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To filter or not to filter? Impact on stability of delay-difference and neutral
equations with multiple delays

Wim Michiels

Abstract— For control systems where the closed-loop system
description is governed by linear delay-differential equations of
neutral type, it is known that stability may be fragile, in the sense of
sensitive to infinitesimal perturbations to parameters in the system
model or arbitrarily small errors in the implementation of the con-
troller. A natural approach to resolve this problem of ill-posedness
and to break down the underlying instability mechanisms, rooted
in characteristic roots moving from the left plane to the right one
via the point at infinity, consists of including a low-pass filter
in the control loop, provided the inclusion preserves stability.
Independently of the particular control problem, the addition of
a low-pass filter essentially boils down to a “regularization” of
delay-difference equations and delay equations of neutral type in
terms of parametrized delay equations of retarded type, where the
parameter can be interpreted as the inverse of the filter’s cut-off fre-
quency. In this paper, the stability properties of these parametrized
delay equations are analyzed in a general, multi-delay setting, with
focus on the transition to the original delay-difference or neutral
equations. It is illustrated that the spectral abscissa may not be
continuous at the transition, which may impact stability. Hence,
conditions for preservation of stability in terms of a robustified
stability indicator called filtered spectral abscissa are presented,
for which mathematical characterizations and a computationally
tractable expression are provided. The application of a PD con-
troller to a time-delay system with relative degree one is used to
motivate the structure of the equations studied throughout the
paper, and to explicate the implications of the presented results
on control design, discussed in the last section.

Index Terms— Delay-difference and neutral equations,
stability robustness, well-posedness, low-pass filtering

I. INTRODUCTION

In the context of PID control of time-delay systems (see, e.g., [1]–
[8] for some recent results) the application of a PI or PID regulator to
systems with relative degree one gives rise to a closed-loop system
description by delay-differential equations of neutral type. Neutral
equations also naturally appear in the context of vibration control
applications if the output of accelerometers is directly used for
feedback [9] or if inverse delay-based input shapers are deployed [10].

In general, a linear time-invariant system of neutral type exhibits
characteristic root chains, along which the imaginary parts tend to
infinity, yet the real parts have a finite limit, and whose asymptotes
are determined by the spectrum of an associated delay-difference
equation [11]–[14]. Along such infinite root chains, the sensitivity of
individual characteristic roots with respect to parameters may grow
unbounded. This phenomenon may make the closed-loop system
fragile and induce, for instance, a sensitivity of stability with respect
to infinitesimal parametric perturbations. Such perturbations may
be inherent to the system model (such as perturbations on the
corresponding delay parameters [15] that led to the notion of strong
stability [16]–[19]) or they may correspond to small errors in the
implementation of the controller, such as a small feedback delay
[20], a finite-difference approximation of a derivative to any precision
[21], [22] or any other approximation that gives rise to multiplicative
uncertainty in the form of approximate identities in the sense of [23].

This work was supported by the project G092721N of the Research
Foundation-Flanders (FWO - Vlaanderen).

W. Michiels is with the Department of Computer Science, KU Leuven,
3001 Leuven, Belgium (e-mail: Wim.Michiels@cs.kuleuven.be.)

An intuitive solution to damp the highly sensitive, high-frequency
characteristic roots and to block the underlying instability mecha-
nisms, grounded in characteristic roots crossing the imaginary axis
via “the point at infinity”, consists of adding a low-pass filter to the
control loop, as already successfully done in [24] to remove instability
problems inferred from the implementation of integrals in predictive
controllers, and suggested by the well-posedness conditions in [23],
[25]. The addition of the filter will give rise to the “regularization” of
neutral equations and delay-difference equations in terms of delay-
differential equations of retarded type that will be investigated in
Sections II-III. This approach is successful under one very simple but
fundamental condition, namely that the filter itself is not destabilizing.
As we shall see, the phenomena induced by including the filter are,
however, non-intuitive. The inclusion may for instance result in a
strictly positive jump of the spectral abscissa and induce instability,
even if the cut-off frequency of the filter is arbitrarily large, which
will lead to additional constraints for a robust control design.

Before we turn ourselves in the following sections to analyzing
the regularization of classes of delay-difference equations and neutral
equations, in the above sense, we make the previous statements more
concrete and motivate the structure of the considered equations by
means of an application. We consider the feedback interconnection
of a system described by{

ẋ(t) = A0x(t) +
∑m
i=1Aix(t− τi) +Bu(t),

y(t) = C0x(t) +
∑m
i=1 Cix(t− τi)

(1)

and a PD control law

u(t) = KP y(t) +KD ẏ(t), (2)

such that det(I − BKDC0) 6= 0. It leads to a closed-loop system
of neutral type,

ẋ(t) = BKDC0ẋ(t) +

m∑
i=1

BKDCiẋ(t− τi) + Â0x(t)

+

m∑
i=1

Âix(t− τi), (3)

where Âi = Ai + BKPCi for i = 0, . . . ,m, and to ease a
comparison later on, we deliberately do not collect the two terms
corresponding to ẋ(t) into one term. The delay-difference equation
associated to (3) is given by [16], [26]

x(t) = BKDC0x(t) +

m∑
i=1

BKDCix(t− τi). (4)

In this context, we note that neutral equations also arise if the relative
degree ρ of (1) satisfies ρ > 1 and an extended PID controller (in
the sense of [27]), relying the ρ-th derivative of the output is used,
and if nontrivial feedthrough terms are added to the plant model and
a PI controller is used.

Even if the zero solution of closed-loop system (1)-(2) is exponen-
tially stable, infinitesimal variations on the delays in the system model
may induce instability (see the examples in [11, Chapter 1]), and
to ensure stability robustness against small delay perturbations, i.e.,
to guarantee so-called strong stability [16], an additional condition
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is needed, expressed in terms of the coefficients matrices of (4).
Fragility problems related to the implementation of the controller
rather than to parameter variations in the model may already occur
if the plant model is delay-free, as illustrated with the following
example from [21].

Example 1: For the plant model

ẋ(t) =

[
0 1
1 0

]
x(t) +

[
−1

0

]
u(t), y(t) =

[
1 0

]
x(t),

which is a special instance of (1), the control law (2) with KD =
−2 and KP = −1 is stabilizing, leading to characteristic equation
s2 + s + 1 = 0. However, adding feedback delay r > 0 leads to a
neutral system with characteristic equation

(1− 2e−sr)s2 − s− 1 = 0,

which is exponentially unstable for any r > 0 as the associated delay-
difference equation z(t)−2z(t−r) = 0 is exponentially unstable. At
the same time, in [21, Example] it is demonstrated that the control
law

u(t) = KP y(t) +KD
y(t)− y(t− r)

r
,

approximating the derivative action by a finite difference, is also
destabilizing for any r > 0.

With G(s) and C(s) denoting the transfer function of plant (1) and
controller (2), respectively, and with <(s), =(s) and |s| standing for
real part, imaginary part and modulus of complex number s, the
instability problems are characterized by

lim
|s|→∞, <(s)≥0

G(s)C(s) 6= 0 (5)

and induced by the behavior of characteristic roots with a large
modulus. Adding a first-order low-pass filter to the second term in
the right-hand side of (2), results in control law{

u(t) = KP y(t) +KDz(t),
T ż(t) + z(t) = ẏ(t),

(6)

where 1/T is the cut-off frequency of the filter. With this modifi-
cation, which corresponds to replacing differentiator s by 1

1+Ts in
the Laplace domain, the controller becomes proper, and the modified
closed-loop system is described by delay equations of retarded type,
accordingly.

The characteristic equation of closed-loop system (1) and (6) can
be expressed in the form

det

(
s

(
I − 1

1 + sT

[
BKDC0 +

m∑
i=1

BKDCie
−sτi

])

−Â0 −
m∑
i=1

Âie
−sτi ,

)
= 0 (7)

whose structure suggests to analyze in the first step the effect of
the filtering on delay-difference equation (4), leading to differential
equation

T ẋ(t) + x(t) = BKDC0x(t) +

m∑
i=1

BKDCix(t− τi) (8)

with T small, and in the second step address the spectrum of (1) and
(6) in comparison to the one of neutral equation (3) that constitutes
the limit case T = 0. This will be precisely the approach followed
in the remainder of the paper, albeit in a more general setting. The
special case where Ci = 0, i = 1, . . . ,m, such that delay-difference
equation (4) reduces to an algebraic equation, is addressed in [21]
and will be discussed in Remark 1.

On the one hand, in (8) the addition of the filter can be interpreted
in terms of adding fast dynamics, yielding a connection with singu-
larly perturbed systems (see [28] and the references therein). On the
other hand, a re-scaling of time to normalize the cut-off frequency
of the filter results in a delay equation with delays τi/T . This is the
reason why, from a methodological point of view, a key reference
will be article [29] on the stability analysis of delay linear equations
with large delays in an asymptotic sense (see also [30] for related
results on stability of periodic orbits).

The structure of the paper is as follows. In Section II we study the
effect of low-pass filtering on delay-difference equations, inspired by
the structure of (8), leading to the definition and characterization of
a novel robustified stability notion. In Section III we address neutral
equations. Finally, in Section IV we discuss the implications of the
result on control design, along with some concluding remarks.

II. STABILITY OF FILTERED DELAY-DIFFERENCE
EQUATIONS

We consider the delay-difference equation

x(t) = H0x(t) +
m∑
i=1

Hix(t− τi), (9)

where x(t) ∈ Rn is the state-variable at time t, numbers τi, i =
1, . . . ,m, satisfying 0 < τ1 < · · · < τm, represent the time-delays,
and matrices Hi, i = 0, . . . ,m, are assumed to be real valued. We
aim to relate the stability properties of (9) with these of equation

T ẋ(t) + x(t) = H0x(t) +
∑m
i=1Hix(t− τi) (10)

for small T ≥ 0. Note that (10) can be interpreted as being obtained
from (9) by applying a low-pass filter with cut-off frequency 1

T to
the right-hand side of (9). In the other way, (9) is obtained from (10)
by setting T = 0. The specific decomposition of the contribution
from x(t) into two terms (9) stems from the motivating problem in
the introduction that led to (4) and (8).

For reasons of well-posedness and to exclude a trivial, degenerate
case, we make the following assumptions throughout the paper.

Assumption 1: det(I −H0) 6= 0.
Assumption 2: The set of characteristic roots of (9) is non-empty.

We also assume that the delays in (9) are commensurate.
Assumption 3: There exist numbers ki ∈ N, 1 ≤ i ≤ m, and

basis delay τ ∈ R>0 such that τi = kiτ, i = 1, . . . ,m.
A necessary and sufficient condition for the exponential stability

of (9) is a strictly negative spectral abscissa, defined as

c0 := sup
s∈C

{
<(s) : det

(
I −H0 −

m∑
i=1

Hie
−skiτ

)
= 0

}
.

By observing that the characteristic function is a polynomial in e−sτ ,
we can express

c0 = − 1

τ
log

(
min

1≤i≤`
|zi|
)
,

where zi, i = 1, . . . , `, are the roots of equation

det

(
I −H0 −

m∑
i=1

Hiz
ki

)
= 0, z ∈ C.

Note further that c0 = max(I0), where

I0 :=

{
c ∈ R :

0 ∈

 ⋃
θ∈[0, 2π]

σ

(
−I +H0 +

m∑
i=1

Hie
−ckiτ e−ıkiθ

) ,
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notation σ(·) stands for the spectrum of the matrix, and ı =
√
−1 is

the imaginary unit.
The exponential stability of system (10), parameterized by T , is

also determined by its corresponding spectral abscissa (function) c :
R≥0 → R, defined by

c(T ) := sup
s∈C
{<(s) : ∆(s; T ) = 0} ,

with

∆(s; T ) := det

(
(1 + sT )I −H0 −

m∑
i=1

Hie
−sτi

)
.

The characteristic shape of the spectrum of linear delay-difference
equations features infinite characteristic root chains along which the
imaginary parts tend to infinity, yet the real parts have a finite limit
[11], [12]. Intuitively, one might expect that the inclusion of a low-
pass filter as in (10), which results in a delay differential equation
model of retarded type, induces a bending of these characteristic
root chains towards the left, due to the addition of damping at high
frequencies. However, more complex behavior may appear, as the
following example illustrates.

Example 2: We consider scalar equation

x(t) =
7

5
x(t− 1)− 4

5
x(t− 2), (11)

which is exponentially stable with

c0 = c(0) = −0.11,

as well as its filtered counter part

T ẋ(t) + x(t) =
7

5
x(t− 1)− 4

5
x(t− 2). (12)

In Figures 1-2 we plot the rightmost characteristic roots of (12) for
different values of T , where the difference between the figures lies in
a different scaling of the vertical axis. For T = 0, the characteristic
roots lie on a vertical line in the complex plain. All individual
characteristic roots along the chain continuously depend on T , but
their sensitivity increases if the imaginary part increases, as seen in
Figure 1. Zooming out in vertical direction (Figure 2), one observes
that the perturbed root chain bends to the right (and back), inducing
a strictly positive spectral abscissa. By reducing the value of T > 0,
we see smaller shifts of roots in Figure 1, as expected, but zooming
out, the unstable roots shift to higher frequencies, as indicated by the
arrows in Figure 2, also if T is further reduced. In fact, it holds that

lim
T→0+

c(T ) = 0.071.

Hence, despite the continuous dependence of individual characteristic
roots on parameter T , the spectral abscissa function has a discontin-
uous at T = 0. Moreover, system (12) is unstable for any sufficiently
small T > 0, contrasting the exponential stability at T = 0.

The possible lack of continuity of the spectral abscissa function
of (10) at T = 0 motivates us to introduce a robustified notion
of spectral abscissa of (9). Conceptually, it bares similarities to
the notion of robust spectral abscissa for delay-differential algebraic
systems [31], where small delay perturbations are considered.

Definition 1: The filtered spectral abscissa of (9), cF , is defined
as

cF := lim sup
T→0+

c(T ),

with c(T ) the spectral abscissa of (10).

Note that cF depends on the formulation of relation (9), more
precisely on the decomposition of the contributions from x(t). It
does not depend on the choice of h in Assumption 3. Clearly we
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Fig. 1. Characteristic roots of (12) in the rectangular set described
by =(s) ∈ [−40, 40] and <(s) ∈ [−0.3, 0.2], for T ∈
{0, 0.0012, 0.0025}.
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Fig. 2. Characteristic roots of (12) for =(s) ∈ [−600, 600] and
<(s) ≥ −0.3, for T ∈ {0, 0.0012, 0.0025}.

have cF ≥ c0, and as Example 2 illustrates, the inequality can be
strict. The following proposition directly follows.

Proposition 1: There exist a number T̂ > 0 such that (10) is
uniformly exponentially stable for T ∈ [0, T̂ ] if and only if cF < 0.

In order to provide a mathematical characterization of the filtered
spectral abscissa, we need the following set that contains I0,

IF :=

{
c ∈ R : ⋃

θ∈[0, 2π]
σ

(
−I +H0 +

m∑
i=1

Hie
−ckiτ e−ıkiθ

)⋂ ıR 6= φ

 .

(13)

The following lemma, whose proof is strongly influenced by the proof
of Theorem 3 of [29], characterizes the set IF .

Lemma 1: If real number c satisfies c ∈ IF , then for all ε > 0,
there is a T̂ > 0, such that

∀T ∈ (0, T̂ ), ∃s ∈ C : |<(s)− c| < ε, and ∆(s; T ) = 0.

If c 6∈ IF , then there are constants ε > 0 and T̂ > 0 such that
∆(s; T ) 6= 0 whenever T ∈ [0, T̂ ) and <(s) ∈ (c− ε, c+ ε).
Proof. If c ∈ IF , then there is a θ ∈ [0, 2π] and γ ≥ 0 such that

det

(
−(1 + ıγ)I +H0 +

m∑
i=1

Hi

(
e
−
(
c+ı θτ

)
τ
)ki)

= 0. (14)
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Consider the entire function

f(s; T ) = det
(
− TsI − ı2πT

τ

⌈ γτ
2πT

⌉
I

−I +H0 +

m∑
i=1

Hi

(
e−sτ

)ki)
,

parametrized by T > 0, where the operation d·e corresponds to
the ceiling function. On compact subsets of C, function f(·; T )
uniformly converges as T → 0+ to function f0, given by

f0(s) := det

(
−(1 + ıγ)I +H0 +

m∑
i=1

Hi

(
e−sτ

)ki)
.

From (14) it follows that f0 has a zero c+ ı θτ . By an application of
Rouché’s theorem, it follows that for sufficiently small T , function
f(·; T ) has a zero cT + ı

θT
τ such that

lim
T→0+

cT = c, lim
T→0+

θT = θ. (15)

Thus we have

0 = f
(
cT + ı

θT
τ

)
= det

(
− T

(
cT + ı

(
θT
τ + 2π

τ

⌈ γτ
2πT

⌉))
I

−I +H0 +
∑m
i=1Hi

(
e−cT τ e−ıθT e−ı2πd

γτ
2πT e

)ki)
,

which implies that cT + ı
(
θT
τ + 2π

τ

⌈ γτ
2πT

⌉)
is a characteristic root

of (10) for small T . The assertion follows by combining this results
with (15).

Now consider the case where c 6= IF . As in the definition of this
set, the union is taken over a compact interval, there exists an ε > 0
such that ⋃

θ∈[0, 2π]
σ

(
−I +H0 +

m∑
i=1

Hie
−αkiτ e−ıkiθ

)⋂ ıR 6= φ,

∀α ∈ [c− ε, c+ ε]. (16)

Suppose there exist α ∈ [c− ε, c+ ε] and β ∈ R such that ∆(α+
ıβ; T ) = 0. The latter implies that

(α+ ıβ)T ∈ σ

(
−I +H0 +

m∑
i=1

Hie
−αkiτ e−ıβkiτ

)
and for small T , we arrive at a contradiction with (16). The proof is
completed. �

We can now state the main theoretical result of the paper.
Theorem 1: If matrix −I +H0 has all its eigenvalues in the open

left half plane, then it holds that

cF = max(IF ), (17)

with IF defined by (13). If matrix −I + H0 has an eigenvalue in
the open right half plane, then cF = +∞.
Proof. First, we assume that σ(−I + H0) ⊂ C−. If s is a
characteristic root of (10), then

Ts ∈ σ

(
−I +H0 +

m∑
i=1

Hie
−skiτ

)
.

For large <(s), the spectrum of −I + H0 +
∑m
i=1Hie

−skiτ lies
in the left half plane, while Ts lies in the right half plane. Hence,
there exist a number ĉ, which does not depend on T , such that all
characteristic roots of (10) have real part smaller than ĉ. The assertion
then follows from Lemma 1.

-4 -3 -2 -1 0 1

(s)

-3

-2

-1

0

1

2

3

(s
)

c=0.071

c=-0.11

Fig. 3. Curve (18 in the complex plane.

Next we consider the case where −I + H0 has an eigenvalue s0
with <(s0) > 0. With the substitution s̃ = sT , Equation ∆(s; T ) =
0 can be written as g(s̃; T ) = 0, where

g(s̃; T ) := det

(
−s̃I − I +H0 +

m∑
i=1

Hie
− s̃kiτT

)
.

On any compact subset of C+, function g(·; T ) uniformly converges
to function g0 as T → 0+, where g0(s) := det(−s̃I − I + H0).
Because g0 has right-half plane zero s0, it follows that for sufficiently
small T , g(·; T ) has a zero sT such that limT→0+ sT = s0. Since
we have ∆

( sT
T ; T

)
= 0, we arrive at cF = +∞. �

Example 3: We reconsider Example 2, for which −I + H0 =
−1 < 0 and I0 = {−0.11}, IF = (−∞, 0.071]. In Figure 3 we
plot the following curve that plays a role in the definition of I0 and
IF ,

θ ∈ [0, 2π] 7→ −1 +
7

5
e−ce−ıθ − 4

5
e−2ce−ı2θ (18)

for c = c0 = max(I0), respectively c = cF = max(IF ). In
the former case, the curve passes through zero, in accordance with
c0 = max (I0). In the latter cases it touches the imaginary axis, in
accordance with Theorem 1.

Example 4: We rewrite delay-difference equation (11) in the form

x(t) = 2x(t)− 7

5
x(t− 1) +

4

5
x(t− 2),

and apply a filtering of the right-hand size, resulting in

T ẋ(t) + x(t) = 2x(t)− 7

5
x(t− 1) +

4

5
x(t− 2). (19)

We are now in the situation where −I+H0 = 1 > 0, and Theorem 1
we have cF = +∞, whereas the set IF is the same as for the
previous example.

We conclude the section by another characterization of the filtered
spectral abscissa, amenable from a computational point of view.

Theorem 2: If matrix −I +H0 has all its eigenvalues in the open
left half plane, then it holds that

cF =
1

τ
log

(
max
ω≥0

rσ (M(ıω))

)
, (20)
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where rσ(·) denotes the spectral radius and

M(s) =


0 I

. . .
I

(1 + s)I −H0 · · · −H1 · · · −Hm−1 · · ·


−1

×


I

. . .
I

Hm

 ∈ Rkmn×kmn,

such that −Hi appears in the (ki + 1)-th block column, i =
1, . . . ,m− 1.
Proof. Matrix M(ıω) exists for ω ≥ 0, since M(s) exists if and
only if det((1 + s)I −H0) 6= 0. Substituting e−cτ e−ıθ in (13) by
z, equality (17) can be recast as

e−cF τ = min
z∈C

{
|z| : det

(
− (1 + ıω)I +H0

+

m∑
i=1

Hiz
ki

)
= 0 for some ω ≥ 0

}
.

In this expression, the zero determinant condition can be rewritten as

det
(
I −M(ıω)zIkmn

)
= 0,

resulting in e−cF τ = minω≥0 (rσ (M(ıω)))−1 . The assertion
directly follows. �.

Example 5: For equation (11) the function ω 7→ rσ(M(ıω)) is
unimodal. A unique maximum 1.074 is reached at ω = 0.58, leading
to cF = 0.071.

To conclude the section, let’s briefly discuss (9) as limit of (10), in-
terpreted as a singularly perturbed system with ε = T as perturbation
parameter. In view of Tikhonov’s theorem for delay-free singularly
perturbed systems, the discontinuity of the spectral abscissa at T = 0,
which motivated the introduction of the filtered spectral abscissa,
may be considered highly non-intuitive. The rich and surprising
dynamics are in line with the following observations. In the time-
domain, reducing parameter T not just introduces faster dynamics but
at the same time it increases the effective delays compared to their
characteristic time-scale, since the delays in (10) do not scale with
perturbation parameter T . Furthermore, the descriptions of fast and
slow/limit dynamics are interwoven in one equation. In the frequency
domain, analyzing the sensitivity of stability around T = 0 boils
down to analyzing characteristic roots in the neighborhood of infinity,
which is an essential singularity of the exponential function.

III. STABILITY OF NEUTRAL EQUATIONS

In this section, we make the leap from (filtered) delay-difference
equations to neutral equations. The starting point is the neutral
equation

ẋ(t) = H0ẋ(t) +

m∑
i=1

Hiẋ(t− kiτ)

+A0x(t) +

m∑
i=1

Aix(t− kiτ), (21)

where the additional matrices Ai, i = 0, . . . ,m, are real valued
and the associated delay-difference equation is given by (9). The

application of a filter to the derivatives in the right-hand side leads
to{

ẋ(t) = z(t) +A0x(t) +
∑m
i=1Aix(t− kiτ),

T z(t) + z(t) = H0ẋ(t) +
∑m
i=1Hiẋ(t− kiτ).

(22)
Note that for s 6= 0, the characteristic equation of (22) can be written
in the form

det

[(
I − 1

Ts+ 1

(
H0 +

m∑
i=1

Hie
−skiτ

))

−1

s

(
A0 +

m∑
i=1

Aie
−skiτ

)]
= 0, (23)

whose structure is consistent with characteristic equation (7) of
motivating example (1) and (6). The following result concerns the
preservation of stability for small T .

Theorem 3: If system (21) is exponentially stable and the asso-
ciated delay-difference equation (9) satisfies cF < 0, then there is
a T̂ > 0 such that (22) is uniformly exponentially stable for all
T ∈ [0, T̂ ].
Proof. Since cF < 0, there exist numbers ε > 0 and T̂ > 0 such that
∆(s; T ) 6= 0 for all T ∈ [0, T̂ ] and s ∈ C satisfying <(s) ≥ −ε.
Hence, for T ≤ T̂ and <(s) ≥ −ε, the characteristic equation can
be expressed as

s ∈ σ

(I − 1

Ts+ 1

(
H0 +

m∑
i=1

Hie
−skiτ

))−1
×

(
A0 +

m∑
i=1

Aie
−skiτ

))
,

which implies

|s| ≤ sup
<(s)≥−ε,T∈[0, T̂ ]

(
‖A0‖2 +

m∑
i=1

‖Ai‖2e−εkiτ
)
×∥∥∥∥∥

(
I −

1

Ts+ 1

(
H0 +

m∑
i=1

Hie
−skiτ

))−1∥∥∥∥∥
2

< +∞. (24)

Let us describe arguments why the second factor in the right-hand
side of the first inequality can be uniformly bounded. We have

det
(
I − 1

Ts+1

(
H0 +

∑m
i=1Hie

−skiτ
))

=

det
(

Ts
1+TsI −

1
1+Ts

(
−I +H0 +

∑m
i=1Hie

−skiτ
))

.
(25)

For the considered range of T and s, we have σ(−I + H0 +∑m
i=1Hie

−skiτ ) ∈ D, where D := {s ∈ C : −a1 < <(s) <
−a2 and |=(s)| < b} for some a1, a2 > 0 and b > 0, inferred from
Lemma 1. For any ν ∈ D, the expression∣∣∣∣det

(
Ts

1 + Ts
I − 1

1 + Ts
ν

)∣∣∣∣
is bounded away from zero for <(s) ≥ −ε and T ∈ [0, T̂ ] provided
−εT̂ > −a2 (otherwise one simply has to repeat the arguments listed
above with a smaller choice of T̂ ). It follows that also the modulus
of the determinant (25) is uniformly bounded away from zero, which
implies the bound on the inverse.

Finally, based on (24), in searching for characteristic roots in the
right-half plane <(s) ≥ −ε, we can restrict ourselves to a compact
set that does not depend on T ∈ [0, T̂ ]. On this compact set, the
characteristic equation of (22) uniformly converges to the one of (21).
The assertion then follows once again from Rouché’s theorem. �

Consider the situation where system (21) is exponentially stable
but cF ≥ 0. Following from the proof of Lemma 1 and taking into
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Fig. 4. Characteristic roots of (27) in the rectangular set described by
=(s) ∈ [−40, 40] and <(s) ∈ [−0.3, 0.2], for T ∈ {0, 0.0012}.

account that cF > c0 (since c0 < 0 is implied by the exponential
stability of (21)), there exists a sequence of real positive numbers
{Tn}n≥0 converging to zero, such that for T = Tn, delay-difference
equation (10) has a characteristic root sn such that

lim
n→∞

<(sn) = cF , lim
n≥∞

=(sn) = +∞,

At the same time, the second term within the determinant in (23) is
bounded in any right half plane, where it tends to zero if |s| → ∞.
These observations suggest an asymptotic matching of the high-
frequency characteristic roots of (22) and (10), and preservation
of exponential instability for small T > 0 if cF > 0. This
is confirmed by our numerical experiments and illustrated by the
following example.

Example 6: Assume that (21) has the form

ẋ(t) =
7

5
ẋ(t− 1)− 4

5
ẋ(t− 2)− 2x(t) +

1

2
x(t− 1), (26)

whose associated delay-difference equation was analyzed in Exam-
ple 2, yielding cF = 0.071. In Figures 4-5 we depict the rightmost
characteristic roots of the filtered equation{

ẋ(t) = z(t)− 2x(t) + 1
2x(t− 1),

T ż(t) + z(t) = 7
5 ẋ(t− 1)− 4

5 ẋ(t− 2).
(27)

A comparison between Figure 5 and Figure 2 makes the matching of
high frequency characteristic roots apparent, which causes instability
of (27) for any sufficiently small T > 0, even though (26) is
exponentially stable.

Remark 1: Assumption 2 excludes the special situation where
Hi = 0, i = 1, . . . ,m. In this situation we can rely on [21,
Proposition 4.5] and conclude about uniform exponential stability of
(22) over an interval T ∈ [0, T̂ ] with T̂ > 0, if (21) is exponentially
stable and σ(−I +H0) ∈ C−.

IV. IMPLICATIONS ON CONTROL DESIGN AND
CONCLUDING REMARKS

We studied the stability properties of equations (10) and (22) for
small values of T , in relation to delay-difference equation (9) and
neutral equation (21). As was illustrated, the spectral abscissa may
not be continuous at T = 0. This led to the notion of filtered spectral
abscissa of a delay-difference equation, which played a major role in
the derived conditions for preservation of stability.

The addressed problems were inspired by the use of a low-pass
filter in order to resolve well documented fragility problems for

-0.3 -0.2 -0.1 0 0.1 0.2
(s)

-600

-400

-200

0

200

400

600

(s
)

T=0 T=0.0012

Fig. 5. Characteristic roots of (27) for =(s) ∈ [−600, 600] and
<(s) ≥ −0.3, for T ∈ {0, 0.0012}.

controlled time-delay and other infinite-dimensional systems, which
are all related to a feedthrough at high frequencies, in the sense of
(5), and characteristic roots moving from one half plane to the other
one via the point at infinity. Coming back to (1)-(2), a robustified
design procedure for determining stabilizing gain values, inferred
from Theorem 3, consists, for instance, of solving the constrained
optimization problem

min(KP ,KD) cN (KP ,KD),

subject to cF (KD) < 0,

where cN is the spectral abscissa of closed-loop system (1)-(2) and
cF is the filtered spectral abscissa of delay-difference equation (4).
To solve this optimization problem, the characterization (20) of cF
can be employed, and the constraint can be handled by a penalty
method as in [21]. A feasible starting point, if it exists, can be
found by solving minKD cF (KD) first. Note that a feasible point
characterized by a negative value of the objective function ensures a
low-pass filter with sufficiently high cut-off frequency can be added
to the control loop without affecting stability (recall that the filtered
spectral abscissa is a characteristic of well-posedness and robustness
of the system without filter, i.e. T = 0). Hence, the control law can
be implemented in the form (6) with small T , which implies that the
closed-loop system corresponds to an exponentially stable time-delay
system of retarded type, satisfying

lim
|s|→∞, <(s)≥0

G(s)CF (s) = 0,

where CF is the transfer function of the controller (6). Then, the
fragility and instability problems outlined in the introduction and
illustrated with Example 1, can not occur anymore. Note that the
parameters of control law (6), (KP ,KD,KI , T ), can then be further
optimized using the approach of [32], see Section III of this reference.

Finally, we comment on Assumption 3, which was employed in
the technical proof of Lemma 1 in order to render Rouché’s theorem
applicable. If this assumption is dropped and we define

ÎF =:

{
c ∈ R : ⋃

~θ∈[0, 2π]m
σ

(
−I +H0 +

m∑
i=1

Hie
−cτie−ıθi

)⋂ ıR 6= φ


with ~θ = (θ1, . . . , θm), then it can be easily shown that the statement
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of Theorem 1 holds provided (17) is replaced by

cF ≤ max(ÎF ). (28)

Hence, if σ(−I + H0) ⊂ C−, then max(ÎF ) < 0 is a sufficient
condition for stability of (10) for small T . We conjecture that for
rationally independent delays the condition is actually necessary
and sufficient and the inequality in (28) can be replaced by an
equality. To support this claim, let {~τn}n≥1 be a sequence of
commensurate delays converging to rationally independent delays ~r.
Then, relying on Kronecker’s theorem [33, Theorem 444], we have
limn→∞max(IF (~τn)) = max(ÎF (~r)). This result also ensures
that by a sufficiently good approximation of rationally independent
delays by commensurate delays, the stability conditions from Theo-
rems 1 and 3 are still reliable.
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