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ABSTRACT Metagenome-assembled genomes (MAGs) expand our understanding of
microbial diversity, evolution, and ecology. Concerns have been raised on how se-
quencing, assembly, binning, and quality assessment tools may result in MAGs that
do not reflect single populations in nature. Here, we reflect on another issue, i.e.,
how to handle highly similar MAGs assembled from independent data sets. Obtain-
ing multiple genomic representatives for a species is highly valuable, as it allows for
population genomic analyses; however, when retaining genomes of closely related
populations, it complicates MAG quality assessment and abundance inferences. We
show that (i) published data sets contain a large fraction of MAGs sharing �99% av-
erage nucleotide identity, (ii) different software packages and parameters used to re-
solve this redundancy remove very different numbers of MAGs, and (iii) the removal
of closely related genomes leads to losses of population-specific auxiliary genes.
Finally, we highlight some approaches that can infer strain-specific dynamics across
a sample series without dereplication.
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While initially the reconstruction of metagenome-assembled genomes (MAGs) was
only achievable in lower-diversity or highly uneven communities (1), in the past

5 years, reports on the reconstruction of hundreds to thousands of MAGs have become
routine (2, 3). In the past year, highly automated assembly and binning pipelines have
accelerated this trend (4, 5). These advances open up exciting prospects for addressing
questions regarding the physiology, ecology, and evolution of microbial life. However,
MAGs are inherently less reliable than isolate genomes due to their assembly and
binning from DNA sequences originating from a mixed community. Various reports
have highlighted issues associated with MAGs. Misassemblies and/or incorrect binning
can lead to composite genomes that contain contigs originating from independent
genomes, which can lead to incorrect inferences about the metabolic potential and
phylogenetic novelty of populations represented by these MAGs (6, 7). Additionally,
binning software performs poorly on contigs smaller than 2 to 5 kb (8); hence, smaller
contigs generally are excluded from binning procedures. However, the assembly of
metagenomic data from communities containing closely related strains often leads to
highly fragmented assemblies with many contigs below these cutoffs, leading to
incomplete genomes that can lead to wrong conclusions regarding ecological differ-
entiation between populations (9). As sample series from the same environment across
time or space typically will sample many closely related populations, the independent
assembly of each sample is often preferable to avoid assembly fragmentation due to
genomic variation between conspecific populations in different samples. However, this
often leads to highly similar MAGs being generated across the sample data set.
Therefore, multiple tools have been developed to remove these seemingly redundant
MAGs, mainly based on average nucleotide identity (ANI) between MAGs after se-
quence alignment. Generally, due to the high number of MAGs, which makes doing
all pairwise alignments too computationally intensive, MAGs are first grouped using
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a fast but less accurate alignment method, such as Mash (10). This step is included
in the tool dRep, which subsequently uses genomewide alignments using animf
with mummer/nucmer to align contigs (dRep default [11–13]) or gene-based align-
ments using NSimScan to align open reading frames identified in each MAG (dRep gANI
[14]). Other tools, such as pyani (15), calculate sequence identity using BLAST-based
genomewide alignments of MAG contigs. While slower, we consider it the reference for
comparison due to the higher accuracy of BLAST-based alignments (16) (Fig. 1). When
using Mash as a step preceding pyani, we used default parameters (10). The computed
pairwise distances then were used to cluster genomes into similar groups with hierar-
chical clustering using a custom python script with fcluster from SciPy (http://www
.scipy.org/) with a threshold of 2 (https://github.com/DenefLab/Dereplication-Letter
-Code). pyani then was run within each group created from the clustering (Fig. 1). We
used the recommended default percent sequence alignment threshold for dRep (10%)
but used 75% for pyani, similar to the cutoff used for identifying orthologs using BLAST
alignments. Only MAGs meeting this threshold with both comparisons from the
pairwise comparison were dereplicated.

WHY DEREPLICATE?

Dereplication is the reduction of a set of genomes, typically assembled from
metagenomic data, based on high sequence similarity (e.g., �99% average nucleotide
identity) between these genomes. When redundancy in a database of genomes is
maintained, the subsequent step of mapping sequencing reads back to this database
of genomes leads to sequencing reads having multiple high-quality alignments. De-
pending on the software used and parameters chosen, this leads to sequencing reads
either being randomly distributed across the redundant genomes, with one random
alignment reported from many possible options, or being reported at all redundant
locations. When using these data to make inferences about the relative abundance and
population dynamics across samples, relative abundance for each taxon represented by
these redundant MAGs will look artificially low, and it will appear that multiple
ecologically equivalent populations co-occur. Instead, the more likely conclusion
should be that one abundant population exists across all samples (Fig. 2). This issue has
been acknowledged in multiple studies, and authors have chosen various cutoffs to
avoid this issue (e.g., �95% average nucleotide identity [4], �98% average nucleotide
identity [2], �95% amino acid identity [17], and �99.5% amino acid identity [3]). In our
experience, the presence of multiple closely related genomes can also complicate
manually curating MAGs using, for example, Anvi’o (18). When multiple similar ge-
nomes are present, particularly when some of the closely related MAGs are less
complete, these differential coverage patterns will be less reliable due to the distribu-

FIG 1 Overview of dereplication approaches used in this study. All approaches first cluster similar genomes (Mash clusters
are delineated with boxes) using a fast, less accurate approach (Mash), which is included in the dRep package but is a
separate preprocessing step we carried out for the pyani analysis (indicated with the dotted line). Each cluster of MAGs
then is separately dereplicated using pairwise alignments by identifying MAGs within each Mash cluster that share ANI
above the specified threshold. These clusters are indicated by boxes, with Mash clusters split in two multiple cluster groups
using the same line type (full or dashed lines). Which genomes end up in the same cluster varies depending on the
approach used; only one clustering is shown. Finally, a representative MAG is selected, either as part of the package (dRep)
or using a custom script (our approach that used pyani for pairwise comparisons, indicated by the dotted line), selecting
the MAG with the highest estimated completion and lowest estimated contamination.
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tion of sequencing reads across MAGs in some parts of the genome and not in others,
generating divergent differential coverage patterns for contigs originating from the
same population. This could lead to the removal of parts of the genome that do in fact
belong.

WHY NOT DEREPLICATE?

Traditional population genomic analyses rely on the availability of genome
sequences of many conspecific isolates. Metagenomics-based population genomic
analyses could enhance cultivation-dependent methods by obtaining sequences of
multiple closely related, independently sampled populations (a population being de-
fined as individuals of the same species occurring at the same time and place). While
many methodological issues remain (see reference 19), MAGs of �99% ANI originating
from multiple samples could be a valuable resource, which would be lost if we
dereplicate our MAG data sets. Most approaches to dereplicate remove genomes based
on the sequence identity of shared parts of the genome. As such, when removing
genomes, in addition to data on single-nucleotide variation, we may lose information

FIG 2 Effects of dereplication. Phylogenetic tree of a set of closely related MAGs (family Muribaculaceae)
from Parks et al. (3), grouped based on sequence similarity by Mash. A box outline indicates the genome
was preserved after dereplication, while white space indicates it was removed. The dRep default does not
remove multiple nearly identical MAGs, while dRep-gANI removes MAGs that are more distantly related
than the 99% or 96.5% ANI cutoff. Black bars show the average sequence read coverage across all contigs
of each MAG, ranging from 0 to 2,000, when aligning a metagenomic data set (Sequence Read Archive
accession no. SRR1702559) using all genomes in the tree (none) or dereplicated genome sets using
different tools. Reads were mapped to each Multi-FASTA file of retained MAGs using BWA-MEM with
default parameters (26). Average coverage per contig was computed with pileup.sh from bbtools
(https://sourceforge.net/projects/bbmap/). The phylogenetic tree was created by searching for marker
genes with PhyloSift (27) using its default set of marker genes. All MAGs had estimated completeness
levels of �90% (3). The genes then were aligned with PhyloSift and the resulting alignments concate-
nated, and the tree was created with FastTree (28) using the -nt and -gtr parameters.
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on variability in the auxiliary gene content among representatives from the same
species. As an example, we analyzed the effect of dereplication on database auxiliary
gene content using two of the most commonly used tools (dRep and redundancy
removal based on pyani results). We used a set of 46 Microcystis aeruginosa MAGs that
we previously generated with extensive manual curation (9). The ANI between pairs of
these 46 genomes averages to 96.4%. Out of a total of 9,175 unique gene clusters
across the 46 MAGs, dereplication led to the removal of up to 2,228 auxiliary gene
clusters when using dRep gANI with a 96.5% cutoff (used for species delineation using
genome sequences [14]) (Fig. 2). At the other extreme, using the dRep default, no
genomes were removed from the MAG set; thus, no gene clusters were lost, while
intermediate numbers of gene clusters were removed when using pyani (213) and dRep
gANI (447) at 99% thresholds.

VARIABLE PERFORMANCE OF COMMONLY USED SOFTWARE

As already indicated from the analysis shown in the first part of Table 1, different
dereplication tools lead to different outcomes, even when using the same sequence
identity cutoffs. Using publicly available MAG data sets (3–5), we evaluated the per-
formance of two commonly used dereplication tools, dRep and pyani. For dRep, we
used the default parameters, a cutoff of 99% (dRep default), and the gANI option, which
aligns predicted open reading frames rather than the entire genomes, with cutoffs of
99% and 96.5% (dRep gANI). For pyani, we used a 99% ANI cutoff. As outlined in Fig. 1,
to reduce computation time, all approaches first cluster MAGs by calculating pairwise
distances using Mash.

First, we performed a comprehensive analysis of a set of 7,800 genomes generated
from 1,550 public metagenomes (3). In this study, no dereplication was done for most
analyses, except for building the tree represented in Fig. 2 in the study originally
reporting these MAGs (3). For the latter analysis by Parks and coauthors, dereplication
was performed by removing genomes with an amino acid identity (AAI) of �99.5%, as
calculated using CompareM (https://github.com/dparks1134/CompareM), resulting in
the removal of 27.5% of all MAGs. In our own analyses, relative to the pyani reference
(32.9% removal), default dRep removed fewer genomes (19.3%), while the gANI dRep
approach removed more MAGs (48.1% [99% ANI], 56.9% [96.5% ANI]) (Table 1). A closer
look at one cluster of related MAGs indicated that dRep gANI regularly removed
genomes that did not require removal, while dRep with default parameters did not
remove a sufficient number of MAGs (Fig. 2).

For a recent study that generated more than 90,000 MAGs (4), we performed our
comparative dereplication analysis on the 1,952 uncultured bacterial species that were
identified and examined by the authors. These were MAGs not classified at the species
level in current databases that had been dereplicated by removing less complete MAGs
that shared an ANI of �95% across 60% of their sequence length. In this case, pyani

TABLE 1 Summary of comparison of dereplication tools

Parameter

No. of gene clusters/MAGs retained by dereplication tool (% identity cutoff)

None Pyani (99%) dRep-default (99%) dRep-gANI (99%) dRep-gANI (96.5%)

Effect of dereplication on retained pangenome gene clustersa

Microcystis aeruginosa 9,175 8,962 9,175 8,728 6,947

Effect of dereplication on number of retained MAGsb

Parks et al. (3) (all) 7,800 5,236 6,288 4,047 3,357
Almeida et al. (4) (novel MAGs) 1,951 1,865 1,607 1,605 1,590
Pasolli et al. (5) (SGB12451) 50 8 40 1 1
Pasolli et al. (5) (SGB1437) 49 36 41 26 1

aRetained gene clusters of the Microcystis aeruginosa pangenome of 46 MAGs (9). A gene cluster consists of all genes across all genomes that had a minimum bit
score of at least 0.5 when using the pangenome analysis workflow in Anvi’o (18). Retention of at least one representative in each gene cluster was evaluated when
using different dereplication tools and ANI settings.

bNumber of MAGs remaining after dereplication tools were run shows tool-dependent results of dereplication using data from three published data sets. SGB refers to
numbered species-level clusters generated in analyses by Pasolli et al. (5).
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removed four times fewer MAGs than the different implementations of dRep (Table 2).
In contrast to our preceding analyses, dRep default removed more MAGs than pyani,
potentially because the authors had already dereplicated their MAG set at 95% ANI.
Finally, we analyzed two MAG groups, clustered at the species level (95% ANI) by the
authors of a recent study generating more than 150,000 MAGs (5). In this case, dRep
default again removed fewer MAGs than pyani, while dRep using gANI removed many
more MAGs (Table 2). Various factors may explain the differences in outcome between
dereplication approaches, including the faster but less accurate alignment and percent
identity calculation methods used in dRep, the diverging percent alignment thresholds
used, and, potentially, different implementations of Mash in dRep and in our combined
Mash-pyani approach. As for the percent alignment thresholds used, when we tried
different coverage thresholds with the set of genomes represented in Fig. 2, dropping
the coverage threshold for pyani to 10%, used by dRep, led to the removal of one extra
MAG. When doing the same for the Microcystis MAG set, we observed no change in the
number of genomes removed by pyani (10 to 75% alignment thresholds when using
100% complete MAGs) (Table 2).

Finally, dereplication tools also vary in their performance based on the complete-
ness of the MAGs that are being compared. Previous guidelines for the use of dRep
have shown that Mash, the first step in all the tested dereplication approaches (Fig. 1),
underestimates genome similarity for incomplete genomes and recommends against
dereplicating genomes below 50% completeness (https://drep.readthedocs.io/en/
latest/choosing_parameters.html). When using the pyani approach we favor, using our
data set of Microcystis MAGs artificially reduced to lower completeness by randomly
removing contigs, only 1 out of 46 genomes was removed at completeness levels
between 10 and 60%. At 70, 80, and 90% completeness, pyani removed 2, 8, and 22
genomes at a threshold of �99% identity and alignments covering �75% of the MAG
(Table 2). At their highest estimated completeness level, which ranged between 95 and
100%, 25 genomes were removed. While performance will likely vary depending on the
data set, these results suggest that dereplication with our preferred combined Mash-
pyani approach is not able to prune highly incomplete genomes and will retain more
genomes than optimal even for genomes that are estimated to be 80 to 90% complete.
Considering the limited effect of percent alignment threshold on the pyani approach
when using complete MAGs, lowering this threshold helps remove more genomes and,
hence, should be lowered to 50% or less when trying to prune more incomplete MAGs
(Table 2).

AVAILABLE APPROACHES TO LEVERAGE SAMPLING OF BETWEEN-POPULATION
VARIATION

Several tools have been developed to maintain the auxiliary genomes of closely
related strains while avoiding redundancy when tracking strain-resolved population
dynamics in the environment using metagenomic data (reviewed in reference 19). They
typically use metagenomic data in combination with a database of genomes of closely
related isolates or MAGs based on whether alleles of shared genes (StrainPhlAn [20] and

TABLE 2 Impact of genome completeness and percent alignment threshold on
dereplication using pyani

% alignment

Genome completenessa (%)

10 20 30 40 50 60 70 80 90 100

10 37 35 36 33 33 31 29 27 23 21
25 45 44 37 33 33 31 29 27 23 21
50 45 45 45 45 40 31 29 27 23 21
75 45 45 45 45 45 45 44 38 24 21
aMicrocystis aeruginosa MAGs were artificially reduced in completeness by random subsampling of contigs.
The full MAGs ranged in estimated completeness between 95 and 100%. Shown are the numbers of the
original 46 MAGs retained by our combined Mash-pyani approach using different percent alignment
thresholds.
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ConStrains [21]), strain-specific auxiliary genes (PanPhlAn [22]), or both are present in
a sample (MIDAS [23]). Similarly, the Anvi’o package incorporates a metapangenome
workflow that reduces a set of user-defined conspecific genomes to gene clusters repre-
senting core and auxiliary genes and then estimates strain abundances across metag-
enomic data sets (18). In principle, all of these approaches avoid the issues associated with
database redundancy highlighted in Table 1 and Fig. 2 and the loss of population-specific
auxiliary genes highlighted in Table 1. Although variant identification errors do remain,
which are tool and likely database and metagenomic data set dependent, this has been
reported to be as low as 0.1% (20). While potential issues with these approaches have not
been fully evaluated, analyses focusing on populations where the dominant strain can be
more readily resolved have been able to go as far as tracking in situ bacterial evolution in
environmental biofilms and the human gut (24, 25).

CONCLUSIONS

Genome-centric metagenomics has opened a view into the undescribed branches of
the tree of life. However, full awareness of the risks associated with MAGs is needed to
avoid the misinterpretation of the data and populating databases with questionable
genomes. Dereplication is a step carried out by many researchers as part of metag-
enomic informatic pipelines, but we highlight large differences between commonly
used tools in how many genomes are removed. Tools designed to resolve closely
related genomes in a database exist and may circumvent issues with redundancy while
maximally leveraging all data from conspecific populations obtained from generating
MAGs. As the ability to resolve closely related genomes is dependent on the genetic
distance between genomes in the database and between database genomes and those
of sampled populations, these tools need broader adaptation and evaluation to fully
evaluate their accuracy. Additionally, we hope there will be further development of
tools that resolve the issues highlighted in this study.

DATA AVAILABILITY

All code written and used for the analyses described in the manuscript can be found
at https://github.com/DenefLab/Dereplication-Letter-Code.
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