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Abstract 
Demographic risk, i.e., the risk that life tables change in a nondeterministic 
way, is a serious threat to the financial stability of an insurance company 
having underwritten life insurance and annuity business. The inverse 
influence of changes in mortality laws on the market value of life 
insurance and annuity liabilities creates natural hedging opportunities. 
Within a realistically calibrated shareholder value maximization 
framework, we analyze the implications of demographic risk on the 
optimal risk management mix (equity capital, asset allocation, and 
product policy) for a limited liability insurance company operating in a 
market with insolvency-averse insurance buyers. Our results show that 
the utilization of natural hedging is optimal only if equity is scarce. 
Otherwise, hedging can even destroy shareholder value. A sensitivity 
analysis shows that a misspecification of demographic risk has severe 
consequences for both the insurer and the insured. This result highlights 
the importance of further research in the field of demographic risk. 

 

 

Introduction 
The financial performance of insurance companies writing life insurance and 
annuity policies is heavily dependent on possible deviations from the mortality 
assumptions made at the time the contracts were underwritten. Random 
deviations from mortality assumptions are therefore an important aspect of life 
insurance company risk management. Life tables used for pricing life 
insurance and annuity products typically incorporate an assumed future 
development (trend) of life expectancy improvement. Deviations from this 
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development, on the one hand, can arise if the insurer’s liability portfolio is 
too small to get the law of large numbers working fully. On the other hand—
and this is the focus of our contribution—there is demographic risk, which we 
define as the risk that mortality laws and life tables themselves change in a 
nondeterministic way (see Olivieri, 2001). For example, imagine that a path-
breaking technological or medical innovation leads to a sudden decrease in 
mortality at all ages. This would result in a severe deterioration of an annuity 
provider’s solvency situation and a drop in its shareholder value, whereas a 
life insurance provider would benefit. Alternatively, an increase in the 
prevalence of obesity, which increases mortality at all ages (Swiss Re, 2004), 
would be beneficial for an annuity provider, but would result in a severe 
decline of shareholder value for a life insurance provider.1 In either case, the 
inverse performance of annuity and term life insurance liabilities creates 
natural hedging opportunities (see Blake and Burrows, 2001).  
 
That such issues of demographic risk are highly relevant is shown by the 
ongoing controversial scientific discussion on the future development of 
human life expectancy and the maximum possible lifespan.2 Random 
deviations from presently assumed life tables are considered significantly 
probable.3 However, despite its obvious importance, the risk management 
implications of demographic risk for a life insurer have received little attention 

                                                 
1  As another example take the increased occurrence of very hot summers—comparable to 

the 2003 summer in Europe—as a consequence of a global climate change. They might 
diminish life expectancy considerably (see Valleron and Boumendil, 2004; Conti et al., 
2005). Or, consider the uncertainty about the future degree of medical services rationing 
(see Schmidt, 2004), which will have an important impact on mortality, especially in 
countries with underfinanced governmental health sectors. 

2  Olshansky et al. (2002), e.g., claim that there is a biological limit to the maximum 
lifespan, which a few persons already reach. Robine and Vaupel (2002), however, argue 
that we will experience continuing lengthening of the maximum lifespan. Oeppen and 
Vaupel (2002) document that past prognoses of future life expectancy improvements 
almost always turned out too low. 

3  An example of the consequences of demographic risk is the recent introduction of new 
annuity tables, which forced German life insurers to make heavy adjustments to their 
reserves for the annuity contracts they had already sold (see Deutsche Aktuarvereinigung 
e.V., 2004). Similar experience for the United Kingdom is summarized in Willets et al. 
(2005). 
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in the scientific literature.4 In our contribution, we analyze these policy 
implications in a shareholder value maximization framework. We derive the 
optimal risk management mix, i.e., the amount of equity to be inserted by 
shareholders, asset allocation (risky/risk-free), and product policy (term life 
insurance/life annuities) for a publicly held life insurance company with 
limited liability and access to a perfect capital market. Potential insurance 
buyers are assumed to be risk averse and not able to trade or diversify their 
risks perfectly. This implies that they are willing to pay insurance premiums 
beyond the expected value of insurance benefits. Thus, our model allows for 
premium loadings, which we assume to be given exogenously.5 Empirical 
evidence on the dependence of insurance demand on an insurer’s solvency 
situation (Cummins and Sommer, 1996; Sommer, 1996; Cummins and 
Danzon, 1997; Phillips et al., 1998) and the experimental evidence on 
insolvency aversion (Wakker et al., 1997) are incorporated into our model via 
a demand-reaction function for insurance contracts that decreases for a given 
insurance premium as the insurer’s solvency situation worsens.6 As a measure 
of the solvency situation we use the ruin probability, a measure also used by 
insurance regulators (European Commission, 2004) and rating agencies 
(Brand and Bahr, 2001). 
 

                                                 
4  See Blake and Burrows (2001), Dowd (2003), and Blake (2003), who discuss aspects of 

managing demographic risk by hedging life insurance with annuity contracts and the 
issuance of mortality bonds on a qualitative basis. Willets et al. (2005) also qualitatively 
discuss capital adequacy and reinsurance implications stemming from demographic risk. 
Olivieri (2001) computes moments of liability distributions of term life insurance and 
annuity portfolios under demographic risk and derives implications for solvency issues. 

5  As usual when loaded premiums are used, we assume an imperfectly competitive 
insurance market, which is necessary for the insurer’s creation of shareholder value. 
Similarly, if the insurance buyers’ willingness to pay was derived from the same 
shareholder value maximization calculus used by the insurer, i.e., from an arbitrage-free 
pricing model, the buyers would not accept loaded premiums (i.e., here, premiums above 
the arbitrage-free value), with the result that the insurer could not create shareholder 
value from the insurance business (Gründl and Schmeiser, 2002). 

6  In some countries, devices such as guarantee funds protect policyholders from bearing 
huge financial losses in the event of an insurer’s insolvency. These devices can alleviate a 
buyer’s fear of the insurer going insolvent. Nevertheless, there is empirical evidence that 
buyers are still wary of an insurer’s default because, in such a case, the guarantee 
protection may cover only a part of the loss or payments may be substantially delayed 
(Phillips et al., 1998). 
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In accordance with Olivieri (2001), we model demographic risk by assuming a 
probability model for future changes to the life table, giving rise to natural 
hedging opportunities. We calibrate the model using German empirical data 
on stock market returns, the risk-free rate of return, the expected mortality of 
insurance buyers, and experimental results on insolvency aversion. 
 
Our model framework is, in principle, comparable to the models used by 
Cummins and Sommer (1996) and Cummins and Danzon (1997), who from 
rather general micro-economic models derive hypotheses for empirical tests. 
Because of their abstractness, these models give no specific instructions for an 
optimal firm policy. Doherty and Tinic (1981) show that––in a shareholder 
value calculus––optimal reinsurance decisions of insurance companies may be 
driven by the willingness to pay of risk-averse insurance buyers. Our model is 
also in line with the model proposed by Froot and Stein (1998), who derive an 
optimal firm policy and risk management strategy for a bank subject to a 
convex cost-of-capital function for capital necessary to finance occurred 
losses. In contrast to Froot and Stein (1998), however, we focus on an explicit 
insurance context in which shareholder value is driven by collecting “customer 
liabilities” (Merton and Perold, 1993) with positive net present value, 
incorporating limited liability of shareholders. 
 
The article is organized as follows. After setting up and calibrating the model, 
we analyze a situation without demographic risk. We show that equity capital 
is the preferred risk management measure. Then, demographic risk is 
introduced. Our results show that the insurer does not utilize any natural 
hedging opportunities in the product portfolio. Instead, adjustment of the 
equity position remains the preferred risk management measure. 
 
Next, we study a situation where the insurer has a less than optimal and fixed 
amount of equity7 and analyze the complex interplay of product policy and 
asset allocation as a function of the amount of equity available. We find that 
now there is a certain range of equity inserted, within which the insurer uses 
natural hedging opportunities. We show that within this range, hedging 
                                                 
7  This can be interpreted as a case with infinite transaction costs for adjusting equity 

capital. Thus our analysis includes the two polar cases of infinite and zero transaction 
costs of equity provision. 
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becomes more pronounced the less equity the insurer has. As general effects, 
we find that the insurer hedges more the higher premium loadings are and the 
more sensitively insurance buyers react to the insurer’s solvency situation. 
After this, we examine the impact of a misspecification of the demographic 
probability model on shareholder value. We find that an error in this 
specification can create significant economic risk for both the insurer and the 
insured.  
 
The last section concludes and suggests directions for future research. In 
particular, the sensitivity of our results with respect to alternative assumptions 
on premium loadings, insurance demand structure, and the demographic 
probability model—especially for suboptimal equity—points to the necessity 
for further empirical and experimental research into concretizing input 
parameters for insurance demand and demographic risk.   
 
The Model 
Formalization 
We examine an insurance company founded at t = 0, offering term life 
insurance (TL) and annuity (A) contracts. At the time of founding, the insurer 
irreversibly decides on product policy, the amount of equity capital inserted, 
and asset allocation, and collects insurance premiums. Immediately after this, 
say at t = 0+, information about the true life table becomes known. At the end 
of the year, at t = 1, the insurer receives asset returns and must settle liabilities 
at their current market value if the value of the assets is greater than or equal 
to liabilities. Otherwise, only a part of the liabilities, i.e., the current market 
value of assets, is paid out. Therefore, although the contract periods of the life 
and annuity business may go on for decades, the planning horizon focused on 
here is one year. 
 
Let lTL ≥ 0 and lA ≥ 0 be the number of term life insurance and annuity 
contracts written by the insurer. Let πTL ≥ 1 and πA ≥ 1 be the insurance 
premiums received per contract of each type, which we interpret as a 1 € 
premium per contract multiplied by loading factors greater or equal to 1. Thus, 
πTL and πA can be used to denote the loading factors themselves. 
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Total premium income lTL · πTL + lA · πA and the insurer’s equity E0 provide the 
company’s total capital, of which the amount αf is invested at the risk-free rate 
of return rf and the rest, αR, is invested at the risky rate of return R. Thus, at  
t = 1, the insurer will receive αf · exp(rf ) + αR · exp(R) from its capital market 
investments. We restrict αf and αR to be nonnegative. 
 
Let S ∈  be the number of different life table scenarios,8 Ŝ a random variable 
that realizes at t = 0+, indicating the actual scenario, and ps ≥ 0 for every  
s = 1, …, S the probability that Ŝ realizes as s. We assume the random variable 
Ŝ to be stochastically independent from the risky rate of return R (see Cairns et 
al., 2004). 
 
Let zTL and zA be two vectors of dimension S. We define s = 1, …, S, zTL,s and 
zA,s to be the sth component of zTL and zA, respectively, representing the present 
value at t = 1 (i.e., the default-free market value) of the future liabilities per 1 
€ premium received for each contract of the corresponding type in scenario s. 
Then lTL · zTL,Ŝ + lA · zA,Ŝ is the insurer’s random liability at t = 1 resulting from 
its underwriting decisions lTL and lA realizing as lTL · zTL,s + lA · zA,s with 
probability ps = Pr [Ŝ = s].9 
 
Accounting for its limited liability, the insurer’s stochastic equity at t = 1 is 
given by: 
 

Ê1 = max{αf · exp(rf ) + αR · exp(R) – (lTL · zTL,Ŝ + lA · zA,Ŝ ), 0}. (1)
 
Assuming a perfect capital market, let E*(·) denote the expected value operator 
with respect to the thereby-induced risk-neutralized martingale measure on the 
one hand, and to our supposed life scenario probability measure on the other 

                                                 
8  By choosing a finite point distribution for life table scenarios we follow Olivieri (2001). 

Cairns et al. (2004) give an overview of other models for stochastic mortality, several of 
which are similar to interest-rate models. Such models of stochastic mortality, however, 
all have a weak empirical foundation because stochastic mortality is a young field of 
research. Therefore, at present, model choice seems, at least to some extent, arbitrary. 

9  As done by Jensen et al. (2001, p. 80), we thus assume that the insurer writes a portfolio 
of insurance policies large enough that—beyond the question of which scenario will 
actually occur—there is no other mortality risk. 
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hand.10 Then, the insurer maximizes the excess shareholder value (in the 
following, “excess” will be left out) at t = 0, given as: 
 

( ){ }
0

* *
0 1 0, ,

, ,

ˆmax exp E ( )
Rf

TL A

f

l l E

SHV r E E
α α

= − ⋅ − . (2)

 
SHV0

* measures the maximum additional shareholder value beyond E0 (i.e., 
the net present value) created by entrepreneurial activities. Let us denote the 
resulting shareholder value maximizing asset and liability structure and the 
optimal equity at t = 0 by αf

*, αR
*, lTL

*, lA
*, and E0

*, respectively. Aside from 
the nonnegativity restrictions 
 

αf ≥ 0, αR ≥ 0, lTL ≥ 0, lA ≥ 0 and E0
 ≥ 0, (3)

 
maximization will be subject to two types of constraints: a balance constraint 
and, for each contract type, the demand-reaction function, determining the 
maximum size of the market for insurance contracts. The balance constraint 
 

αf + αR = E0 + lTL · πTL + lA · πA (4)
 
guarantees that at t = 0, total investment will be equal to the company’s 
capital. As demand-reaction functions, we consider 
 

lTL ≤ nTL · [1 – qTL · D(αf, αR, lTL, lA, E0)] (5)
 
and 
 

lA ≤ nA · [1 – qA · D(αf, αR, lTL, lA, E0)], (6)
 
where nTL ≥ 0 and nA ≥ 0 for each contract type represent the maximum size of  
 

                                                 
10  Because of the independence of Ŝ and R, their probability measures are separable from 

each other. For the solution of our empirical data-based model, the transformation of the 
empirical probability measure to the equivalent martingale measure is done via CAPM 
risk adjustment (see Ingersoll, 1987, chapter 4). For demographic risk, the empirical 
probability measure is used (see Carriere, 1999). 
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the corresponding insurance market if the insurer’s ruin probability, 
 

D(αf, αR, lTL, lA, E0) 
= Pr[αf · exp(rf ) + αR · exp(R) – (lTL · zTL,Ŝ + lA · zA,Ŝ ) < 0], 

(7)

 
is zero. For D(αf, αR, lTL, lA, E0) > 0, the reaction parameters qTL ≥ 0 and qA ≥ 0 
determine the percentage drop in maximum demand for the respective contract 
per percentage point of the insurer’s ruin probability. Thus, we assume a linear 
relationship between ruin probability and percentage drop in insurance 
demand. Furthermore, as in Cummins and Sommer (1996), the ruin 
probability is perfectly observable by both the insurer and potential insurance 
buyers (e.g., by using rating information). Note that now not only the choice 
of the underwriting decision variables lTL and lA influences the distribution of 
the insurer’s equity at t = 1, but, via the insurer’s ruin probability  
D(αf, αR, lTL, lA, E0), the distribution of Ê1 also determines the upper bound of 
lTL and lA. This strong interdependence makes the optimization problem highly 
endogenous. 
 
In this setting, the insurer has two conflicting ways of creating shareholder 
value: increasing the value of the insolvency put option or skimming premium 
loadings (see Figure 1).  
 
Figure 1 
Sources of Shareholder Value Creation for the Insurer 
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The value of the insolvency put option can be increased through a riskier firm 
policy, e.g., by inserting low amounts of equity or implementing a risky asset 
allocation and product policy (see Arrow A in Figure 1). However, as potential 
insurance buyers are insolvency averse, a risky solvency policy reduces 
revenues and collected loadings (Arrow B). A trade-off situation emerges. 
Note that because of the existence of a perfect capital market investing capital 
within the insurance company per se is not a source of shareholder value 
creation. 
 
Calibration 
Neither of the insurance products considered in our model, i.e., the term life 
insurance (TL) or the annuity (A) product, contain any options or guarantees 
(e.g., for A, payments to heirs in case of the annuitant’s death), nor do they 
have a deferment time. Insurance premiums are paid at t = 0; insurance 
benefits are paid at the end of each year. Payments are fixed in nominal terms 
and all insured persons are male. Table 1 gives further contractual 
characteristics. 
 
Table 1 
Insurance Contracts 
 

product 
name type premium payment 

contract 
duration in 

years11 

age of 
policyholder 

TL term life insurance single premium ≤ 35 30 
A life annuity single premium ≤ 56 65 

 
Insurance policies are priced by usual actuarial methods, i.e., the price without 
an explicit loading equals the (at the risk-free rate) discounted expected 
liability at t = 0, accounting for the supposed probability model for 
demographic risk that we will describe below.12 We consider loading factors 
of 1 (i.e., no loading), 1.005, 1.01, and 1.05 (i.e., loadings of 0.5%, 1%, and 

                                                 
11  The life table used (DAV 2004 R) allows for a maximum age of the insured of 121. 
12  Because of the assumed independence of mortality risk and financial risk, this price is the 

lowest price a shareholder value maximizing insurer with no default risk would accept 
(see Carriere, 1999). For an insurer with default risk, we have an implicit loading that is 
equal to the insolvency put option value per contract (see Doherty and Garven, 1986). 
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5% of the discounted expected liability). We set πTL = πA and henceforth 
denote the loading factor by π. 
 
The stock market returns are assumed to have a lognormal distribution (see, 
e.g., Hull, 2003). The distribution parameters are estimated from a time series 
of the German stock market index DAX, based on annual data from 1950 to 
2003.13 The estimation gives a mean of 0.1102 and a standard deviation of 
0.2678 for the normally distributed log-return R. For the risk-free rate of return 
exp(rf), we use the sample mean of the annualized return time series of the 
German money market from 1950 to 2003, which gives a value of 1.05 (i.e., rf 
= 0.0488).14 
 
As in Olivieri (2001), we set the number of possible scenarios S at three. 
Scenario 1 (s = 1) is the base scenario, where the life tables used today by 
actuaries in Germany at t = 0+ turn out to be correct. Therefore, for the term 
life insurance contract, the table DAV 1994 T (see Bundesaufsichtsamt für das 
Versicherungswesen, 1994) is used, and for the life annuity, the table DAV 
2004 R (see Deutsche Aktuarvereinigung e.V., 2004) is used. In both 
Scenarios 2 and 3, the one-year death probabilities15 change at all ages. Thus 
natural hedging opportunities arise. In Scenario 2 (3), the one-year death 
probabilities are multiplied by a constant that is chosen to increase (decrease) 
the implied life expectancy of a newborn by three years16 compared to the 
original DAV tables.  
 
Because of insufficient empirical evidence on the probability model 
underlying demographic risk, we investigate five alternative distributions 
{ }1 2 3, ,j j jp p p , j = 1, …, 5, for the random variable Ŝ, which indicates the 
scenario actually occurred (see Table 2). In all distributions, the main weight 

                                                 
13  We are greatly indebted to Professor R. Stehle, Ph.D., Chair of Banking and Stock 

Exchanges, Humboldt-Universität zu Berlin (Germany), for providing us with the time 
series of the DAX. 

14  See the IMF International Financial Statistics Online database, http://ifs.apdi.net/imf. 
15  That is, the probability that a person will die at the end of the current year, conditional on 

having survived to the present date. 
16  This number is somewhat arbitrary because research in this area is still insufficient (see 

Cairns et al., 2004). 
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( 1
jp ) is assigned to Scenario 1 where the DAV life tables are correct. The 

remaining probability mass, varying from 0% to 40%, is then equally shared 
between the two deviating Scenarios 2 and 3. 
 
Table 2 
Probability Distributions of Ŝ 
 

 occurrence probability of  
 scenario where life expectancy 

probability model stays constant increases decreases 
j 1

jp  2
jp  3

jp  
1 1.000 0.000 0.000 
2 0.950 0.025 0.025 
3 0.900 0.050 0.050 
4 0.800 0.100 0.100 
5 0.600 0.200 0.200 

 
For these probability models, Table 3 shows the resulting liabilities at t = 1 for 
TL and A per 1 € (unloaded) premium income if Scenario s occurs. 
 
Table 3 
Liabilities at t = 1 for TL and A per 1 € (Unloaded) Premium Income for 
Alternative Probability Models { }1 2 3, ,j j jp p p  

 
probability liability per 1 € unloaded premium at t = 1 

for term life insurance TL annuity A 
probability 

model 
scenario 1 scenario s scenario s 

j 1
jp  1 2 3 1 2 3 

1 1.00 1.05000 n/a n/a 1.05000 n/a n/a 
2 0.95 1.04894 0.83644 1.30381 1.05001 1.09407 1.00556
3 0.90 1.04788 0.83560 1.30250 1.05002 1.09408 1.00557
4 0.80 1.04578 0.83392 1.29988 1.05004 1.09410 1.00559
5 0.60 1.04159 0.83057 1.29467 1.05008 1.09414 1.00562

 
To construct the liability vectors zTL and zA, we collect for a given probability 
model j the scenario-dependent liabilities from Table 3.17 Note that for every 
probability model and product, the expected liability at t = 1 is 1.05, i.e., the 
risk-free compounded net premium. 
                                                 
17  For example, under probability model j = 2, we then have zTL = (1.04894, 0.83644, 

1.30381)T and zA = (1.05001, 1.09407, 1.00556)T. 
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As can be seen from Table 3, the liabilities of TL and A are—as expected—
negatively correlated. Table 4 gives standard deviations, correlations of both 
products, and the hedge ratio (i.e., the ratio of the number of term life 
insurance contracts to the total number of contracts underwritten), which 
minimizes the variance of the product portfolio. 
 
Table 4 
Standard Deviations, Correlations, and Product Portfolio Variance Minimizing 
Hedge Ratio of Liabilities at t = 1 
 
probability probability standard deviation of correlation of portfolio variance 

model for liability at t = 1 liabilities at t = 1 minimizing hedge ratio
 scenario 1    of contracts 

j 1
jp  Std(zTL,Ŝ) Std(zA,Ŝ) Corr(zTL,Ŝ , zA,Ŝ) lTL / (lTL+lA) · 100% 

1 1.00 0 0 n/a n/a 
2 0.95 0.052 0.010 -0.994 15.82% 
3 0.90 0.074 0.014 -0.993 15.82% 
4 0.80 0.105 0.020 -0.999 15.91% 
5 0.60 0.147 0.028 -0.998 15.97% 

 
Table 4 shows that for all probability models, life insurance TL is more 
volatile than annuity A. This effect is mainly caused by the different impacts 
that the shifts in life expectancy have on the probability of the respective event 
insured.18 To minimize product portfolio risks, for alternative demographic 
probability models, approximately 16% of the whole portfolio should consist 
of life insurance business. 
 
To help determine an exact relationship between the solvency situation and 
insurance demand there is, unfortunately, only little experimental research 
                                                 
18  In the life insurance business, the low probability event is insured. For example, the 

probability of dying during the first contract year (at age 35) is 0.0015. According to our 
model, a decline in mortality decreases this probability to 0.0012. That is, the probability 
of the event insured changes by –20%, which changes the market value of the contract 
significantly (compare Table 3). In the annuity business, it is the high probability event 
that is insured. For example, the probability of surviving the first contract year (at age 65) 
is 0.9924. Here, the decline in mortality changes the survival probability to 0.9937, which 
is only a change of +0.13% in the probability of the event insured, resulting in a rather 
low change in market value. (Note that although annuity payments in the very distant 
future are low probability events, too, these payments contribute only little to the market 
value because they are heavily discounted.) 
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(Wakker et al., 1997) and none with a focus on the demand for life 
insurance.19 Because of this lack of quantitative foundation, we set the 
demand-reaction parameters qTL = qA = q, and vary q from 0 to 9 to track the 
consequences for the optimal risk management mix when we move from an 
entirely inelastic (q = 0) to a very elastic market that reacts to every percent of 
ruin probability by a 9% reduction in demand.20 The maximum market sizes 
nTL and nA are both set to 100 contracts.21 
 
Solving technique 
The high endogeneity and complexity of our model makes it necessary to 
solve it numerically. As a solution technique we use a mixed integer linear 
programming approach. To apply this technique, we had to approximate the 
continuous distribution of the stock market return by some finite discrete 
probability distribution and adjust the risk-neutral measure accordingly. 
 
Results 
The situation without demographic risk 
In a situation without demographic risk, the liability per contract at t = 1 is 
deterministic and equals 1.05 € for both product types. Product policy does not 
influence the volatility of the insurer’s equity at t = 1 and, therefore, neither 
does it influence the insolvency put option (IPO) value or the insurer’s 
solvency situation. Hedging between product types is not possible. In such a 
situation, it is always optimal to maximize the number of products sold (i.e., 

                                                 
19  Empirical studies (Cummins and Sommer, 1996; Sommer, 1996; Cummins and Danzon, 

1997; Phillips et al., 1998) reveal that there is a negative relationship between the 
solvency situation and potential insurance buyers’ willingness to pay, but provide no 
explicit functional relationship. 

20  Compared to the value of an about 30% reduction in willingness to pay if there is a 1% 
probability that the insurer will not pay, as reported for fire insurance by Wakker et al. 
(1997), demand elasticities between 0 and 9 may seem rather low. However, it must be 
taken into consideration that, in contrast to Wakker et al. (1997), we do not assume that 
an insurer’s insolvency is equivalent to total default of liabilities. Therefore, the Wakker 
et al.’s values cannot be used as input parameters. In our model, potential insurance 
buyers react to the probability that there is any positive default at all, which also includes 
partial defaults. Our calculations showed that the expected default per 1 € of liability is 
almost always smaller than 1/6. We thus chose the range for the reaction parameter at 
around 1/6 of the value given by Wakker et al. (1997). 

21  The model can be scaled arbitrarily in this number. 
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revenues) for any ruin probability given (as far as admitted by the demand 
reaction). Consequently, this also holds for the shareholder value (SHV) 
optimal ruin probability given at the optimal trade-off point (maximizing the 
IPO vs. maximizing loadings). This leads to a liability portfolio composed of 
50% term life insurance and 50% annuity business, which results from the 
assumed symmetric market structure. The optimal risk management mix and 
the resulting optimal values of dependent variables are given in Figure 2 as a 
function in the demand-reaction parameter q and the loading factor π. Figure 2 
illustrates the basic functioning of our model and the interrelations of various 
variables. First, in Figure 2a, the obvious negative relationship between SHV 
and the demand-reaction parameter q can be seen. The more strongly potential 
insurance buyers react to the solvency situation by refusing to buy insurance 
(i.e., the higher q), the less opportunities exist for the insurer to create SHV by 
exploiting insurance buyers. This effect is also evident in Figure 2e, where the 
percentage share of SHV that stems from the IPO is plotted. Higher loadings 
also increase SHV, as can be seen from Figure 2a.22 Second, Figure 2d shows 
that the more strongly insurance buyers react to the solvency situation, the less 
risky the insurer’s firm policy (measured by the ruin probability) is. 
 
From the way the insurer controls its ruin probability the consequences of the 
discrepancy between its and the insureds’ behavior become apparent. 
Insurance buyers care only about the insurer’s ruin probability. For any ruin 
probability, the insurer who maximizes SHV then uses its risk management 
mix to optimize the IPO value. It turns out that on the continuum of possible 
risk management measures resulting in the same strictly positive ruin 
probability, it is optimal to invest 100% of the capital riskily and to insert the 
necessary amount of equity (see Figures 2b and 2c), instead of, e.g., inserting 
less equity and investing a proportion of the capital risk-free. Any substitution 
of equity in favor of risk-free investment is at the expense of the IPO value 
and, thus, the insurer’s SHV.23 Thus, equity capital is the preferred risk 
management measure. 

                                                 
22  Note that this holds only if insurance buyers do not react to the size of the load, which, in 

reality, will not generally be the case. Therefore, loading size must not be interpreted as a 
decision variable; rather, it is determined by a specific market condition. 

23  For example, for q = 3 and π = 1.005, the optimal equity to liability ratio is 0.219, which 
gives a SHV of 3.75 € when investing 100% of capital riskily (compare Figures 2b and 
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Figure 2 
The Situation Without Demographic Risk, p1 = 1.0—Optimal Risk Manage-
ment Mix and Resulting Optimal Values of Dependent Variables 
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Note that for the cases where the ruin probability is zero, the amount of equity is optimal at 
and above the value plotted. 

                                                                                                                                           

2c). Holding the ruin probability constant at 16.5% (compare Figure 2d) while reducing 
the equity to liability ratio to, e.g., 0.014 and investing instead only 10% of capital riskily 
gives a SHV of 0.78 €, i.e., a drop of 79.2% (in both cases the insurer sells about 50.6 
insurance contracts of each type; compare Figure 2f). 
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The ruin probability (Figure 2d) is negatively related to the loading factor, 
since higher loadings increase the incentive to create SHV from loadings 
rather than from the IPO. This effect is also seen in Figure 2e, where the IPO 
value to SHV ratio is shown, and in Figure 2b, where the insurer (except for 
the case where π = 1.05) increases safety by inserting more equity the higher 
the load is in order to sell more contracts (see also Figure 2f). 
 
If loading factors are high enough (π = 1.05), the insurer chooses a ruin 
probability of 0% (compare Figure 2d), sells the maximum possible number of 
contracts (= nTL + nA), and thus maximizes loadings collected. SHV creation 
via the IPO value becomes a dominated strategy. The insurer does not insert 
any equity capital at all and invests 100% risk-free. Note that in these cases, 
investing 100% risk-free is only a degenerate solution of our optimization 
problem: There are also lower fractions of risk-free investment that lead to the 
same optimal SHV (leaving the ruin probability unchanged at 0%).24 This 
demonstrates that the insurer cannot create SHV by merely allocating assets. 
Because of the risk-neutral evaluation of capital market returns by E*, asset 
allocation does not influence SHV if the ruin probability is 0%. 
 
The situation with demographic risk 
Introducing demographic risk makes liabilities stochastic and natural hedge 
opportunities arise (see Table 4). Surprisingly, however, hedging in the 
product portfolio does not occur. Again, the insurer sells as many contracts as 
possible at the chosen ruin probability and the product portfolio composition is 
50:50 instead of, e.g., the liability portfolio standard deviation minimizing 
term life insurance to annuity ratio of about 16:84. 
 
In a frictionless neoclassical model framework it is well known that hedging is 
irrelevant (see, e.g., Doherty, 2000, chapters 5 and 7). Our model introduces 
the friction that insurance buyers explicitly reward a risk-averse firm policy, 
i.e., a firm policy that leads to a low ruin probability, by buying insurance 
contracts with (for the insurer) positive net present values. In this case, it turns 
out that hedging is far from being irrelevant: it even destroys shareholder 

                                                 
24  For example, for q = 9 and π = 1.05, sensitivity analysis shows that risk-free investment 

can be lowered to 90% of total capital. 
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value. This is because product hedging, i.e., controlling the ruin probability via 
product policy, is an expensive risk management measure compared to 
providing equity capital (and allocating 100% of assets to risky investments). 
Product hedging implies a deliberate reduction of revenues, which means 
forgoing positive net present value opportunities. Certainly, hedging leads to a 
lower ruin probability, which increases market demand, but in order to reach 
the desired hedge ratio, the insurer will not sell as many contracts as possible 
for each product type. Therefore, to obtain a desired ruin probability, inserting 
more equity is always the optimal risk management measure because at this 
reduced ruin probability, the insurer can sell as many contracts as possible for 
each product type.25/26 
 
The effects of loadings and the demand-reaction parameter on the optimal risk 
management mix and SHV are very similar for all probability models of 
demographic risk. Figure 3 gives the results for an example case of p1 = 0.6. 
 

                                                 
25  A simple example for the case q = 9 and π = 1.05 and p1 = 0.6 illustrates this. Assume 

that the insurer has a fixed equity capital of 2 €. As will be shown in the next subsection, 
in this situation the insurer optimally chooses a ruin probability of 0%, asset allocation of 
100% risk-free investment, and sells 61.3 term life insurance and 100 annuity contracts 
(compare Figure 4l). The hedge ratio is 61.3 / 161.3 · 100% = 38%. This creates a SHV of 
about 8.07 €. The same ruin probability can be reached by increasing equity to 20 € and 
allocating 100% of assets risk-free. Then the insurer sells the maximum possible 100 
contracts for each product type, which creates a SHV of 10 € (compare Figure 3). 

26  The no-hedging result is stable with respect to the assumed market structure (here, the 
same maximum demand of 100 for both products). In our calibration, not selling the 
maximal number of contracts for a given ruin probability is always suboptimal compared 
to inserting equity. Therefore, given, e.g., a market structure of maximal demands for life 
insurance of 16 and for annuity business of 84 (replicating the standard deviation minimal 
hedge ratio), the insurer would sell products in a proportion of 16:84. Therefore, what 
may look like hedging actually is not. This no-hedging result should also be stable with 
respect to changes in the life table, i.e., the exact kind of demographic risk we are 
examining in this article, since the insurer does not even use the relatively good hedging 
opportunities given by our calibration (hedging opportunities would be worse if changes 
in the one-period survival probabilities occur only within a certain age range, e.g., are 
only relevant for the subpopulation older than 65). 
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Figure 3 
The Situation with Demographic Risk, p1 = 0.6—Optimal Risk Management 
Mix and Resulting Optimal Values of Dependent Variables 
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Note that for the cases where the ruin probability is zero, the amount of equity is optimal at 
and above the value plotted. 
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When comparing the alternative assumptions for the demographic probability 
model, the insurer’s optimal decisions vary slightly, but—due to the 
complexity of the stochastic environment and the insurer’s high level of 
flexibility in adapting the risk management mix—no clear tendencies can be 
identified. The next subsection, where the insurer has fewer options, i.e., no 
flexibility in the amount of equity, will reveal the influence of alternative 
demographic probability models. 
 
The situation with demographic risk and fixed equity capital 
The preceding two subsections demonstrated that if equity is unrestricted, 
inserting equity capital and investing capital—depending on the loading 
factor—either 100% or 0% riskily are the insurer’s preferred risk management 
measures. With equity fixed below the optimal value, only the asset allocation 
and the size and composition of the liability portfolio remain as risk 
management measures. Now there are parameter constellations where an 
explicit product policy, i.e., the utilization of natural hedging opportunities, is 
optimal. Figure 4 shows the liability portfolio composition, represented by the 
percentage invested in the term life insurance product TL, as a function in the 
fixed equity given, the loading factor, and the demographic probability model. 
The demand-reaction parameter is set to q = 9. Since TL is more volatile 
(compare Table 4), numbers below 50% indicate hedging.  
 
Figure 4 shows that if the insurer is restricted in the amount of equity, it uses a 
risk-reducing product policy, i.e., hedging as a risk management measure.27 In 
Figures 4f–4l it can be seen that the less equity the insurer has, the more it is 
induced to hedge, because equity is insufficient to reach an optimal solvency 
situation. Given that demographic risk is comparatively high (Figures 4g–4l), 
hedging becomes less pronounced the higher the loading factor is. There are 
two reasons for this result. First, high loading factors are a source of additional 
equity. Second, high loading factors create stronger incentives to increase 
revenues instead of using product policy as a risk management measure. In the 
case of relatively low demographic risk (Figures 4a–4f), the situation is more 
difficult to explain because of the complex interplay of the risk management 
                                                 
27  For the loading factor of 1, results are omitted because in this situation hedging destroys 

the only source of SHV creation, the IPO, and thus is always a dominated risk 
management measure. 
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measures available. Here, hedging occurs only within a certain range of the 
equity. This range becomes wider the higher the loading factor and the higher 
the demographic risk. To understand this “range” effect, one has to look at the 
insurer’s whole set of optimal decisions simultaneously. This is done in Figure 
5 with the parameter constellation used for Figure 4c (i.e., Figure 4c is the 
same as Figure 5e). 
 
Figure 4 
The Situation with Demographic Risk, q = 9—Optimal Liability Portfolio 
Composition (% Invested in TL) 
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Figure 5 
The Situation with Demographic Risk and Fixed Equity Capital, q = 9, π = 
1.05, p1 = 0.95—Optimal Risk Management Mix and Resulting Optimal 
Values of Dependent Variables 
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As can be seen from Figure 5a, the optimal equity in this parameter 
constellation is given at and above E0 = 10 €. Below that value, the insurer’s 
suboptimal solvency situation leads to hedging (Figure 5e), which reduces 
revenues (Figure 5f). The asset allocation stays at 100% risk-free investment. 
Reducing the equity further enhances hedging until equity falls below E0 = 5.4 
€. From there on, the entire risk management mix changes. The insurer stops 
hedging and invests some part of its capital riskily (Figure 5d). Here, the 
trade-off situation between creating SHV by skimming loadings and 
maximizing the IPO value alters the decision in favor of the IPO value (Figure 
5b) by choosing a ruin probability greater than zero (Figure 5c). 
 
The optimal decisions this trade-off situation leads to also depend on the 
demand-reaction parameter q. With an absolute inelastic demand (q = 0), it is 
clear that the insurer has no incentive to hedge. If demand becomes elastic (q 
> 0), insurance buyers reward a safe firm policy. Therefore, hedging 
incentives are the stronger the higher q is. This effect is shown in Figure 6. 
Here, for the alternative probability models for demographic risk the 
parameter q is varied while fixing the loading factor π at 1.05 and equity at E0 

= 1 € (for the hedge ratio at q = 9, compare Figures 4c, 4f, 4e, and 4i). 
 
Figure 6 
The Situation with Demographic Risk, π = 1.05, E0 = 1 €—Optimal Liability 
Portfolio Composition (% Invested in TL) 
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For every alternative probability model for demographic risk there is one q at 
which a jump in the optimal product portfolio composition occurs and the 
insurer switches from no hedging to hedging. The higher the demographic risk 
(i.e., the lower p1), the lower is the value of q at which the risk management 
mix changes. This is because the higher the volatility of the insurer’s liabilities 
(compare Table 4), the higher is the influence of the product portfolio on the 
insurer’s solvency situation, which cannot be compensated for by inserting 
equity (as equity is restricted). Thus, already at a smaller value of q it pays to 
switch to a less risky product policy, i.e., to hedge. The hedge ratio itself goes 
up with increasing demographic risk, i.e., for higher demographic risk the 
insurer hedges less. This finding is based on the fact that in our calibration 
with increasing demographic risk, the standard deviation minimal hedge ratio 
also increases, i.e., less hedging is necessary (compare Table 4). For low 
demographic risk, i.e., for p1 = 0.95, no hedging is optimal in the given 
parameter constellation. 
 
The consequences of falsity 
As explained in the calibration subsection, there is very little research 
available on the probability distribution underlying demographic risk. 
Therefore, in the following we investigate the consequences on the insurer’s 
SHV if—before the actual life table scenario realizes—it turns out (e.g., by 
publication of a new study) that the assumption on the scenario occurrence 
probabilities and, thus, the liability vectors zTL and zA were wrong, but it is too 
late for the insurer (and the insurance buyers) to react to this new 
information.28 To do this, as before, we calculate the insurer’s SHV and 
optimal policy (αf

*, αR
*, lTL

*, lA
*, E0

*) under a certain assumption on the 
scenario occurrence probabilities. Then, we adopt an alternative probability 
model, adjust the vectors zTL and zA, and—leaving the applied policy 
unchanged—calculate the new SHV using the maximand from the right hand 
side of Equation (2). Last, we compare the new SHV with the initial SHV.29 
To keep things simple, we assume that there are no other possible distributions 
of Ŝ than those we gave in Table 2. For the example case where π = 1.05  
                                                 
28  We thus are at a point in time somewhere between t = 0 and t = 0+ . However, to avoid 

notational inflation, we will say that we are at t = 0. 
29  We performed the same analysis for the situation with fixed equity. The results showed 

the same tendencies. 
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and q = 6, Table 5 contains the percentage changes in SHV that occur at t = 0 
if we use distribution { }1 1 1

1 2 3, ,j j jp p p  instead of the true distribution 
{ }2 2 2

1 2 3, ,j j jp p p  for our calculations. 
 

Table 5 
The Situation with Demographic Risk, π = 1.05, q = 6—Percentage Changes 
in the Insurer’s SHV If the Wrong Scenario Distribution { }1 1 1

1 2 3, ,j j jp p p  Was 
Used Instead of True Distribution { }2 2 2

1 2 3, ,j j jp p p  
 

probability model 
used in 

true probability model 

calculations j2 1 2 3 4 5 
j1 1

1
jp  2

1
jp  1.00 0.95 0.90 0.80 0.60 

1 1.00  - 0.97% 2.64% 3.92% 6.66% 
2 0.95  -0.93% - 1.67% 2.93% 5.65% 
3 0.90  -2.57% -1.64% - 1.22% 3.87% 
4 0.80  -3.72% -2.82% -1.24% - 2.75% 
5 0.60  -6.19% -5.31% -4.25% -2.61% - 
 

The general tendency is clear: the larger the error in the supposed probability 
model, the larger the change in SHV. The relative changes vary from a 6.19% 
drop to a 6.66% increase in the insurer’s SHV. Drops will occur in those cases 
where the new information on the scenario distribution reports a downward 
correction in the deviation probability, i.e., demographic risk was 
overestimated ( 1 2

1 1
j jp p≤ ). This effect is mainly caused by the lower volatility 

of the insurer’s equity at t = 1 (Ê1), which stems, on the one hand, from a drop 
in volatility of Ŝ and, on the other hand, from a drop in the volatility of the 
liabilities themselves (see Table 4). Analogously to standard option pricing 
theory, this leads to a drop in the IPO value and therefore—as premium 
income remains constant—in the insurer’s SHV. Thus the insurer suffers from 
a simultaneous overestimation of the volatility of its equity at t = 1. Contrarily, 
the volatility of the insurer’s equity at t = 1 and, thus, SHV go up when it turns 
out that, at the time insurance contracts were underwritten, demographic risk 
was underestimated ( 1 2

1 1
j jp p≥ ).30 In this case, insurance buyers pay the bill 

                                                 
30  The consequences of using a suboptimal risk management mix per se are not clear. As 

both insurer and insurance buyers were wrong, the resulting ruin probability and number 
of contracts to be sold after the new probability model becomes public may be outside the 
feasible region of the optimization problem so that the error in the occurrence probability 
model does not necessarily lead to a loss for the insurer. 
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because they underestimated the resulting volatility of the insurer’s equity and, 
thus, interpreted its solvency situation too optimistically. 
 
It is important to note that because of the lack of research on the appropriate 
probability model, any model chosen that assigns some strictly positive weight 
to deviations from the current life tables may turn out to be either an 
underestimation or an overestimation of demographic risk. Thus, a priori, in 
the case of model error, it is not clear who will bear the consequences, since 
the actual direction of a possible misspecification is known only ex post.  
 
Conclusions and Directions for Future Research 
Our analysis revealed that the presence of demographic risk has a fundamental 
impact on the optimal risk management mix of a shareholder value 
maximizing life insurer operating in a market with insolvency-averse 
insurance buyers. In the situation where inserting equity capital, asset 
allocation, and product policy are the available risk management measures, it 
was found that the insurer prefers adjusting the amount of equity inserted as a 
way of coping with demographic risk. This measure is generally found in 
combination with allocating 100% of capital to risky investments and 
underwriting as many contracts as possible in each product line, thus avoiding 
shareholder value destructive product hedging. The risk management mix 
changes if the amount of equity capital available is scarce. In that case, 
product policy, i.e., the utilization of natural hedging opportunities between 
term life insurance and annuity contracts, can be shareholder value 
maximizing. The exact hedging strategy was shown to depend simultaneously 
on the amount of equity available, the degree of insurance buyers’ insolvency 
aversion, the loading factor, and the demographic probability model. A 
misspecification of the demographic probability model turned out to have a 
significant impact on either the insurer or the insured: either the insurer 
benefits financially from an underestimation of demographic risks and the 
insured suffers a financial loss, or vice versa. 
 
In Germany, the empirically found equity to liability ratio of life insurers is 
about 1.4% (German Insurance Association, 2004). This fact indicates the 
practical relevance of our contribution. If demographic risk is found to be 
sufficiently high and/or insurance buyers react rather strongly to the insurer’s 
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solvency situation, within our model, a ratio of 1.4% probably would lie 
within the range where either inserting higher amounts of equity or, if this is 
not possible, product hedging will be appropriate. To answer the question of 
the actual magnitude of demographic risk, however, further research is 
necessary and should be of high priority for both the insurance industry and 
policyholders, as both parties can suffer significant losses in the case of a 
wrong perception of demographic risk. 
 
Another direction for future research is the introduction of mortality bonds 
(Blake and Burrows, 2001; Dowd, 2003; Blake, 2003) as a further risk 
management measure into our model framework. We expect that if arbitrage-
free priced mortality bonds without any basis risk (i.e., cost-free perfect 
hedging instruments) were available and the insurer’s equity was restricted 
mortality bonds might indeed be useful instruments because revenue-reducing 
product hedging could be avoided. In case mortality bonds bring about some 
basis risk, a combination of product hedge and mortality bonds could emerge 
as an optimal risk management mix. However, introducing mortality bonds 
into our model as an additional decision variable would further increase the 
complexity of the underlying optimization problem.31 
 
The model could be extended by considering regulatory requirements, e.g., on 
the equity capital, asset allocation, ruin probability, or expected policyholder 
deficit. Another extension could be the inclusion of transaction costs for 
structuring the liability portfolio, which will be especially important in cases 
where the insurer starts with an initial portfolio of insurance contracts. Finally, 
the observed sensitivity of the insurer’s optimal risk management mix with 
respect to the degree of potential insurance buyers’ insolvency aversion 
highlights the importance of further research in the area of consumer behavior 
in life insurance markets. 

 

                                                 
31  In particular, analysis of a case where the insurer can decide on the issuance of such 

bonds would be a nontrivial task. If the bonds were priced arbitrage-free by market 
participants, the price would also need to reflect the insurer’s insolvency risk. However, 
since in our model this risk is subject to the insurer’s decision, another endogeneity would 
be created. 
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