the 

NCBI taxonomy tree. �is results in differing taxonomic rank of the assignments 

depending on the density of the reference database for a given taxonomic group.

First, we checked the performance of the entropy correction of DnoisE by examin-

ing the percent of incorrect to total ESVs. To this end, we retained only the MOTUs 

assigned to metazoans and, following [12], examined the presence of stop codons and 

changes in the 5 aminoacids present in the fragment amplified that are conserved 

among metazoans [53]. To be on the conservative side, for a given MOTUs we evalu-

ated the different genetic codes and selected the ones that produced the smaller num-

ber of stop codons. �e five aminoacids were then checked using these codes and 

the minimal number of “wrong” aminoacids was recorded. �e R package Biostrings 

[54] was used for the translations. �e ESVs featuring stop codons and/or aminoacid 

changes in the five conserved positions were labelled as erroneous. �e rationale is 

that a suitable denoising procedure would reduce the ratio of error vs total ESVs.

Second, we performed a taxonomic benchmarking. As MOTUs should ideally 

reflect species-level entities, we selected those sequences assigned at the species level 

as a benchmark for the MOTU datasets. We also enforced a 97% minimal best identity 

with the reference sequence. We traced these sequences in the output files of our pro-

cedures and classified the MOTUs containing them into three categories (following 

the terminology in [9]): closed MOTUs, when they contain all sequences assigned to a 

species and only those; open MOTUs, when they contain some, but not all, sequences 

assigned to one species and none from other species, and hybrid MOTUs. �e latter 
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included MOTUs with sequences assigned to more than one species, or MOTUs with 

a combination of sequences assigned to one species and sequences not assigned (i.e., 

they don’t have species-level assignment, or they do with less than 97% similarity).

�is analysis was intended as a tool for comparative purposes, to benchmark the 

ability of the different MOTU sets generated to recover species-level entities. In other 

words, which procedure retains more ESVs with species-level assignment and places 

them in closed (as opposed to open or hybrid) MOTUs.

Results

The dataset

After pairing, quality filters, and retaining only 313 bp-long reads, we had a dataset of 

16,325,751 reads that were dereplicated into 3,507,560 unique sequences. After deleting 

singletons (sequences with one read), we kept 423,164 sequences (totalling 10,305,911 

reads). Of these sequences, 92,630 were identified as chimeras and 152 as misaligned 

sequences and eliminated. Our final dataset for the study, therefore, comprised 330,382 

sequences and 9,718,827 reads (the original and the refined datasets were deposited in 

Mendeley Data, [55]).

For testing the performance of DADA2 on unpaired and paired reads on a coherent 

dataset, we selected the reads that were in the forward direction, that is, the forward 

primer was in the forward read (R1). As expected, they comprised ca. half of the reads 

(4,892,084). For these reads we compared the output of applying DADA2 before and 

after pairing, as detailed in Additional File 2. �e results were similar, with most reads 

placed in the same ESVs in both datasets, albeit 21% more low-abundance ESVs were 

retained using the paired reads. Henceforth we will use DADA2 on paired sequences, as 

this was necessary to perform our comparisons.

Setting the right parameters

We used the change in entropy ratio (Er) of the retained sequences of the global dataset 

(330,382 sequences and 9,718,827 reads) for selecting the best performing α–value in 

UNOISE3 and the best omega_A in DADA2 across a range of values. We also assessed 

the number of ESVs resulting from the procedures.

For UNOISE3 as implemented in our DnoisE script, the Er diminished sharply for α–

values of 10 to 7, and more smoothly afterwards (Fig. 2a). �e number of ESVs detected 

likewise decreased sharply with lower α–values, but tended to level off at α = 5 (Fig. 2a). 

�e value of 5 seems a good compromise between minimizing the Er and keeping the 

maximum number of putatively correct sequences.

For the DADA2 algorithm we tested a wide range of omega_A from  10–0.05 to  10–90 (we 

set parameter omega_C to 0 in all tests, so all erroneous sequences were corrected). �e 

results showed that, even at the highest value  (10–0.05, or ca. 0.9 p-value, thus accepting 

as new partitions a high number of sequences), there was a substantial drop in number 

of sequences (ca. 75% reduction) and in Er with respect to the original dataset (Fig. 2b). 

Both variables remained relatively flat with a slight decrease between omega_A  10–2 and 

 10–15, becoming stable again afterwards (Fig. 2b).
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�e number of ESVs retained was considerably lower than for UNOISE3. In fact, 

the number obtained at α = 5 by the latter (60,198 ESVs) was approximately reached at 

omega_A =  10–5 (58,191 ESVs). On the other hand, the entropy value obtained at α = 5 

in UNOISE3 (0.2182) was not reached until omega_A =  10–60. As a compromise, we will 

use in this study the default value of the dada function  (10–40), while acknowledging that 

the behaviour of DADA2 with changes in omega_A for the parameters analysed was 

unexpected and deserves further research.

For the clustering algorithm SWARM v.2, we monitored the outcome of changing the 

d parameter between 1 and 30. For each value, we tracked the number of clusters formed 

(separately for all MOTUs and for those with 2 or more sequences), as well as the mean 

intra-MOTU and the mean inter-MOTU genetic distances (considering only the most 

abundant sequence per MOTU for the latter). �e goal was to find the value that maxi-

mizes the intra-MOTU variability while keeping a sharp difference between both values 

(equivalent to the barcode gap).

�e total number of MOTUs decreased sharply from 38,560 (d = 1) to around 19,000 

with a plateau from d = 9 to d = 13, and then decreased again (Fig.  3a). If we only 

Fig. 2 Values of the Entropy ratio (Er) of the set of ESVs obtained with the UNOISE3 algorithm at decreasing 

values of α (a), and of those obtained with the DADA2 algorithm at decreasing values of omega_A (b). 

Arrows point at the selected value for each parameter. Horizontal blue line in (b) represents the Er value 

reached in  (a) at α = 5, horizontal red line marks the number of ESVs detected in  (a) at α = 5
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consider the MOTUs with 2 or more sequences, the overall pattern is similar, albeit the 

curve is much less steep. �e numbers decreased from 8684 for d = 1 to 6755 at d = 12 

and 13, and  decreased again at higher values (Fig. 3a).

Inter-MOTU distances had a similar distribution with all values of the parameter d, 

albeit with a small shoulder at distances of 10–20 differences with d = 1 (selected exam-

ples in Fig. 3b). Intra-MOTU distances, on the other hand, became more spread with 

higher values of d as expected. Values from 9 to 13 showed a similar distribution of 

number of differences, but for d values higher than 14, intra-MOTU distances started 

to overlap with the inter-MOTU distribution (Fig. 3b). �e value of d = 13 seems, there-

fore, to be the best choice to avoid losing too much MOTU variability (both in terms of 

number of MOTUs and intra-MOTU variation), and at the same time keeping intra- and 

inter-MOTU distances well separated. �e mean intra-MOTU distance in our dataset at 

d = 13 was 9.10 (equivalent to 97.09% identity), and the mean inter-MOTU distance was 

108.78 (65.25% identity).
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The impact of the steps and their order

Table 1 shows the main characteristics of the original and the generated datasets, as well 

as the datasets obtained by modifying the UNOISE3 algorithm (see below). All datasets 

are available from Mendeley Data [55]).

We first compared the outcomes of denoising the original reads with UNOISE3 and 

DADA2 (Du vs Da), with the stringency parameters set as above. �e error rates of the 

different substitution types as a function of quality scores were highly correlated in the 

DADA2 learnErrors procedure. �e lowest Pearson correlation was obtained between 

Table 1 Main characteristics of the original and the generated datasets

All datasets had 9,718,827 reads. 1-ESV MOTUs refer to the number of MOTUs with just one ESV. Codes of the datasets: 

Du, denoised with UNOISE3 algorithm (unless otherwise stated, it refers to the original formulation giving precedence to 

abundance ratio); Da, denoised with DADA2 algorithm; S, clustered with SWARM algorithm; Du_S, denoised (UNOISE3) and 

clustered; S_Du, clustered and denoised (UNOISE3); Da_S, denoised (DADA2) and clustered; S_Da, clustered and denoised 

(DADA2); Du_d_S, denoised (UNOISE3) with precedence to distance and clustered; Du_c_S, denoised (UNOISE3) with 

combined precedence and clustered; Du_e _S, denoised (UNOISE3) with correction taking into account the entropy of the 

codon positions and clustered; Du_e_d_S, denoised (UNOISE3) with correction plus precedence to distance and clustered; 

Du_e_c_S, denoised (UNOISE3) with correction plus combined precedence and clustered

*For the original and S datasets the number of sequences instead of ESVs is used

**The same values apply to Du_d (distance precedence) and Du_c (combined precedence)

***The same values apply to Du_e_d (distance precedence) and Du_e_c (combined precedence)

n. ESVs (*) n. MOTUs Single-ESV MOTUs ESVs/MOTU (*) Reads/MOTU

Original 330,382 – – – –

Du (**) 60,198 – – – –

Da 32,798 – – – –

Du_e (***) 113,133 – – – –

S 330,382 19,012 12,257 17.378 511.194

Du_S 60,198 19,058 12,471 3.159 509.961

S_Du 75,069 19,012 12,433 3.949 511.194

Da_S 32,798 19,167 15,565 1.711 507.060

S_Da 35,376 19,012 15,198 1.861 511.194

Du_d_S 60,198 19,058 12,471 3.159 509.960

Du_c_S 60,198 19,058 12,471 3.159 509.960

Du_e_S 113,133 19,016 12,365 5.949 511.087

Du_e_d_S 113,133 19,016 12,365 5.949 511.087

Du_e_c_S 113,133 19,016 12,365 5.949 511.087

Fig. 4. Venn Diagram showing the number of ESVs shared between the two denoising procedures (Du vs 

Da). Bar chart shows the number of reads in the shared and unshared ESVs
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the substitutions T to C and A to G (r = 0.810), and all correlations (66 pairs of substitu-

tion types) were significant after a False Discovery Rate correction [56].

�e main difference found is that the Du dataset retained almost double number 

of ESVs than the Da dataset: 60,198 vs 32,798. Of these, 31,696 were identical in the 

two datasets (Fig. 4), representing a match index of 0.746. Of the shared ESVs, 20,691 

(65.28%) had exactly the same number of reads, suggesting that the same reads have 

been merged in these ESVs.

On the other hand, the shared ESVs concentrated most of the reads (Fig. 4): the match 

index for the reads was 0.986. �is is coherent with the fact that most of the non-shared 

ESVs of the Du dataset had a low number of reads (mean = 3.66). �us, the two denois-

ing algorithms with the chosen parameter values provided similar results as for the 

abundant ESVs, but UNOISE3 retained a high number of low abundance ESVs as true 

sequences.

We then evaluated the output of combining denoising and clustering, using either of 

them as a first step. �us, we compared the datasets Du_S, S_Du, Da_S, and S_Da. �e 

results showed that the final number of MOTUs obtained was similar (ca. 19,000) irre-

spective of the denoising method and the order used (Table  1). Moreover, the shared 

MOTUs (flagged as MOTUs that have the same representative sequence) were the over-

whelming majority (Fig. 5), with MOTU match indices over 0.96 in all comparisons.

As for the number of ESVs, clustering first results in a higher number of retained 

sequence variants than clustering last, ca. 25% more for Du and ca. 8% for Da. In all 

comparisons, the majority of ESVs were to be found in the shared MOTUs, and the same 

applies to the number of reads (Fig. 6, match indices for the ESVs, all > 0.95, match indi-

ces for the reads, all > 0.99). Ca. 2/3 of the MOTUs comprised a single ESV when using 

Du, and this number increased notably with Da (ca. 80% of MOTUs, Table 1). In both 

cases, clustering first resulted in a slight decrease of the number of single-ESV MOTUs.

19012

46
S_Du Du_S

453 298

18714

Da_S S_Da

606 497

18561

Da_S Du_S
484 484

18528

S_Da S_Du

MOTUs

Fig. 5. Venn diagrams showing the number of MOTUs shared between the two denoising procedures and a 

clustering step performed in different orders
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Improving the denoising algorithm

We tried different options of our DnoisE algorithm. �e use of the Levenshtein distance 

without any correction and with priority to abundance skew corresponds to the original 

UNOISE3 algorithm (i.e., the Du dataset used previously). We also tried priority to dis-

tance and a combination of skew and abundance to choose among the potential “mother” 

ESVs to which a given “daughter” sequence will be joined. �e same three options were 

applied when correcting distances according to the entropy of each codon position. In 

this case we used a pairwise distance accounting for the codon position where a substi-

tution was found. We further applied a clustering step (SWARM) to the DnoisE results 

to generate MOTU sets (Du_S, Du_d_S, Du_c_S, Du_e_S, Du_e_d_S, Du_e_c_S, see 

Table 1 for explanation of codes) for comparison with those obtained previously.

�e three ways to join sequences have necessarily the same ESVs, only the sequences 

that are joined under each centroid can vary and, thus, the abundance of each ESV and 

how these are clustered in MOTUs. However, this had a very small effect in our case. 

For the three datasets generated without distance correction, most MOTUs were shared, 

and the shared MOTUs comprised most ESVs. In turn most ESVs have the same number 

Fig. 6. Bar charts of the number of ESVs and the number of reads found in the shared and unshared MOTUs 

in the same comparisons as in Fig. 5
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of reads, suggesting that the same sequences have been grouped in each ESV. All  match 

indices were ca. 0.99. �e same was found for the three entropy-corrected datasets.

On the other hand, if we consider the entropy of codon positions the results change 

notably in terms of ESV recovered. �e corrected datasets have 113,133 ESVs (against 

60,198 of the uncorrected datasets). So, when considering the entropy in distance 

calculations the number of retained ESVs increased by 88%. �is is the result of 

accepting sequences that have variation in third codon positions as legitimate. When 

comparing the entropy-corrected and uncorrected datasets 57,318 ESVs were found 

in common (ESV match index of 0.729). �ese ESVs comprise a majority of reads, 

though (read match indices of ca. 0.97 in all possible comparisons). Figure  7 illus-

trates one of these comparisons (Du vs Du_e_c).

When clustering the ESVs obtained with the different methods, the final number of 

MOTUs obtained was similar to those generated in the previous sections (ca. 19,000 

in all cases, Table 1). �is indicates that the entropy corrected datasets provided more 

intra-MOTU variability, but no appreciable increase in the number of MOTUs. As an 

example, the mean number of ESVs per MOTU was 3.159 for the Du_S dataset, and 

5.949 for the Du_e_c_S dataset. �e number of single-ESV MOTUs decreased slightly 

(12,471 for Du_S, 12,365 for Du_e_c_S). Taking this comparison as an example, 

most MOTUs (as indicated by identity in the representative sequence) were shared 

between datasets. In addition, most of the ESVs and most of the reads were found in 

the shared MOTUs (match  indices for MOTUs, ESVs and reads > 0.99).

Benchmarking

We computed the percent of erroneous ESVs (either because they have stop codons 

or changes in the five conserved aminoacids) in the MOTUs assigned to metazoans 

for the datasets obtained with and without entropy correction. �e original data-

set clustered without any denoising (dataset S) had 9,702 erroneous ESVs (or 4.65% 

of the total number of ESVs). �e denoised dataset Du_S had 559 erroneous ESVs 

(1.58%), while the dataset denoised considering the variability of the codon positions 

(Du_e_c_S) had 500 erroneous ESVs (0.70%). �us, albeit the uncorrected UNOISE3 

procedure reduced the proportion of errors to one third, when a correction for codon 

position is applied the absolute number of errors is reduced, out of almost double 

total number of ESVs, thus the relative number is cut by more than one half.

Fig. 7 Venn Diagram showing the number of ESVs shared between two denoised datasets (Du vs Du_e_c). 

Bar chart shows the number of reads in the shared and unshared ESVs
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�e results of the taxonomic benchmarking are given in detail in Additional File 

3, while the obtained species-level dataset is available as Additional File 4. In short, 

all datasets recovered a majority of closed MOTUs, meaning that ESVs assigned to 

a given species were placed in the same MOTU. �e proportion of hybrid MOTUs 

was lower for the more stringent DADA2 datasets. On the contrary, the proportion of 

species recovered and the proportion of ESVs with species-level assignment was low-

est for the DADA2 datasets and highest for the entropy-corrected UNOISE3 datasets.

Discussion

After adjusting the different parameters of the algorithms based on ad hoc criteria for 

COI amplicons, between ca. 33,000 and ca. 113,000 ESVs were obtained depending on 

the denoising procedure used. Irrespective of the method, however, they clustered into 

ca. 19,000 MOTUs. �is implies that there was a noticeable intra-MOTU variability 

even for the most stringent denoising method. �e application of SWARM directly to 

the original dataset (without any denoising) generated likewise ca. 19,000 MOTUs. �is 

suggests that the SWARM algorithm is robust in recovering alpha-diversity even in the 

presence of noisy sequences. �us, denoising and clustering clearly accomplish different 

functions and, in our view, both are complementary and should be used in combina-

tion. �e fact that some studies detect more MOTUs than ESVs when analysing datasets 

using clustering and denoising algorithms separately (e.g., [8, 57]) reflects a logical flaw: 

MOTUs seek to recover meaningful species-level entities, ESVs seek to recover correct 

sequences. �ere should be more sequences than species, otherwise something is wrong 

with the respective procedures. It has even been suggested that ESVs or MOTUs repre-

sent a first level of sequence grouping and that a second round using network analysis is 

convenient [9]. We contend that, with the right parameter settings, this is unnecessary 

for eukaryotic COI datasets.

We do not endorse the view of Callahan et al. [13] that ESVs should replace MOTUs 

as the standard unit analysis of amplicon-sequencing datasets. Using information at the 

strain level may be useful in the case of prokaryotes, and in low-variability eukaryote 

markers such as ribosomal 18S rDNA there may be correspondence between species 

and unique sequences (indeed, in many cases different species share sequences). But 

even in more variable nuclear markers such as ITS, a clustering step is necessary [58]. 

In eukaryotes the unit of diversity analyses is the species. MOTUs and not ESVs target 

species-level diversity and, in our view, should be used as the standard unit of analyses 

for most ecological and monitoring applications. Most importantly, that ESVs are organ-

ized into MOTUs is highly relevant information added at no cost. We do not agree that 

clustering ESVs into MOTUs eliminates biological information [29]. �is only happens 

if only one representative sequence per MOTU is kept. We strongly advocate here for 

keeping track of the different sequences clustered in every MOTU and reporting them 

in metabarcoding studies. In this way analyses can be performed at the MOTU level or 

at the ESV level, depending on the question addressed.

Denoising has been suggested as a way to overcome problems of MOTU construction 

and to provide consistent biological entities (the correct sequences) that can be com-

pared across studies [13]. We fully agree with the last idea: ESVs are interchangeable 

units that allow comparisons between datasets and can avoid generating too big datasets 



Page 18 of 24Antich et al. BMC Bioinformatics          (2021) 22:177 

when combining reads of, say, temporally repeated biomonitoring studies. But clustering 

ESVs into MOTUs comes as a bonus, provided the grouped sequences are kept and not 

collapsed under a representative sequence, thus being available for future reanalyses.

�e denoising and clustering methods here tested have been developed for ribosomal 

markers and uncritically applied to COI data in the past, with default parameter values 

often taken at face value (in fact, parameters are rarely mentioned in methods sections). 

We confirm that the UNOISE3 parameter α = 5 is adequate for COI data, in agree-

ment with previous research using three independent approaches [12, 39, 40]. We also 

tested and confirmed the suitability of a d value of 13 for SWARM that has been used 

in previous works with COI datasets (e.g., [43–47]). As Mahé et al. [42] noted, higher 

d values can be necessary for fast evolving markers. �ey advised to track MOTU coa-

lescing events as d increases to find the value best-fitting the sequence marker chosen. 

We have followed this approach, together with the course of the intra- and inter-MOTU 

distances, to select the d-value for the COI marker. In our view, fixed-threshold cluster-

ing procedures should be avoided, as even for a given marker the intra- and interspe-

cies distances can vary according to the group of organisms considered. With SWARM, 

even if the initial clusters were made at d = 13 (for a fragment of 313 this means an ini-

tial threshold of 4.15% for connecting sequences), after the refining procedure the mean 

intra-MOTU distances obtained was 2.91%, which is in line with values suggested using 

the whole barcoding region of COI [59]. Furthermore, in our taxonomic benchmark-

ing, we found a high proportion of closed MOTUs, irrespective of the denoising method 

used, indicating that the SWARM procedure adequately and robustly grouped the 

sequences with known species-level assignments.

Our preferred algorithm for denoising is UNOISE3. It is a one-pass algorithm based 

on a simple formula with few parameters, it is computationally fast and can be applied 

at different steps of the pipelines. It keeps almost double ESVs than DADA2 and, com-

bined with a clustering step, results in less single-sequence MOTUs and a higher num-

ber of ESVs per MOTU, thus capturing a higher intra-MOTU diversity. It also produced 

60% more closed group MOTUs than DADA2 in our taxonomic benchmarking. Edgar 

et al. [30], by comparing both algorithms in mock and in vivo datasets, also found that 

UNOISE had comparable or better accuracy than DADA2. Similarly, Tsuji et  al. [41] 

found that UNOISE3 retained less false haplotypes than DADA2 in samples from tank 

water containing fish DNA. We also found that the entropy values of the sequences 

changed as expected when denoising becomes more stringent with UNOISE3, indicat-

ing that the algorithm performs well with coding sequences. We also suggest ways of 

improving this algorithm (see below).

DADA2, on the other hand, is being increasingly used in metabarcoding studies but 

its suitability for a coding gene such as COI remains to be demonstrated. We had to use 

paired reads (against recommendation) to be able to make meaningful comparisons, but 

our results indicate that with unpaired sequences the number of ESVs retained would 

have been even lower. �e DADA2 algorithm, when tested with increasingly stringent 

parameters, did not progressively reduce the entropy ratio values that should reflect 

an adequate denoising of coding sequences. Further, the high correlation of error rates 

between all possible substitution types suggests that the algorithm may be over-param-

eterized, at least for COI, which comes at a computational cost. Comparisons based on 
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known communities (as in [41]) and using COI are needed to definitely settle the appro-

priateness of the two algorithms for metabarcoding with this marker.

In addition, PCR-free methods now popular in library preparation procedures com-

plicate the use of DADA2 as there is no consistent direction (forward or reverse) of the 

reads. We acknowledge that our  paired sequences still included a mixture of reads that 

were originally in one or another direction and, thus, with different error rates. However, 

the non-overlapped part is only the initial ca. 100 bp, and these are in general good qual-

ity positions in both the forward and reverse reads.

Another choice to make is to decide what should come first, denoising or clustering. 

Both options have been adopted in previous studies (note that clustering first is not pos-

sible with DADA2 unless paired sequences are used). Turon et al. [12] advocated that 

denoising should be made within MOTUs, as they provide the natural “sequence envi-

ronment” where errors occur and where they should be targeted by the cleaning proce-

dure. We found that clustering first retained more ESVs, because sequences that would 

otherwise be merged with another from outside its MOTU were preserved. It also 

resulted in less single-ESV MOTUs, retaining more intra-MOTU variability. It can also 

be mentioned that denoising the original sequences took approximately 10 times more 

computing time than denoising within clusters, which can be an issue depending on 

the dataset and the available computer facilities. We acknowledge, however, that most 

MOTUs are shared and most ESVs and reads are in the shared MOTUs when comparing 

the two possible orderings, irrespective of denoising algorithm. �e final decision may 

come more from the nature and goals of each study. For instance, a punctual research 

may go for clustering first and denoising within clusters to maximize the intra-MOTU 

variability obtained. A long-term research that implies multiple samplings over time that 

need to be combined together may use denoising first and then perform the clustering 

procedure at each reporting period with the ESVs obtained in the datasets collected so 

far pooled.

�ere are other important steps at which errors can be reduced and that require key 

choices, but they are outside the scope of this work as we addressed only clustering and 

denoising steps. In particular, nuclear insertions (numts) may be difficult to distinguish 

from true mitochondrial sequences [50, 60]. Singletons (sequences with only one read) 

are also a problem for all denoising algorithms (as it is difficult to discern rare sequences 

from errors). Singletons are often eliminated right at the initial steps, as we did in this 

work. Likewise, a filtering step, in which ESVs with less than a certain amount of reads 

are eliminated, is deemed necessary to obtain biologically reliable datasets. A 5% relative 

abundance cut-off value was suggested by [39], while [12] proposed an absolute thresh-

old of 20 reads. However, the procedure and the adequate threshold are best adjusted 

according to the marker and the study system, so, albeit we acknowledge that a filtering 

step is necessary, this has not been addressed in this paper.

We recommend that the different denoising  algorithms  be programmed as stand-

alone steps (not combined, for instance, with chimera filtering) so anyone interested 

could combine the denoising step with the preferred choices for other steps. We also 

favour open source programs that could be customized if needed. For UNOISE3 algo-

rithm we suggest that a combination between distance and skew ratio be considered 

to assign a read to the most likely centroid. �is had little effect in our case, but can 
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be significant in other datasets. For DADA2 algorithm, we advise to weight the gain of 

considering the two reads separately vs using paired sequences. �e advantages of the 

latter involve a higher flexibility of the algorithm as it does not need to be performed 

right at the beginning of the pipeline. For both algorithms, we think it is important to 

consider the natural variation of the three positions of the codons of a coding sequence 

such as COI, which can allow a more meaningful computation of distances between 

sequences and error rates. �is of course applies to other denoising algorithms not 

tested in the present study (e.g., AmpliCI [27], deblur [61]). Our DnoiSE program, based 

on the UNOISE3 algorithm, includes the option of incorporating codon information 

in the denoising procedure. With this option, we found ca 50,000 more ESVs than with 

the standard approach. Importantly, this fact did not increase the proportion of erro-

neous sequences, as determined using aminoacid substitution patterns in metazoan 

MOTUs. Rather, this proportion was cut by one-half, and erroneous sequences were 

less even in absolute numbers. In our taxonomic benchmarking, a higher proportion of 

ESVs with species-level matches in the reference database were detected with the codon 

position-corrected method. We used a dataset of fixed sequence length and eliminated 

misaligned sequences. �e correction for codon position would be more complicated in 

the presence of indels and dubious alignments. We also acknowledge the lack of a mock 

community to ground truth our method, but we contend that mock communities are 

hardly representative of highly complex communities such as those here analysed. We 

hope our approach will be explored further and adequately benchmarked in future stud-

ies on different communities.

Conclusions

COI has a naturally high intraspecies variability that should be assessed and reported in 

metabarcoding studies, as it is a source of highly valuable information. Denoising and 

clustering of sequences are not alternatives. Rather, they are complementary and both 

should be used together to make the most of the inter- and intraspecies information con-

tained in COI metabarcoding datasets. We emphasize the need to carefully choose the 

stringency parameters of the different steps according to the variability of this marker.

Our results indicated that the UNOISE3 algorithm preserved a higher intra-cluster 

variability than DADA2. We introduce the program DnoisE to implement the UNOISE3 

algorithm considering the natural variability (measured as entropy) of each codon 

position in protein-coding genes.  �is correction increased the number of sequences 

retained by 88%. �e order of the steps (denoising and clustering) had little influence on 

the final outcome.

We provide recommendations for the preferred algorithms of denoising and cluster-

ing, as well as step order, but these may be tuned according to the goals of each study, 

feasibility of preliminary tests, and ground-truthing options, if any. Other important 

steps of metabarcoding pipelines, such as abundance filtering, have not been addressed 

in this study and should be adjusted according to the marker and the study system.

We advise to report the results in terms of both MOTUs and ESVs included in each 

MOTU, rather than reporting only MOTU tables with collapsed information and just 

a representative sequence. We also advise that the coding properties of COI should be 
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used both to set the right parameters of the programs and to guide error estimation in 

denoising procedures. We wanted to spark further studies on the topic, and our proce-

dures should be tested and validated or refined in different types of community.

�ere is a huge amount of intra- and inter-MOTU information in metabarcoding data-

sets that can be exploited for basic (e.g., biodiversity assessment, connectivity estimates, 

metaphylogeography) and applied (e.g., management) issues in biomonitoring programs, 

provided the results are reported adequately.
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