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Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected 

Shortfall 

 

Abstract 

We propose exponentially weighted quantile regression (EWQR) for estimating time-varying 

quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected 

shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation 

framework, and then modify it by adapting a previously proposed double kernel estimator in order to 

provide greater accuracy for tail quantiles that are changing relatively quickly over time. We 

introduce double kernel quantile regression, which extends the double kernel idea to the modelling of 

quantiles in terms of regressors. In our empirical study of 10 stock returns series, the versions of the 

new methods that do not accommodate the leverage effect were able to outperform GARCH-based 

methods and CAViaR models.  
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The accurate assessment of the exposure to market risk of a financial institution is of great 

importance for internal risk control and financial regulation. Value at risk (VaR) has become the 

standard approach to quantifying market risk. It measures the maximum potential loss of a given 

portfolio over a prescribed holding period at a given confidence level, which is typically chosen to be 

1% or 5%. Therefore, estimating the VaR amounts to forecasting, conditional on current information, 

the tail quantiles of the distribution of a series of financial returns. Although a variety of approaches 

have been proposed for forecasting conditional tail quantiles, there is no established method. GARCH 

methods are popular but they can be criticised because there may be error in the specification of the 

variance model and in the choice of distribution used (Manganelli and Engle 2004).  

Exponential smoothing is a simple and pragmatic approach to forecasting whereby the 

forecast is constructed from an exponentially weighted average of past observations. The common 

use of exponential smoothing for volatility prediction motivates the development of the approach for 

quantile forecasting. In this paper, we consider the forecasting of quantiles using methods based on an 

exponential weighting of past data. We introduce exponentially weighted quantile regression (EWQR), 

which we show amounts to exponential smoothing of the cumulative distribution function (cdf). We 

point out that this nonparametric method can be viewed in a kernel framework. If the distribution of 

returns is changing relatively quickly over time, a relatively fast exponential decay is needed to 

ensure swift adapting. However, a fast decay in the EWQR method is analogous to the use of a low 

number of observations to construct a histogram. When few observations are available, kernel density 

estimation can offer an improvement on the density estimate provided by a histogram. We incorporate 

kernel density estimation within the EWQR method through the use of an exponentially weighted 

double kernel method adapted from the double kernel estimator of Yu and Jones (1998).  

As a measure of financial risk, VaR has the disadvantage that it reports only a quantile, and 

thus disregards outcomes beyond the quantile. An alternative measure of risk that overcomes this 

weakness is expected shortfall (ES), which is defined as the expectation of the return given that it 

exceeds the VaR. ES also has the appeal of being a coherent measure of risk (see Artzner, Delbaen, 

Eber and Heath 1999). We show that the EWQR cost function can be used as the basis for estimating 

the time-varying ES associated with a EWQR quantile forecast. 
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Section 1 provides a brief overview of the literature on VaR estimation. Section 2 presents 

the new EWQR approach to estimating VaR, and describes how it can also be used for estimating ES. 

Section 3 introduces the double kernel version of EWQR. Section 4 uses 10 series of stock returns to 

illustrate implementation of the new methods, and to compare their VaR and ES estimation accuracy to 

established methods. Section 5 provides a summary and concluding comments. 

 

1.  Methods for Estimating VaR and ES 
 

Recent reviews of the VaR literature are provided by Manganelli and Engle (2004) and 

Kuester, Mittnik and Paolella (2006). Manganelli and Engle divide VaR methods into three different 

categories: parametric, semiparametric and nonparametric. Parametric approaches involve a 

parameterisation of the time-varying stochastic behaviour of financial prices. Conditional quantile 

forecasts are constructed from a conditional volatility forecast and a distributional assumption. 

Typically, exponential smoothing or a GARCH model is used to forecast the volatility (see Poon and 

Granger 2003), and a Gaussian or Student-t distribution is assumed. For these distributions, analytical 

formulae exist for the calculation of the ES (see McNeil, Frey and Embrechts 2005, Section 2.2.4). 

Semiparametric VaR approaches include those based on extreme value analysis, such as the 

method of McNeil and Frey (2000), which involves the peaks over threshold EVT method being 

applied to residuals standardised by GARCH conditional volatility estimates. McNeil, Frey and 

Embrechts (2005, p. 283) provide the analytical formula for the associated ES estimation. Also 

included in the semiparametric category of VaR methods are those based on the use of quantile 

regression, such as the conditional autoregressive value at risk (CAViaR) models of Engle and 

Manganelli (2004). Their four CAViaR models are presented in the following expressions:  

    Adaptive CAViaR:     ( )( ))()()( 111 θθαθθ −−− <−+= tttt QyIQQ  

    Symmetric Absolute Value CAViaR:  11 )()( −− ++= ttt yQQ βθαωθ  

    Asymmetric Slope CAViaR:    −
−

+
−− +++= )()()()( 12111 tttt yyQQ ββθαωθ

    Indirect GARCH(1,1) CAViaR:   ( )( )( )2
1

2
1

2
1 )(5.021)( −− ++<−= ttt yQIQ βθαωθθ  
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where Qt(θ) is the conditional θ quantile; ω, α, β and βi are parameters; and (x)+ = max(x,0) and (x)- =  

-min(x,0). Note that we are modelling here a residual term, yt, defined as )( 1−−= tttt IrEry , where rt is 

the return and )( 1−tt IrE  is a conditional mean term, which is often assumed to be zero or a constant. 

CAViaR model parameters are estimated using the quantile regression minimisation, which is presented 

in expression (3) of Section 2.2. Although direct quantile modelling is an appealing feature of CAViaR 

models, it leads to the disadvantage that it is not clear how to calculate the corresponding ES. This 

prompts Taylor (2008) to present conditional autoregressive expectile models, which can be used as 

the basis for VaR and ES estimation.  

In expressions (1) and (2), we show the adaptive method of Gorr and Hsu (1985), which was 

developed for a variety of applications. The formulation is similar to the adaptive CAViaR method, 

except that in expression (1), the Gorr and Hsu method softens the impact of the indicator function 

through the use of exponential smoothing. Note that if β=1, the two methods are identical.  

( )11
ˆ)()( −− −+= ttt QQ θθαθθ                   (1) 

where  ( )( ) 2111
ˆ)1(ˆ

−−−− −+<= tttt QyI θβθβθ      (2) 

Turning to nonparametric VaR methods, the most widely used is historical simulation, which 

estimates the VaR as the quantile of the empirical distribution of returns in a moving window of the 

most recent periods. For this method, it seems natural to estimate the ES as the mean of the returns, in 

the moving window, that exceed the VaR estimate. A problem is that it is not obvious how many past 

periods to include in the moving window. A small number would enable swift reaction to changes in the 

true distribution, but too few observations will lead to large sampling error. To overcome this problem, 

Boudoukh, Richardson and Whitelaw (1998) propose, for quantile estimation, the analogy of the 

exponentially weighted moving average volatility forecasting method. We term this the BRW method. 

It involves allocating to the sample of returns, exponentially decreasing weights, which sum to one. 

The returns are then ordered in ascending order and, starting at the lowest return, the weights are 

summed until θ is reached. The forecast of the θ quantile is set as the return that corresponds to the 

final weight used in the previous summation. The authors give no consideration as to how to derive 

ES forecasts from the BRW method. We consider the method again in Section 2.3. 
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2.  Estimating VaR Using Exponentially Weighted Quantile Regression 

2.1.  Exponentially Weighted Least Squares Regression 

Before introducing exponentially weighted quantile regression, let us consider the established 

practice of exponentially weighted least squares (EWLS) regression, which is also known as 

discounted least squares. For a model with intercept, m, but no regressors, EWLS is written as: 

      ( )∑
=

− −
T

t
t

tT

m
my

1

2min λ

where T is the sample size, and λ∈[0,1] is a weighting parameter. It is well known that differentiation 

with respect to m leads to the following estimate, which is an exponentially weighted average.  

∑

∑

=

−

=

−

= T

t

tT

T

t
t

tT

T

y
m

1

1

λ

λ
       

If T is large, this can be written in the recursive form of simple exponential smoothing: 

( ) 11 −+−= TTT mym λλ  

 

2.2.  Quantile Regression 

Koenker and Bassett (1978) introduce quantile regression for the estimation of linear quantile 

models, βttQ x′=)(θ , where xt is a vector of regressors and β is a parameter vector. The quantile 

regression minimisation is shown in expression (3). It is conveniently solved as a linear program.  

( ) ((∑
=

′<−′−
T

t
tttt yIy

1

min ββ xx θ
β

))     (3) 

Koenker and Bassett show that, if the model includes an intercept term, the resulting quantile 

estimator, , obeys the partitioning inequalities in expression (4). The inequalities indicate 

that the estimator essentially partitions the y

β̂)(ˆ
ttQ x′=θ

t observations so that the proportion less than the 

corresponding quantile estimate is close to θ. (The proportion is not exactly θ because, in general, 

quantile regression has p residuals equal to zero, where p is the dimension of the parameter vector β.) 

       ( ) θ≤′<∑
=

T

t
ttyI

T 1

ˆ1 βx             and            ( ) ( )θ−≤′>∑
=

1ˆ1
1

T

t
ttyI

T
βx     (4) 
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2.3.  Exponentially Weighted Quantile Regression 

Our development of quantile regression is to propose exponentially weighted quantile 

regression (EWQR), which could also be referred to as discounted quantile regression. For a specified 

value of the weighting parameter, λ, the EWQR minimisation has the form:  

( ) ((∑
=

− ′<−′−
T

t
tttt

tT yIy
1

min ββ xx θλ
β

))     (5) 

For a linear quantile model, this minimisation can be formulated as a linear program. 

Koenker and Bassett (1978) derive the partitioning inequalities of expression (4) in Theorem 3.4 of 

their paper. We now present a new analogous theorem for EWQR.  

Theorem 1. If the quantile model, βttQ x′=)(θ , includes an intercept term, the solution  to 

the EWQR minimisation of expression (5) will satisfy the following inequalities: 

β̂

         
( )

θ
λ

λ
≤

′<

∑

∑

=

−

=

−

T

t

tT

T

t
tt

tT yI

1

1

β̂x
            and            

( )
( θ

λ

λ
−≤

′>

∑

∑

=

−

=

−

1
ˆ

1

1
T

t

tT

T

t
tt

tT yI βx
)                (6) 

 Proof. See Appendix. 

These partitioning inequalities show that the EWQR quantile estimator, , 

partitions the y

β̂)(ˆ
ttQ x′=θ

t observations so that the sum of the weights on those observations less than the 

corresponding quantile estimator, as a proportion of the sum of all the weights, is close to θ. (The 

proportion is not exactly θ because, in general, EWQR has p residuals equal to zero, where p is the 

dimension of β.) Therefore, EWQR delivers a quantile estimator for which the exponentially 

weighted average of the indicator function is close to θ. This is shown in expression (7) for the simple 

case of EWQR with an intercept, q, and no regressors. 

         
( )

θ
λ

λ
≤

<

∑

∑

=

−

=

−

T

t

tT

T

t
t

tT qyI

1

1

ˆ
            and            

( )
( )θ

λ

λ
−≤

>

∑

∑

=

−

=

−

1
ˆ

1

1
T

t

tT

T

t
t

tT qyI
               (7) 

Viewing θ as the target value of the cdf, expression (7) suggests the following cdf estimator 

for a specified value, y, in period T: 
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( )
( )

∑

∑

=

−

=

− <
= T

t

tT

T

t
t

tT

T

yyI
yF

1

1ˆ
λ

λ
                 (8) 

In a similar way to that of Section 2.1, if T is large, we can write expression (8) in recursive form as:  

       ( ) ( ) ( ) ( )yFyyIyF TTT 1
ˆ1ˆ

−+<−= λλ                 (9) 

This expression is simple exponential smoothing of the cdf for a given y value.  

Although expression (8) is a cdf estimator, it can be used to estimate quantiles by iteratively 

evaluating the right hand side of the expression for different values of y until the desired value for the 

cdf estimator, , is achieved to a required degree of tolerance. The same quantile estimate is 

derived by using EWQR with an intercept and no regressors. This shows that EWQR encompasses 

simple exponential smoothing of the cdf. 

( )yFT
ˆ

For univariate estimation of the time-varying quantiles of a time series, the use of EWQR 

with an intercept and no regressors is one possibility. If a time series is trending, or exhibiting 

substantial increase or decrease in its volatility, a trend term could be included in the EWQR. This is 

analogous to the inclusion of a trend term in the EWLS regression, which leads to Brown’s (1963) 

double exponential smoothing. Using EWLS to fit models that are certain functions of time is termed 

‘general exponential smoothing’ (GES) (see Gardner 1985). The inclusion of functions of time in 

EWQR is, therefore, the extension of GES to time-varying quantile forecasting. Following practice in 

GES, if the data is seasonal, sinusoidal terms or dummy variables can be included in the EWQR. For 

VaR estimation, the inclusion in EWQR of an intercept with no regressors seems reasonable, but a 

regressor could certainly be included in order to attempt to capture the leverage effect.  

Forecasting the time-varying quantile using expression (8) is equivalent to the BRW VaR 

method described in Section 1. The BRW method is, therefore, equivalent to EWQR with an intercept 

and no regressors. The benefit in recognising this is threefold. Firstly, it gives the BRW method a 

sounder theoretical basis. Secondly, the regression framework enables the inclusion of regressors in 

the BRW method. Thirdly, the formal statistical framework of EWQR allows the possibility of 

statistical testing of parameters. Encouragingly for the EWQR method, Manganelli and Engle (2004) 

describe the BRW method as being a significant improvement over other simple VaR methods since 
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it drastically simplifies the assumptions needed in the parametric models and it incorporate a more 

flexible specification than the historical simulation approach. They go on to conclude that it is a 

special case of their CAViaR class of methods. However, in our view, exponentially weighting the 

quantile regression minimisation is a fundamentally different approach to CAViaR, and so it is more 

reasonable to say simply that both approaches are special cases of quantile regression.  

In Section 1, we presented the Gorr and Hsu (1985) method. Interestingly, expression (2) in 

their method is equivalent to expression (9). Note also that expression (8) is used by Dunsmuir, Scott 

and Qiu (1996) within a robust approach to point forecasting. 

 

2.4.  Expected Shortfall Using EWQR 

Theorem 8.3 of Koenker (2005) shows that, for a variable y, the ES for the θ quantile in the 

lower tail of the distribution is given by the following expression: 

( ) ( )( ) (( )( )( θθθ
θ

QyIQyEyEES <−−−=
1 ) )               (10) 

where Q(θ) is the θ quantile of y. As with yt in Section 1, let us define y to be a zero mean residual 

term. This enables us to rewrite expression (10) as the following: 

( )( ) (( )( )( θθθ
θ

QyIQyEES <−−−=
1 ) )                (11) 

This expression involves the expectation of the asymmetric ‘tick’ function used in the quantile 

regression minimisation of expression (3). The tick function of expression (11) is evaluated at the 

quantile, Q(θ), which can be estimated by the quantile regression minimisation. Therefore, a sample 

estimator of the expectation is the optimised value of the quantile regression objective function 

divided by the sample size. Using this in expression (11) gives the following ES estimator: 

( ) ( )( )∑
=

′<−′−−=
T

t
tt yIy

T
ES

1

^ ˆˆ1 ββ tt xx θ
θ

               (12) 

 Quantile regression would, therefore, seem to deliver not only an estimator for the quantile, 

but also, via expression (12), an ES estimator. Unfortunately, this estimator is of limited use because, 

in view of the time-varying nature of the distribution of financial returns, we require an ES estimator 

that is time-varying. In other words, expression (12) provides an unconditional estimator, but what we 
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need is an estimator conditional on information up to the current period. We address this by proposing 

an exponentially weighted time-varying ES estimator that puts a larger weight on the contribution of 

more recent observations. To achieve this, in expression (12), we simply replace the quantile 

regression objective function with the EWQR objective function of expression (5). Therefore, for 

quantiles in the lower tail, we propose that for quantile models, βtx′=)(θtQ , estimated using 

EWQR, the corresponding ES be estimated using the following new adaptation of expression (12): 

( ) ( )( )∑
∑ =

−

=

−

′<−′−−=
T

t
tttt

tT
T

t

tT
T yIyES

1

1

^ ˆˆ1 ββ xx θλ
λθ

              (13) 

For a θ quantile in the upper tail of the distribution, the analogous expression is: 

( )
( ) ( )( )∑

∑ =

−

=

−

′<−′−
−

=
T

t
tttt

tT
T

t

tT
T yIyES

1

1

^ ˆˆ
1

1 ββ xx θλ
λθ

              (14) 

 

3.  Exponentially Weighted Double Kernel Quantile Regression 

3.1.  Viewing EWQR as a form of Kernel Quantile Regression 

Jones and Hall (1990) consider a kernel weighting scheme, as in expression (15), for the 

nonparametric estimation of quantiles of yt conditional upon a scalar variable xt. 

( )( ) (( )∑
=

<−−−
T

t
ttthq

qyIqyxxK
1

min θ )                 (15) 

where Kh(x-xt) is a conveniently defined kernel weighting function. The use of an intercept, q, with no 

regressors in expression (15) implies local constant fitting. Local linear fitting is another possibility 

that is considered by Yu and Jones (1998). Following similar steps to those in the proof of Theorem 

1, it can be shown that the quantile estimated by expression (15) satisfies the following partitioning 

inequalities.  

  ( ) θ≤<−
−

∑
∑ =

=

T

t
tthT

t
th

qyIxxK
xxK 1

1

ˆ)(
)(

1        and      ( ) ( θ−≤<−
−

∑
∑ =

=

1ˆ)(
)(

1
1

1

T

t
tthT

t
th

qyIxxK
xxK

)  

These inequalities suggest the following cdf estimator for a specified value, y, in period T: 
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( ) ( )∑
∑ =

=

<−
−

=
T

t
tthT

t
th

T yyIxxK
xxK

yF
1

1

)(
)(

1ˆ                (16) 

This is the standard kernel estimator for the cdf, which has been the focus of many studies (e.g. 

Abberger 1997; Hall, Wolff and Yao 1999; Cai 2002).  

 Consider the application of the kernel estimator of expressions (15) and (16) to the univariate 

time series context. Let xt = t, and the location x=T, which is the most recent period. If we then define 

the kernel function to be one-sided with exponentially declining weight on data to the left of the 

location, T, we have Kh(x-xt)=λT-t. Substituting this into expression (15) delivers EWQR with an 

intercept and no regressors, and substitution of the same term into (16) gives the EWQR expression 

(8). This shows that EWQR can be viewed as a form of kernel quantile estimation. This is consistent 

with the work of Gijbels, Pope and Wand (1999) who show that GES can be viewed in a kernel (least 

squares) regression framework. Therefore, our work can be viewed as extending the study of Gijbels, 

Pope and Wand to quantile forecasting. 

 

3.2.  An Exponentially Weighted Double Kernel CDF Estimator 

The choice of bandwidth is a crucial issue for kernel estimators. For the exponentially 

weighted kernel, this problem translates into the choice of λ. In Section 4.1, we describe the 

procedure that we used to optimise λ. If the distribution of returns is changing relatively quickly over 

time, a relatively low value of λ is needed to ensure swift adapting. However, it seems intuitive that 

for tail quantiles the value of λ in the EWQR method must be relatively large in order that a relatively 

sizeable weight is given to many observations. The use of a low value of λ in the EWQR method is 

analogous to the use of a low number of observations to construct a histogram. When few 

observations are available, kernel density estimation often provides an improvement on the density 

estimate given by the histogram. Butler and Schachter (1998) extend the historical simulation VaR 

approach by applying kernel density estimation to a histogram of past returns. This method is the 

focus of Chen and Tang (2005) who consider standard errors for the resulting VaR estimates.  
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Kernel density estimation can be incorporated within the EWQR cdf estimator through the 

use of the following double kernel cdf estimator of Yu and Jones (1998): 

               ( ) (∑
∑ =

=

−Ω−
−

=
T

t
ththT

t
th

T yyxxK
xxK

yF
1

1

21

1

)(
)(

1ˆ )                                      (17) 

                where     ( ) ( )∫
∞−

−=−Ω
y

thth duyuWyy
22

This cdf estimator replaces the indicator function of the more standard estimator in 

expression (16) with a continuous distribution function, . Yu and Jones describe the kernels as 

having two distinct bandwidths, one in the y direction and one in the x direction. They select  and 

 to be uniform and local linear kernels, respectively. Note that the standard kernel density 

estimator, which amounts to the smoothing of a histogram, corresponds to = 1. In this paper, we 

propose the following new exponentially weighted double kernel cdf estimator: 

2hΩ

2hW

1hK

1hK

                         ( ) (∑
∑ =

−

=

−

−Ω=
T

t
th

tT
T

t

tT
T yyyF

1

1

2

1ˆ λ
λ

)                                                (18) 

                         where     ( ) ( )∫
∞−

−=−Ω
y

thth duyuWyy
22

The kernel  could be defined as being uniform, as in the work of Yu and Jones, with 

Gaussian and Epanechnikov being two other obvious possibilities. We selected the value of λ and the 

bandwidth h

2hW

2 for the kernel  using a procedure described in Section 4.1. As we mentioned in 

Section 2.3 with regard to expression (8), expression (18) can be used to estimate quantiles by 

repeatedly evaluating the right hand side of the expression for different values of y. This double 

kernel approach addresses the suggestion of Fan and Gu (2003) that a combination of both time-

domain and state-domain smoothing of volatility is an interesting direction for future research. An 

interesting extension of the theoretical work of Chen and Tang (2005) would be to derive standard 

errors for the VaR estimates resulting from this new double kernel method. 

2hW
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3.3.  Double Kernel Quantile Regression 

 In Section 2.3, we mentioned that, in the context of univariate VaR estimation, regressors 

could be included in EWQR in order to try to model the leverage effect. Although the double kernel 

estimators of expressions (17) and (18) have some appeal, they do not allow quantile modelling in 

terms of regressors. The double kernel least squares regression of Yu and Jones (1998) does provide a 

modelling framework, but only for the cdf, and not for a quantile. In this section, we present the 

analogous regression framework for quantiles by introducing double kernel quantile regression.  

 In kernel density estimation, the observations, yt, are essentially replaced by a kernel function, 

which we write as , centred at each observation. If we do the same with the local constant fitting 

quantile regression in expression (15), we get:  

2hW

( ) ( ) ( )( )∑ ∫
=

∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−<−−−

T

t
ththq

dyyyWqyIqyxxK
1

)(min
21

θ               (19) 

 If we differentiate the objective function of this minimisation with respect to q, we get the Yu 

and Jones double kernel estimator of expression (17). This result gives insight into the double kernel 

cdf estimator, and allows direct estimation of a quantile, rather than iterative derivation of the quantile 

from the cdf estimators of expressions (17) and (18). Furthermore, the result enables us to broaden the 

double kernel cdf estimator to one that models the quantile as a function of regressors. We do this in 

expression (20), which is a generalisation of expression (19) for the case of estimating a quantile 

model, βttQ x′=)(θ : 

                  (20) ( ) ( )( )∑ ∫
=

∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′<−′−−

T

t
thttth dyyyWyIyxxK

1

)()(min
21

ββ xx θ
β

 As an example, if we select  to be the same exponentially weighted kernel considered in 

Sections 3.1 and 3.2, and we specify to be Gaussian, this minimisation becomes the following: 

1hK

2hW

      ( )∑
=

− −′+−′Φ−′+′−
T

t
tttttttt

tT hyhhyyy
1

222 ))(())(()()(min ββββ xxxx φθλ
β

           (21) 

where Φ and φ are the standard Gaussian cdf and probability density function, respectively. A non-

linear optimisation algorithm is needed to solve this minimisation. We term this new approach 

exponentially weighted double kernel quantile regression (EWDKQR). 
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 In this paper, we set the kernel  to be an exponential weighting scheme. In many other 

quantile estimation applications, this kernel is unlikely to be needed, and setting =1 would be 

appropriate. However, the same may not be true for the other kernel . Indeed, the inclusion of this 

kernel would seem to have relevance in other quantile regression applications where there is a lack of 

data, which is often the case when extreme tail quantiles are being estimated. 

1hK

1hK

2hW

 In Section 2.4, we described how the EWQR cost function can be used as the basis for 

estimating the time-varying ES. We can adapt the EWQR ES expressions (13) and (14), from Section 

2.4, for the EWDKQR estimator of expression (21). The EWDKQR ES expressions for quantiles in 

the lower and upper tail are given by expressions (22) and (23), respectively.   

( )∑∑
−′+−′Φ−′+′−−= −

−
t

tttttttt
tT

t

tT hyhhyyyES ))(())(()()(1
222

^
ββββ xxxx φθλ

λθ
        (22) 

( ) ( )∑∑
−′+−′Φ−′+′−

−
= −

−
t

tttttttt
tT

t

tT hyhhyyyES ))(())(()()(
1

1
222

^
ββββ xxxx φθλ

λθ
   (23) 

 

4.  Empirical Study 

In this section, we describe the implementation of the new exponentially weighted methods 

within a study that compared their accuracy to that of a variety of established methods. The study 

considered day-ahead forecasting of the 1%, 5%, 95% and 99% conditional quantiles and their 

associated ES. We chose these quantiles because they are widely considered in practice. The focus on 

day-ahead estimation is consistent with the holding period considered for internal risk control by most 

financial firms. We used daily log returns for the 10 individual S&P500 stocks that had highest market 

capitalisation at the end of April 2005. The stocks are listed in Table 1, in descending order of market 

capitalisation, along with values of skewness and excess kurtosis. The Procter and Gamble returns series 

contains a large outlier, and this is reflected in the large values for the skewness and excess kurtosis. 

Although multivariate quantile models are being developed (e.g. De Gooijer, Gannoun and Zerom 

2006), in this study, we followed the common practice of treating each series independently. 

----------  Table 1  ---------- 
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The sample period used in our study consisted of 13 years of daily data, from 29 April 1992 

to 29 April 2005. This period delivered 3393 log returns. We used the first 2893 returns to estimate 

method parameters and the remaining data to evaluate 500 post-sample day-ahead quantile estimates. 

Our use of 13 years of data, with 500 periods for post-sample evaluation, follows the procedure of 

Engle and Managanelli (2004) in their VaR study. Following common practice, we did not estimate 

models for the conditional mean of each series (see Poon and Granger 2003). For all 10 series, we 

subtracted from each return, rt, the mean, μ, of the 2893 in-sample returns. The quantile estimation 

methods were applied to the resultant residuals, yt = rt - μ.  

 

4.1.  Methods Used for Estimating VaR and ES 

EWQR and EWDKQR Methods 

We found that, with no regressors in the EWQR, the cdf estimator in expression (8) provided 

a faster means of estimating the quantile, for a given value of θ, than using linear programming to 

solve the EWQR minimisation in expression (5). We iteratively evaluated the right hand side of 

expression (8) for different values of y until the required value for the cdf, ( )yFT
ˆ , was delivered to a 

specified degree of tolerance. Of course, for quantile models with regressors, this approach is of no 

use, and the EWQR minimisation of expression (5) must be performed. In order to allow for the 

leverage effect, we considered the use of EWQR with an indicator variable defined to take a value of 

one if the value of yt was negative in the previous period, and a value of zero otherwise. Other 

regressors could certainly be considered to model the leverage effect, but in this initial study of 

EWQR, we opted for simplicity. When presenting the results in Sections 4.2 to 4.4, we refer to the 

method with the regressor as “EWQR Leverage” and the method with no regressors simply as 

“EWQR”. We use analogous terms to label our two EWDKQR methods, which are discussed below.  

Each EWQR was performed using a moving window of just the most recent 250 

observations. We experimented with more observations in each moving window, but performance of 

the method was not improved. Optimisation of the weighting parameter λ proceeded by the use of a 

rolling window of 250 observations to produce day-ahead quantile forecasts for each of the remaining 

observations in the estimation sample of 2893 observations. The value of λ deemed to be optimal was 
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the value that produced day-ahead quantile forecasts leading to the minimum QR Sum, where QR 

Sum is defined as the summation in the standard form of quantile regression presented in expression 

(3). We computed the QR Sum over a grid of values for λ between 0.80 and 1, with a step size of 

0.005. We performed the optimisation separately for each value of θ  (i.e. for each different quantile). 

The resulting values for EWQR with no regressors are reported in Table 2. A relatively large value of 

λ implies that the older observations in the moving window of 250 are given a larger weighting than 

they would have received if a smaller value of λ had been used. Giving a sizeable weight to all 250 

observations would seem to be more important for the more extreme tail quantiles because these 

quantiles require more observations for their estimation. It is, therefore, intuitive that the values of λ 

that we derived were generally greater for the 1% and 99% quantiles than the 5% and 95% quantiles.  

----------  Tables 2 and 3  ---------- 

 We implemented the EWDKQR methods of Section 3. We considered three choices for the 

kernel : Gaussian, uniform and Epanechnikov. The results for the three were similar and so, for 

simplicity, we report only the results for the Gaussian kernel in Sections 4.2 to 4.4.  For the most 

basic form of EWDKQR, which involves no regressors, we found that, similarly to EWQR, iterative 

derivation of the quantile from the cdf estimator of expression (18) was faster than solving the 

EWDKQR minimisation in expression (21) with no regressors. To allow for the leverage effect, we 

considered the use of EWDKQR with the same regressor that we had used in the EWQR method. For 

this method, we performed the EWDKQR minimisation of expression (21). 

2hW

For the EWDKQR method, we derived the values of λ and the bandwidth h2 for the kernel 

 using the same procedure used for the EWQR method. We computed the QR Sum over a grid of 

values for λ between 0.80 and 1, with a step size of 0.005, and for h

2hW

2 between zero and 0.02, with a 

step size of 0.0005. A value of zero for h2 corresponds to the EWQR method. The resulting λ values 

are presented in Table 3 for the EWDKQR method with no regressors. It is interesting to see that all 

but two of the entries in Table 3 are less than or equal to the corresponding entries for the EWQR 

method in Table 2. Note also that, by contrast with the values for the EWQR method in Table 2, the 

values of λ for the EWDKQR method in Table 3 tend to be noticeably smaller for the 1% quantile 
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than for the 5% and 95% quantiles. We infer from this that the 1% quantile changes more radically 

over time. This was not captured by the EWQR method, but the inclusion of the kernel density 

estimation allows it to be accommodated within the EWDKQR estimator. Figure 1 is a plot of the 

derived values for λ and h2. The negative relationship between the two parameters is intuitive because 

a lower value of λ implies faster exponential decay, and hence less historical information is captured, 

and so there is a need for a greater degree of kernel density smoothing, which is manifested in a larger 

value of h2.  

----------  Figure 1  ---------- 

 For the EWQR and EWDKQR methods, ES predictions were produced using, respectively 

expressions (13) and (14) from Section 2.4, and expressions (22) and (23) from Section 3.3. 

 

Historical Simulation 

We included in our study the historical simulation approach using a moving window of 250 

periods. We also implemented the EWDKQR method with no regressors and λ=1. This amounts to 

Butler and Schachter’s (1998) inclusion of kernel density estimation within the historical simulation 

approach. We refer to this method as “Kernel Historical Simulation”.  

 

Methods Based on Volatility Forecasts 

We generated volatility forecasts by applying exponential smoothing to the squared residuals 

with parameter optimised by minimising the sum of squared day-ahead variance forecast errors. 

Conditional quantile and ES forecasts were produced using first a Gaussian distribution and then the 

method of McNeil and Frey (2000), which involves applying EVT to the standardised residuals.  

We implemented the GARCH(1,1) model and the asymmetric GARCH(1,1) model of 

Glosten, Jagannathan and Runkle (1993), which we term GJRGARCH. Our choice of the (1,1) 

specification was based on our analysis of the initial in-sample period of 2893 returns and on the 

general popularity of this order for GARCH models. We derived the model parameters using maximum 

likelihood based on a Student-t distribution with optimised degrees of freedom. We produced quantile 

and ES forecasts using the Student-t distribution and the EVT method of McNeil and Frey (2000).  
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CAViaR Models 

We estimated the four CAViaR models presented in Section 1 using a procedure similar to 

that described by Engle and Manganelli (2004). For each model, we first generated 105 vectors of 

parameters from a uniform random number generator between 0 and 1, or between -1 and 0, 

depending on the appropriate sign of the parameter. For each of the vectors, we then evaluated the QR 

Sum. The 10 vectors that produced the lowest values for the function were used as initial values in a 

quasi-Newton algorithm. The QR Sum was then calculated for each of the 10 resulting vectors, and 

the vector producing the lowest value of the QR Sum was chosen as the final parameter vector.  

 

4.2.  VaR Results 

We evaluated the post-sample conditional quantile forecasts using the two measures 

employed by Engle and Manganelli (2004): the hit percentage and the dynamic quantile (DQ) test 

statistic. The hit percentage assesses the unconditional coverage of a θ conditional quantile estimator. 

It is the percentage of observations falling below the estimator. Ideally, the percentage should be θ. 

We examined significant difference from this ideal using a test based on the binomial distribution. 

The Engle and Manganelli DQ test evaluates the dynamic properties of a conditional quantile 

estimator. It involves the joint test of whether the hit variable, defined as ( ) θθ −≤= )(ˆ
ttt QyIHit , is 

distributed i.i.d. Bernoulli with probability θ, and is independent of the conditional quantile estimator, 

. Ideally, Hit)(ˆ θtQ t will have zero unconditional and conditional expectations. As in the empirical 

study of Engle and Manganelli, we included four lags of Hitt in the test’s regression to deliver a DQ 

test statistic, which, under the null hypothesis of perfect unconditional and conditional coverage, is 

distributed χ2(6). 

 Table 4 presents the values of the hit percentage measure for each method applied to each of 

the 10 stock returns series for estimation of the 5% quantiles. The final column presents the number 

of stocks for which the hit percentage is significantly different from the ideal of 5% when testing at 

the 5% significance level. The best results were achieved using the EWQR method with no reressors, 

the adaptive CAViaR model and the two methods based on exponential smoothing volatility 
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forecasts. Table 5 reports the values of the DQ test statistic for the 5% quantiles. As in Table 4, the 

final column summarises the number of significant entries for each of the methods. The methods 

performing particularly well in Table 5 are the EWQR and EWDKQR methods with no regressors, 

and the exponential smoothing volatility forecasting method with Gaussian assumption. In Section 

4.4, we summarise the VaR results for all four quantiles.  

----------  Tables 4, 5 and 6  ---------- 

 

4.3.  ES Results 

We employed a similar approach to that of McNeil and Frey (2000) to evaluate the 

conditional ES estimates. The procedure considers the discrepancy between an observation and the 

conditional ES estimate for only those periods for which the observation exceeds the conditional 

quantile estimate. When standardised by the conditional volatility, these discrepancies should be i.i.d. 

with a mean of zero. Because the EWQR and EWDKQR methods do not involve the estimation of the 

conditional volatility, instead of standardising with the volatility, we standardised using the 

conditional quantile estimate for each method. In order to avoid distributional assumptions, McNeil 

and Frey use a bootstrap test to test the standardised discrepancies for a zero mean (see page 224 of 

Efron and Tibshirani 1993). Table 6 reports p-values for the bootstrap test for the post-sample 

conditional 5% ES estimates. The table reports no results for the CAViaR models because, as noted in 

Section 1, it is not clear how ES forecasts can be produced for this class of models. As in Tables 4 

and 5, the final column in Table 6 presents a count for the number of series for which the null is 

rejected at the 5% level. The results are impressive for all the methods except exponential smoothing 

of the volatility with a Gaussian assumption. The results for the other three quantiles were more 

varied, and we see this in Section 4.4, where we summarise all of the ES results.  

To evaluate the dynamic properties of the ES estimator, we need to test whether the 

standardised discrepancies are i.i.d. However, the test has low power because, with a post-sample 

period of 500 observations, there are a very low number of discrepancies, and this is particularly so 

for the 1% and 99% estimation. We tested for zero autocorrelation in each series of discrepancies 

corresponding to 5% and 95% estimation. Using a 5% significance level, we found that the total 
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number of rejections of the null hypothesis across these two quantiles and the 10 series was zero or 

one. These results provide little insight, so we do not present them in further detail here. 

 

4.4.  Summary of VaR and ES Results  

 Table 7 is a summary of the VaR and ES results for all four quantiles. The table presents the 

final columns from Tables 4, 5 and 6, along with the corresponding summary measures for the 1%, 

95% and 99% quantiles. As our study involved 10 stocks, for a given quantile, the maximum number 

of test rejections for any single test is 10. The columns labelled “Total” contain the total number of 

rejections across the four quantiles.  

----------  Table 7  ---------- 

Let us first consider the hit percentage results in Table 7. These show that, overall, the best 

performing methods were EWQR with no regressors and exponential smoothing of the volatility with 

EVT. The method with the leverage effect regressor also performed well, along with the method 

based on exponential smoothing of the volatility with a Gaussian assumption. For the EWDKQR 

method, the results for the more extreme quantiles, 1% and 99%, were more competitive than for the 

5% and 95% quantiles. Turning to the results in Table 7 for the DQ test statistic, we can see that the 

EWDKQR method with no regressors performed very well. Other methods that performed well in 

terms of the DQ test were the EWQR method with no regressors and the exponential smoothing and 

GARCH volatility forecasting methods with EVT.  

With regard to ES estimation, Table 7 shows that the best performance was achieved by the 

EWQR and EWQR leverage methods and by exponential smoothing of the volatility with EVT. The 

poorest results were produced by exponential smoothing of the volatility with a Gaussian assumption. 

The performance of the two EWDKQR methods was similar to that of the GARCH models.  

Our overall conclusion from the study is that our new methods were competitive. The EWQR 

method performed better than the EWDKQR method in terms of VaR hit percentage and the ES test, 

while the DQ test statistic results suggest that the dynamic properties of the quantile are better 

explained by the EWDKQR method. The inclusion of the leverage term in the EWQR and EWDKQR 
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methods provided no improvement in the results, which was consistent with the results for the 

asymmetric GARCH and CAViaR models. 

 

5.  Summary and Concluding Comments 

In this paper, we have introduced EWQR as a means of using exponential smoothing to 

estimate the time-varying quantiles of the conditional returns distribution. The approach can be 

viewed as exponential smoothing of the cdf. Expressing the approach as kernel estimation of the cdf 

prompted us to adapt the double kernel estimator of Yu and Jones (1998) to give a new exponentially 

weighted double kernel estimator. This estimator has the appeal of incorporating kernel density 

estimation within the exponentially weighted estimator. Although this estimator can be used to 

deliver quantile estimates, our new exponentially weighted double kernel quantile regression 

(EWDKQR) enables this to be done directly, and also has the appeal of allowing quantile modelling 

in terms of regressors. We showed that an appealing feature of the EWQR and EWDKQR approaches 

is that the cost function can be used in a very simple way as the basis for a new predictor of the time-

varying ES associated with the respective quantile forecasts. An empirical comparison of the new 

methods with a selection of widely used approaches gave encouraging results in terms of both 

quantile and ES forecast performance. 

In terms of future research, it would be interesting to see further empirical evaluation of the 

methods proposed in this paper, using perhaps different data and a different set of benchmark 

methods. Drawing on the results from this paper, Taylor (2007) considers the use of EWQR for the 

substantially different application of forecasting supermarket sales. Throughout the paper, we have 

considered linear quantile models. However, De Gooijer and Zerom (2003) suggest that in many 

practical situations a non-linear model is needed to capture the underlying structure in a quantile. 

EWQR could certainly be used in future work to estimate such models, although the minimisation 

could not be solved using linear programming. Another potential research area is the development, 

for other applications, of the double kernel quantile regression method, which was introduced in 

expression (20) and which incorporates kernel density estimation within standard quantile regression. 

 

 21



Acknowledgements 

We acknowledge the helpful comments of Jan De Gooijer, Ev Gardner, Patrick McSharry and 

Keming Yu on an earlier version of this paper. We are also grateful for the useful comments of the 

editor, Eric Renault, and two referees. 

 

Appendix 

Proof of Theorem 1: In this proof, we draw heavily on Section 2.2 of Koenker (2005). Our 

development here adapts Koenker’s analysis of quantile regression for the case of EWQR. The 

EWQR objective function R(β) is presented in the following expression: 
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The function R(β) is not differentiable at the points at which any of the residuals, ( )βtty x′− , are 

equal to zero. For this reason, when considering the minimisation of R(β), we consider directional 

derivatives. The directional derivative of R in direction w is given by 
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The parameter vector minimises R(β) if and only if the directional derivatives, β̂ ( )w,β̂R∇ , 

are nonnegative for all directions w. We present this condition in the following expression: 
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A requirement of Theorem 1 is that the model includes an intercept term. This implies that there 

exists a vector α such that 1=′αtx  for all t. If we let w=-α in expression (24), we get 
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This can be expressed as 
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In a similar way, we can let w=α in expression (24) to deliver the following 
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The inequalities of expressions (25) and (26) can be rewritten as the inequalities of expression (6). 
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Figure Legends 

 

Figure 1 Plot of Gaussian kernel bandwidth, h2, and exponential weight, λ, derived for 
EWDKQR with an intercept and no regressors. Pearson correlation is –0.80. Values 
derived using the estimation sample of 2893 periods. 
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Table 1 Skewness and excess kurtosis for the 10 stocks. 

 
 
 Skewness Excess Kurtosis 

      General Electric 0.04 4.17**

      Exxon Mobil 0.08* 3.29**

      Microsoft -0.09* 4.70**

      Citigroup 0.07 4.77**

      Johnson and Johnson -0.36** 6.46**

      Pfizer -0.17** 2.44**

      Bank of America -0.16** 3.11**

      Wal Mart Stores 0.01 3.58**

      Intel -0.39** 5.63**

      Procter and Gamble -3.47** 76.89**

 
Note: Significance at 5% and 1% levels is indicated by * and **, respectively. Values calculated using 
the entire sample of 3393 periods. 
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Table 2 Exponential weight λ for EWQR with an intercept and no regressors. 
 
 
θ GE Exxon MS Citigrp J&J Pfizer Bank 

of Am 
Wal 
Mart Intel P&G Mean 

1% 1.000 0.990 0.980 0.990 0.995 1.000 0.995 0.995 0.995 1.000 0.994 

5% 0.985 0.985 0.985 0.985 0.980 0.985 0.980 0.985 0.970 0.985 0.983 

95% 0.985 0.990 0.980 0.980 0.985 0.980 0.975 0.990 0.995 0.990 0.985 

99% 0.990 0.985 0.995 0.995 0.990 0.990 0.990 1.000 0.995 0.995 0.993 

 
Note: Values derived using the estimation sample of 2893 periods. 
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Table 3 Exponential weight λ for EWDKQR with an intercept and no regressors. 
 
 
θ GE Exxon MS Citigrp J&J Pfizer Bank 

of Am 
Wal 
Mart Intel P&G Mean 

1% 0.835 0.940 0.815 0.905 0.860 0.850 0.835 0.875 0.840 0.995 0.875 

5% 0.975 0.950 0.970 0.980 0.975 0.980 0.960 0.985 0.955 0.985 0.972 

95% 0.985 0.985 0.975 0.975 0.980 0.975 0.975 0.985 0.995 0.990 0.982 

99% 0.990 0.990 0.995 0.990 0.885 0.980 0.960 1.000 1.000 0.990 0.978 

 
Note: Values derived using the estimation sample of 2893 periods. 
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Table 4 Evaluation of forecasts of 5% quantiles. Hit percentage for 500 post-sample 
forecasts. 

 
 

 GE Exxon MS Citigrp J&J Pfizer Bank
of Am

Wal 
Mart Intel P&G 

Number 
significant 
at 5% level

 EWQR 4.0 5.8 4.2 3.8 4.2 5.4 4.8 4.4 4.6 5.0 0 

 EWQR Leverage 3.8 6.0 3.6 4.2  3.0* 5.2 5.0 3.8 3.8 5.0 1 

 EWDKQR 3.8 4.6 3.4  2.8*   2.0** 4.8  3.0*  3.0* 3.6 4.2 4 

 EWDKQR Leverage   1.4** 5.0   2.2**  2.6*   2.4**  3.0*   2.4**  2.6*   1.8**  3.0* 9 
            
 Historical Simulation  2.6* 6.2  3.0*   2.2**   2.0** 4.8 3.6 3.8 3.8 5.2 4 

 Kernel Historical Simulation   1.8** 4.4   1.4**   2.0**   1.6** 4.2  2.6*  3.0*  2.8* 3.2 7 
            
 Exp Sm Variance Gaussian 5.8 5.4 4.6 5.0 4.6 5.0 6.2 4.6 3.4 3.8 0 

 Exp Sm Variance EVT 6.0 5.2 5.4 5.4 4.6 5.4 6.0 5.2 3.6 5.2 0 

 GARCH Variance Student-t   2.0** 3.2   1.2**   0.4**   1.2**   2.2**   1.2**   2.0**   1.6**   0.8** 9 

 GARCH Variance EVT 5.0 5.0 2.2** 1.8** 2.6* 4.8 3.2 3.6 3.2 3.0* 4 

 GJRGARCH Variance Student-t   1.4** 3.2   1.2**   0.2**   1.2**  2.0**   1.2**   1.4**   1.6**   0.8** 9 

 GJRGARCH Variance EVT 4.4 5.0 2.2** 2.0** 2.2** 4.2 2.6* 3.2 3.0* 2.6* 6 
            
 Adaptive CAViaR 4.2 4.6 4.8 4.8 4.6 4.8 4.8 4.8 3.2 5.6 0 

 Sym Abs Value CAViaR 5.2 4.2  3.0*   1.8**   1.8** 5.6 5.2  3.0* 4.2   1.2** 5 

 Asym Slope CAViaR 3.8 4.0   2.4**   2.4**   1.8** 4.0 3.6 3.6  3.0* 4.8 4 

 Indirect GARCH CAViaR 5.0 4.0  2.8*   2.2**   1.8** 5.0 4.4  2.8* 4.6   1.0** 5 

 
Note: Significance at 5% and 1% levels is indicated by * and **, respectively.  
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Table 5 Evaluation of forecasts of 5% quantiles. DQ test p-values for 500 post-sample 
forecasts. 

 
 

 GE Exxon MS Citigrp J&J Pfizer Bank
of Am

Wal 
Mart Intel P&G 

Number 
significant 
at 5% level

 EWQR 0.435 0.686 0.274 0.068 0.612 0.323 0.316 0.204 0.426 0.424 0 

 EWQR Leverage 0.032 0.114 0.467 0.074 0.198 0.006 0.246 0.061 0.309 0.181 2 

 EWDKQR 0.295 0.481 0.323 0.076 0.057 0.586 0.198 0.454 0.511 0.755 0 

 EWDKQR Leverage 0.010 0.735 0.090 0.035 0.071 0.091 0.122 0.153 0.030 0.459 3 
            
 Historical Simulation 0.030 0.118 0.440 0.005 0.042 0.077 0.456 0.113 0.277 0.081 3 

 Kernel Historical Simulation 0.017 0.476 0.011 0.002 0.010 0.233 0.206 0.417 0.207 0.157 4 
            
 Exp Sm Variance Gaussian 0.249 0.659 0.413 0.125 0.177 0.558 0.145 0.223 0.653 0.137 0 

 Exp Sm Variance EVT 0.248 0.502 0.527 0.007 0.177 0.505 0.159 0.100 0.700 0.274 1 

 GARCH Variance Student-t 0.089 0.524 0.010 0.001 0.007 0.021 0.016 0.126 0.025 0.005 7 

 GARCH Variance EVT 0.858 0.614 0.012 0.002 0.178 0.690 0.433 0.707 0.579 0.440 2 

 GJRGARCH Variance Student-t 0.034 0.541 0.010 0.000 0.007 0.060 0.017 0.031 0.025 0.005 8 

 GJRGARCH Variance EVT 0.999 0.572 0.013 0.006 0.090 0.735 0.196 0.542 0.492 0.285 2 
            
 Adaptive CAViaR 0.075 0.422 0.034 0.062 0.050 0.205 0.019 0.010 0.514 0.238 4 

 Sym Abs Value CAViaR 0.533 0.609 0.373 0.002 0.058 0.615 0.273 0.271 0.719 0.018 2 

 Asym Slope CAViaR 0.307 0.782 0.113 0.025 0.058 0.600 0.458 0.415 0.107 0.839 1 

 Indirect GARCH CAViaR 0.858 0.769 0.098 0.015 0.057 0.595 0.540 0.416 0.770 0.010 2 

 
Note: Higher p-values are better.  
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Table 6 Evaluation of forecasts of 5% ES. Bootstrap test p-values for zero mean 
standardised discrepancies based on 500 post-sample forecasts of 5% ES. 

 
 

 GE Exxon MS Citigrp J&J Pfizer Bank
of Am

Wal 
Mart Intel P&G 

Number 
significant 
at 5% level

 EWQR 0.779 0.411 0.343 0.301 0.372 0.554 0.598 0.338 0.908 0.204 0 

 EWQR Leverage 0.012 0.423 0.843 0.908 0.910 0.647 0.754 0.975 0.799 0.359 1 

 EWDKQR 0.532 0.790 0.266 0.405 0.680 0.779 0.570 0.643 0.802 0.699 0 

 EWDKQR Leverage 0.567 0.465 0.325 0.598 0.678 0.248 0.675 0.822 0.335 0.376 0 
            
 Historical Simulation 0.813 0.416 0.526 0.131 0.538 0.461 0.840 0.944 0.834 0.170 0 

 Kernel Historical Simulation 0.687 0.554 0.140 0.084 0.686 0.323 0.958 0.719 0.784 0.920 0 
            
 Exp Sm Variance Gaussian 0.654 0.007 0.084 0.060 0.090 0.021 0.044 0.030 0.120 0.181 4 

 Exp Sm Variance EVT 0.096 0.253 0.452 0.929 0.949 0.348 0.325 0.719 0.554 0.395 0 

 GARCH Variance Student-t 0.478 0.954 0.345 0.507 0.546 0.183 0.145 0.498 0.550 0.636 0 

 GARCH Variance EVT 0.080 0.609 0.322 0.127 0.337 0.736 0.530 0.805 0.795 0.212 0 

 GJRGARCH Variance Student-t 0.987 0.765 0.368 0.000 0.366 0.154 0.178 0.870 0.727 0.636 1 

 GJRGARCH Variance EVT 0.178 0.655 0.320 0.152 0.459 0.560 0.450 0.768 0.976 0.171 0 

 
Note: Higher p-values are better.  
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Table 7 Summary of VaR and ES results. Number of test rejections at 5% significance level 
for each of the four θ quantiles. Note that CAViaR models produce only VaR 
estimates. 

 
 

 
VaR Hit % Test 

 
VaR DQ Test  ES Bootstrap Test 

 θ (×100)   θ (×100)   θ (×100)  
 1 5 95 99 Total  1 5 95 99 Total  1 5 95 99 Total

 EWQR 0 0 1 0 1  2 0 2 1 5  1 0 1 1 3 

 EWQR Leverage 0 1 2 0 3  2 2 3 2 9  0 1 2 0 3 

 EWDKQR 0 4 4 0 8  0 0 0 0 0  3 0 0 5 8 

 EWDKQR Leverage 0 9 7 3 19  1 3 1 4 9  5 0 1 1 7 
                  
 Historical Simulation 0 4 4 0 8  3 3 4 2 12  0 0 1 4 5 

 Kernel Historical Simulation 0 7 6 1 14  1 4 5 1 11  3 0 3 4 10 
                  
 Exp Sm Variance Gaussian 1 0 0 2 3  3 0 0 4 7  2 4 4 2 12 

 Exp Sm Variance EVT 0 0 1 0 1  2 1 0 2 5  0 0 1 2 3 

 GARCH Variance Student-t 1 9 10 4 24  1 7 5 4 17  3 0 2 4 9 

 GARCH Variance EVT 0 4 7 2 13  0 2 1 2 5  2 0 3 3 8 

 GJRGARCH Variance Student-t 2 9 9 4 24  2 8 6 4 20  2 1 3 3 9 

 GJRGARCH Variance EVT 1 6 8 3 18  1 2 4 4 11  1 0 3 3 7 
                  
 Adaptive CAViaR 2 0 3 2 7  3 4 2 2 11  - - - - - 

 Sym Abs Value CAViaR 1 5 7 1 14  2 2 2 1 7  - - - - - 

 Asym Slope CAViaR 0 4 8 3 15  1 1 4 5 11  - - - - - 

 Indirect GARCH CAViaR 2 5 6 2 15  3 2 3 2 10  - - - - - 

 
NOTE: Evaluation is for 500 post-sample forecasts. Smaller values are better.  
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Figure 1 Plot of Gaussian kernel bandwidth, h2, and exponential weight, λ, derived for 
EWDKQR with an intercept and no regressors. Pearson correlation is –0.80. Values 
derived using the estimation sample of 2893 periods. 
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