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ABSTRACT 

Protein sequence profile prediction aims to generate multiple sequences from structural 

information to advance the protein design. Protein sequence profile can be computationally 

predicted by energy-based method or fragment-based methods. By integrating these methods 

with neural networks, our previous method, SPIN2 has achieved a sequence recovery rate of 

34%. However, SPIN2 employed only one dimensional (1D) structural properties that are not 

sufficient to represent 3D structures. In this study, we represented 3D structures by 2D maps of 

pairwise residue distances. and developed a new method (SPROF) to predict protein sequence 

profile based on an image captioning learning frame. To our best knowledge, this is the first 

method to employ 2D distance map for predicting protein properties. SPROF achieved 39.8% in 

sequence recovery of residues on the independent test set, representing a 5.2% improvement over 

SPIN2. We also found the sequence recovery increased with the number of their neighbored 

residues in 3D structural space, indicating that our method can effectively learn long range 

information from the 2D distance map.  Thus, such network architecture using 2D distance map 

is expected to be useful for other 3D structure-based applications, such as binding site prediction, 

protein function prediction, and protein interaction prediction. 
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1. Introduction

Computational protein design attempts to design a protein sequence that will fold into a 

predefined structure to perform a desired function. The motivation of studies in this area is not 

only to supplement, modify, or improve the function of wild-type proteins but also to improve 

our fundamental comprehension of the relationship between protein sequences, structures, and 

functions. The past three decades have witnessed significant progress in de novo protein design 1. 

More recently, by using Rosetta package, Silva et al. designed potent and selective mimics of 

anti-cancer drugs IL-2 and IL-15 2. Such advances have shown the potential to design novel 

proteins for diagnostic, therapeutic, and industrial purposes. While significant progress has been 

made, existing protein design approaches remain low success rates 3. This has led to efforts on 

building a library of designed sequences, or sequence profiles (sequences randomly generated by 

specific probabilities of 20 standard amino acids at each site) for guiding experimental screening 

or directed evolution 4-7. 

Typically, protein sequences or sequence profiles can be generated by applying mutations on a 

random sequence iteratively to minimize its folding free energy with proper optimization 

algorithm 8-12. However, the search of global minima is not guaranteed since it’s an NP-hard 

combinatorial optimization problem 13. To explore the possibility of more computationally 

efficient protein design methods, Dai et al. proposed a fragment-based method by searching 

structurally similar fragments from known protein structures 14, 15. For a given target protein 

structure, the sequence profile obtained from structurally similar fragments shows high similarity 

to its sequence. This fragment-based method is of high computational efficiency but a lack of 

information on non-local residue interactions (close in three-dimensional structure but not in 

sequence). Li et al employed a knowledge-based scoring function to compute residue specific 
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energy values according to 3D structures, and integrated them with the profiles derived from 

fragments into neural networks16. The developed SPIN method by training neural network with 

the local (e.g. fragment-derived) and nonlocal (e.g. energy-based) features achieved a sequence 

recovery of 30%. Later, the sequence recovery was improved to 33% by using a deep learning 

method 17. At the same time, SPIN2  18, an updated version of SPIN, was also developed by 

utilizing deep learning network with additional features, slightly improving the sequence 

recovery to 34.4%. However, all these prediction methods utilized only 1D structural properties 

that are not sufficient to represent 3D structures. 

In order to make a full use of protein 3D structural information, a few studies attempted to 

input the whole 3D structural information into a 3D-Covolutional Neural Network (3D-CNN) for 

different biological problems, such as protein-ligand scoring prediction 19, protein-binding site 

prediction 20,  side chain conformation prediction 21, and quality assessment of protein folds 22. 

However, it remains challenging to train an accurate 3D-CNN network from  the large number of 

redundant variables involved in the highly sparse 3D matrix  with the limited number of 3D 

structures deposited in the protein data bank (PDB). 

On the other hand, it was well known that 3D structure can be alternatively represented by the 

2D contact map, which simply shows whether distance of each residue pair is below a threshold 

(usually 8Å). For example, Skolnick et al. stated that their algorithm was able to successfully 

fold a small protein even with a small portion of  inter-residue contacts 23. Many recent reports 

showed that predicted contact map could even produce high-quality 3D protein structures24.  

Moreover, the 2D contact map is an image that can be efficiently processed by modern deep 

learning techniques, and the prediction from 2D contact maps to sequence profiles is similar to 

the image captioning problem 25 
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There exists to be a few differences with traditional image captioning tasks. First, classical 

image captioning tasks take input of only a single 2D image, while our inputs include both 2D 

distance maps and 1D structural features. Second, in image caption scenarios, images are often 

preprocessed to a fixed size, but our distance maps can’t be resized because each pixel represents 

exactly one residue pair, and residues far in the sequence might be neighbored in 3D space. Third, 

the target output of image captioning task is a sentence whose length is irrelevant with input, 

while our input distance map is of size L × L where L is equal to length of our target output 

(L × 20). 

Inspired by the image captioning tasks, we have designed a novel network architecture 

coupling bidirectional long short-term memory (BiLSTM) with self-attentional 2D-convolution 

neural networks (CNN) to predict protein sequence profile, namely SPROF method. The deep 

neural network can process both 1D structural properties and a 2D distance map reflecting the 

continuous distances between residue pairs. To our best knowledge, this is the first study to 

utilize a 2D distance map for structure-based prediction of protein properties. The SPROF 

method achieved sequence recovery rates of 39.8% on the independent test set, which is 

significantly higher than 34.6% achieved by the SPIN2 method trained from only 1D structural 

features. Further analysis indicated that the improvement was mostly contributed by residues 

most contacted with other residues, suggesting that the inclusion of 2D distance map can 

efficiently capture long-range contacted information. Therefore, such network architecture to 

utilize 2D distance map is expected to be useful for other 3D structure-based applications such as 

binding site prediction, protein function prediction, and protein interaction. 

2. Materials and Methods

2.1 Datasets 
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Since training deep learning network requires a large number of training samples, we 

employed the dataset curated in 2017, as used in our previous study 26. The dataset is consisted 

of 12450 non-redundant chains with resolution < 2.5Å, R-factor < 1.0, sequence length ≥ 30, and 

sequence identity ≤ 25% from the cullpdb website.  Among them, 11200 chains deposited before 

Jun 2015 were selected as training set and the remained 1250 were used as an independent test 

set.  

From this dataset, we removed long chains with ≥500 amino acids because the required 

memory for learning is over the 12GB memory limitation by our used Graphics Processing Unit 

(GPU) Nvidia GTX 1080 Ti. Finally, we kept a dataset of 7134 chains for training and 922 

chains for the test, namely TR7134 and TS922, respectively. 

2.2 Features Extraction 

Our input features include both 1D structural features and 2D distance maps. The 1D structural 

features include 150 features that are similar to those used in SPIN2 18. For completeness, we 

make a brief introduction on the 1D features. 

1D structural features: The 1D structural features can be divided into four feature groups: the 

secondary structures (8), cosine and sine values of backbone angles 𝜙, 𝜓, θ , ω, 𝑎𝑛𝑑 𝜏 (10), local 

fragment-derived profiles (20), and the global energy features (112), namely GF_SS, GF_AG, GF_FRAG, and GF_ENERGY, respectively. GF_SS are one-hot DSSP codes for eight-state protein 

secondary structures (C, G, H, I, T, E, B, S). GF_AG are sine and cosine values of 5 backbone angles 𝜙, 𝜓, ω, θ, and 𝜏 at each given position, where 𝜙, 𝜓, and  ω are three main-chain dihedral angles 

rotated along  𝑁 − 𝐶𝛼, 𝐶𝛼 − 𝐶, and 𝐶𝑖 − 𝑁𝑖+1 bonds, respectively, 𝜏 is dihedral angle based on 

four neighboring Cα  atoms 𝐶𝛼𝑖−1 − 𝐶𝛼𝑖 − 𝐶𝛼𝑖+1 − 𝐶𝛼𝑖+2 , and θ  is angle intervening 𝐶𝛼𝑖−1 −𝐶𝛼𝑖 − 𝐶𝛼𝑖+1 . GF_FRAG  are the probabilities of 20 standard residue types at each position
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estimated from structurally similar fragments 15. GF_ENERGY are the interaction energies of 20 

standard residue types at a selected position with the rest of the backbone positions occupied by 

the alanine residue. The energies are computed by using the DFIRE statistical scoring function 27 

based on preferred backbone states-dependent side-chain conformations as defined in the bbdep 

rotamer library 28. If one residue type has >6 rotamers, only 6 most frequent rotamers were 

chosen. We also used the lowest energies among all rotameric states for each residue type. 

Finally, this generated a total of 112 (=(6+1)×13+(3+1)×4+(2+1)×1+1×2) energy features. 

Different from SPIN2, we didn’t utilize distances between atoms within the same residue or 

belonging to neighbored residues since they might include residual information in the force field 

during the determination of protein 3D structures according to experimental data. 

2D distance maps: In addition to the 1D structural features used by SPIN2, we derived an 

input feature of 2D distance matrix S (namely distance map) with its elements 

𝑠𝑖𝑗 =  21 + max (𝑑0, 𝑑𝑖𝑗)𝑑0 (1) 

where 𝑑𝑖𝑗 is the distance between 𝐶𝛼 atoms of residues i and j, and 𝑑0 was set 4.0 Å, as also 

used in definition of  the SP-score 29. This conversion of distance ensures a score ranging from 0 

to 1, with a good discrimination for distances between 4 and 8 Å. We did not use exactly the 

same formula as SP-score (𝑑𝑖𝑗2  used in SP-score) since it produced slightly worse results (results

not shown). 

2.3 Deep Learning Method 

The 2D distance map can be viewed as a special image, with the prediction of protein sequence 

profile to be producing an image caption for the 2D distance map. Inspired by the image 

captioning learning architecture, we have designed a deep learning networks coupling RNN and 
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CNN to extract features from 1D and 2D features, respectively. As shown in Figure 1A, a self-

attentional ultra-deep residual convolutional Neural Network (ResNet-CNN) 30 encoded the 2D 

distance map into a vector representation, which was then concatenated with our 1D structural 

features, and fed into an RNN module to generate a protein sequence profile. 

CNN module：CNN has demonstrated superior performance in image tasks because of its 

implementation of shift, scale, and distortion invariance through local receptive fields, shared 

weights, and sub-sampling. Though the representation depth of CNN is beneficial for the 

classification 31, the vanishing gradient problem has become a major obstacle to increasing the 

depth of CNN. In 2015, He et al. proposed ResNet, an ultra-deep residual Neural Network to 

solve the vanishing gradient problem by employing shortcut connection between outputs of a 

current and its previous layers. 30. Considering that distance map was composed of sparse residue 

pairs with short distances that play important roles in spatial structures, we also employed a self-

attention mechanism to learn a weight tensor for paying more attention to those important 

regions 32. Overall, we have chosen the ResNet with self-attention mechanism for encoding the 

2D distance map. 

RNN module: The features from the CNN module and 1D structural features were 

concatenated together and fed into a bidirectional Long Short-Term Memory Recurrent Neural 

Network (LSTM-BRNN) to generate the protein sequence profile. Unlike standard feedforward 

neural networks, RNN retains a state that can represent information from an arbitrarily long 

context window 33. However, traditional RNNs have no ability to learn long-range dependencies 

as a result of gradient vanishing problem. To overcome this problem, Hochreiter and 

Schmidhuber proposed the LSTM technique 34 using carefully designed nodes with recurrent 

edges of fixed unit weight as a solution 35. Later, RNN with bidirectional LSTM to exploit both 
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preceding and following dependencies was proposed and has been proved to outperform 

unidirectional ones in framewise phoneme classification 36. Currently, LSTM-BRNN has been 

widely used in many bioinformatics studies 37, 38. 

2.4 Neural Networks Implementation Details 

In SPROF, 2D distance map (L × L with L as the protein length) was encoded by the self-

attentional ResNet into sequential tensors (L × 64), and then concatenated with 1D structural 

features (L × 150). The concatenated features (L × 214) were fed into a bidirectional LSTM to 

generate a decoded tensor of L × 128. Finally, a series of Fully Connected (FC) layers and 

activation layers conducted nonlinear-transformations on the output of bidirectional LSTM to 

obtain a prediction result of (L × 20), which represented possibilities of 20 amino acid types on 

each sequence position.  

Our self-attentional ResNet module is composed of a series of residual blocks (Figure 1B) and 

a Self-attention Block (Figure 1C). 

Residual block: Our residual block employed Exponential Linear Unit (ELU) as activation 

layer instead of Rectified Linear Unit (ReLU) used by typical residual blocks. The ELU 

activation function was shown to be more effective than standard ReLU for learning in the 

ResNet 39. Furthermore, before each activation layer, regularization was applied to the network 

through the use of batch normalization 40. Considering the limitation by the used GPU memory 

size (12GB), we employed 30 ResNet blocks (30×2=60 convolution layers) in our final model. It 

should be noted that a smaller window size with more number of layers is beneficial for 

performance of CNN 31. Thus, the kernel size of two convolution layers in each residual block 

was chosen as 5 × 5 or 3 × 3 respectively. 



10 

Figure 1. The neural network layout of SPROF with (A) illustrating the overall network 

architecture of SPROF, where L is the length of protein sequence; (B) showing details of the 

residual block, where  𝑁𝑖𝑛 is the number of input layers, 𝑁𝑓 represents the number of kernels in 

each convolution layer; (C) indicating the structure of the multi-head self-attention block, where 𝑁𝑎 represents the number of parallel attention layers, and  𝑁ℎ  is the number of hidden states 

between two Fully-Connected (FC) layers ( chosen as 50 here). 
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Self-attention Block: In order to extract a weight tensor to focus on important regions, we 

adopted self-attention mechanism with a self-attention block as shown in Figure 1C. This block 

converts feature-size into L × 64, so that it can be concatenated with sequential features of L × 150. The concatenated feature size is L × 214. 

To Handle Variable Length Inputs: Different from general image tasks that often preprocess 

images to the same size, protein sequence profile prediction has to handle proteins of variable 

sizes. Therefore, we had to design a CNN that could process inputs of variable sizes and ensure 

the output have a size equaling to its input. Finally, our neural networks don’t have pooling 

layers as CNN networks often do, and the output of the last residual block remains the same 

value (L) for width and height. 

Bidirectional LSTM: The input of our bidirectional LSTM is in size of L × 214 . The 

bidirectional LSTM module consists of 3 layers of bidirectional LSTM. In each layer, there are 

two independent LSTM representing two directions, respectively. Our LSTM cells consist of 64 

one-cell memory blocks, culminating in 128 hidden states for each bidirectional LSTM layer.  

Linear Layers: Our linear layers are fully connected. The first FC layer consist of 64 nodes 

plus a bias node with an ELU activation. The FC output layer has 20 output neurons and a 

sigmoid activation to convert the output into a likelihood of each amino acid type at each 

position (L × 20). 

Tools: We trained our model in the framework of Facebook’s PyTorch library (v0.4.0), which 

enables us to accelerate the model training on an Nvidia GeForce GTX 1080 Graphics 

Processing Unit (GPU). It has been shown that the use of a GPU for training a neural network 

can speed up by a factor up to 20 41. 
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Optimization algorithm and Dropout: Our model was trained with cross entropy as the loss 

function and ADAM algorithm for optimization 42. ADAM optimization algorithm is generally 

considered to be robust for the selection of hyperparameters and converges more quickly than the 

traditionally-used Stochastic Gradient Descent (SGD). We used a learning rate of 0.001 in this 

study. Furthermore, a 50% dropout rate was adopted at the output of the fully-connected layer 

during training to reduce overfitting 43. 

Hyperparameters Tuning by the Cross Validation: The architecture and hyperparameters 

were optimized by the 5-fold cross validation, where the training set was randomly divided into 

five different subsets.  Each time four of these subsets were used to train a model and the left one 

was used for the test.  This process was repeated for five times so that all five subsets were tested 

exactly once, and the average accuracy over five tests was used for the overall performance. 

With the hyperparameters achieving the best performance, the final model was trained on the 

whole training set, and tested on the independent test set. 

Evaluation: We evaluated the performance by the native sequence recovery that is the 

percentage of residues that were correctly predicted. A residue was considered to be correctly 

predicted if the wild type residue type has the highest value in the predicted profile for 20 residue 

type at the position.   

In addition, we also evaluated the performance for different types of residues, we calculated 

precision and recall for residue R as  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2) 

and 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3) 
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, where TP is the number of correctly predicted residues for type R, FP is the number of 

residues wrongly predicted as R, and FN is the number of incorrectly predicted residues of wild-

type R. 

3. Results

3.1 Model Selection and Feature Importance 

Table 1. Native sequence recovery rates achieved by the SPROF and its variants for 5-fold cross 

validation and independent test. 

Model TR7134 TS922 

SPROF a 39.9% 39.8% 

SPROF-noAtt b 39.0% 38.6% 

SPROF-CNN c 36.1% 36.3% 

SPROF-RNNd 33.9% 33.2% 

a The best performed model, detailed shown in Figure 1. 

b SPROF without self-attention block. 

c Using the CNN module without bidirectional LSTM module or input of 1D structural features. 

d Using the RNN module without self-attentional ResNet module or input of 2D distance maps.

Table 1 illustrates the performance of SPROF and its variants with different network 

architectures. SPROF achieved sequence recovery of 39.9% and 39.8% for the 5-fold cross-

validation (CV) and independent test, respectively. The consistent results indicate the robustness 

of the SPROF method. An exclusion of the self-attention block (SPROF-noAtt) caused a 

decrease of 0.9% in the CV and 1.2% in the independent test. The removal of RNN module and 
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1D structural features (SPROF-RNN) decreases the sequence recovery to 36.1% in the CV. The 

slight higher recovery percentage (36.3%) in the test set than the CV should result from random 

fluctuations. The greatest drop was from SPROF-CNN that excluded the CNN module and 2D 

distance map. This caused 6% and 6.6% drop of native sequence recoveries in the training set 

and independent test, respectively. The results demonstrate the benefits of utilizing the distance 

map features and image captioning method. 

Table 2. The comparison of sequence recovery after excluding one feature group from SPROF. 

Feature Excluded TR7134 TS922 

SPROF 39.9% 39.8% 

- distance map 33.9% 33.2% 

- GF_ENERGY 37.8% 38.0% 

- GF_FRAG 38.7% 39.1% 

- GF_SS 39.6% 39.5% 

- GF_AG 39.7% 39.6% 

It is of interests to see which type of features made the greatest contribution in the prediction. 

We excluded each type of features one-by-one to obtain five different feature sets for model 

training, and then compared the performance of each model. Table 2 shows the sequence 

recovery of these five models in the independent test set. As expected, 2D distance map features 

contributed the most in the sequence recovery (contributing 6.6% on independent test), followed 

by energy-based features (1.8%) that made the highest contribution in the SPIN2. The exclusion 

of fragment-based features made overall sequence recovery 0.7% lower, and the exclusion of 

secondary structure features or backbone torsion angles features also marginally decreased the 
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overall sequence recovery (0.3% and 0.2%, respectively). These results highlight the importance 

of distance map in our prediction model, which inspired us to employ distance map features on 

other 3D structure-based applications in future. 

3.2 Comparison with other methods 

Table 3. Overall sequence recovery comparison between SPIN2 and SPROF 

Method TS922 a Top2 Match b 

SPROF 39.8% 54.8% 

SPIN2 34.6% 49.4% 

a The percentage of mapped residues with the predicted on TS922. 

b Match of wild-type sequence to one of top 2 predicted residue types on TS922. 

We further made direct comparison with SPIN2 on the test set TS922. As shown in Table 3, 

there is over 5% consistent improvement from SPIN2 to SPROF in the native sequence recovery 

for both top 1 and top 2 matches. Since Wang’s method 17 is not available online, we can’t make 

a direct comparison. According to published results, SPIN2 and Wang’s method should be close 

because SPIN2 is over 4% higher than SPIN, while Wang’s method is about 3% higher than 

SPIN. 

We compared the performance of SPROF, SPROF-CNN, SPROF-RNN, and SPIN2 for 

proteins on TS922 with different lengths.  As shown in Figure 2A, SPROF consistently 

outperformed SPIN2 in all intervals and SPROF-CNN model is somewhere in between. SPROF-

RNN model is less accurate than SPIN2, likely because SPROF-RNN model excluded partial 

features employed by SPIN2. A direct comparison of the sequence recovery rates (Figure 2B) 

suggests that SPROF is significantly better than SPIN2 (P-value<10-99) according to the pairwise 
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t-test, where SPROF outperformed SPIN2 for 815 proteins, worse for 76 proteins, and tied for

the remained 31 proteins.  

For a given residue type, we compared the recall and precision score of SPROF and SPIN2 on 

TS922, as shown in Figure 2C and Figure 2D, respectively. SPROF outperformed SPIN2 in 15 

(75% of 20) amino acids types for recall and 17 (85% of 20) for precision.   

Figure 2. (A) The average sequence recovery rates of different length intervals by four methods; 

(B) the sequence recovery for each chain in TS922 by SPROF and SPIN2; (C) the recall and (D)

precision for different amino acids residue types by SPIN2 and SPROF over TS922. 
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To explore why SPROF outperformed SPIN2, we plotted the prediction accuracy of residues 

as a function of their contact number for different methods. The contact number was defined as 

the number of neighboring Cα atoms no farther than 13 Å from a given Cα atom. As shown in 

Figure 3A, SPROF and SPROF-CNN show an increase of prediction accuracy with the addition 

of neighbored residues. By comparison, SPROF-RNN and SPIN2 without using 2D distance map 

show a close to flat performances for all residues. This comparison indicated that the inclusion of 

2D distance map helps to capture information of residues contacted in 3D structure. 

Figure 3. (A) The accuracy for residues as a function of their contact numbers for SPROF and 

SPIN2; (B) the line plot of prediction accuracy for residues of different rASA intervals and 

binding or non-binding site on 357 chains (overlap with BioLip) of TS922. 

We also compared the prediction accuracies between binding and non-binding sites. By 

mapping the proteins of TS922 to those defined in BioLip 44, we generated a dataset of 357 

chains dataset. As shown in Figure 3B, the prediction accuracies of residues decrease with the 

relative solvent surface area, and the accuracy of binding residues is consistently lower than that 

of non-binding residues. This is as expected because buried residues maintain 3D spatial 
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structures, and binding residues are evolved mainly for protein function, and not necessary to be 

optimized for 3D structure. 

3.3 Case study 

Figure 4. The (A) 3D structure, (B) Distance map, and sequence logo generated by (C) SPROF 

and (D) SPIN2 for the precorrin-6A reductase cobK (pdbID: 5c4nD). For a clear look, only 

fragment 75-104 (red in the 3D structure) was shown in the sequence logo generated by SPIN2 

and SPROF. The wild-type sequence and indexes were provided in (E) with red, purple, green, 

and black for correct prediction of amino acids by SPORF only, SPIN2 only, both methods, and 

none, respectively. 
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To illustrate our method, we chose the precorrin-6A reductase cobK (pdbID: 5c4n chain D) for 

comparisons of methods. The protein chain contains 8 helical and 12 beta sheet fragments, 

totally 244 amino acids. For a clear look of the predicted sequence profile, we plotted sequence 

logos for fragment of residue index 75-104, the red part in the Figure 4A. SPROF and SPIN2 

achieved accuracies of 60% and 26.7% for the fragment, respectively. As shown in the Figure 4C 

and D, SPROF has made correct prediction for 11 amino acids (red amino acids in Figure 4E) 

that are not correctly predicted by SPIN2. A deep look indicates most of the amino acids in the 

list are hydrophobic (6 Alanine and 1 Valine). This result is consistent with our expectation 

because our method is better for predicting most contacted residues that are frequently 

hydrophobic amino acids. SPROF only misses one prediction (No. 96) that is correctly predicted 

by SPIN2. On this position, the native amino acid (Threonine) ranked the 3rd by our prediction. 

4. Conclusions and Discussions

This study highlights the power of applying image captioning method on 2D distance map for 

protein sequence profile prediction. We proposed a protein sequence profile prediction method 

SPROF which combined recurrent neural network, convolution neural network, and attention 

mechanism. SPROF has improved the native sequence recovery from 34.6% (previous method 

SPIN2) to 39.8% on our independent test set. The improvement is consistent regardless of 

proteins lengths, test sets (cross-validation and independent test), evaluation metrics (top1 and 

top2 matches, precision and recall score), or types of amino acids. We also trained a model by 

using only 1D structural features, which is significantly lower than SPROF with inclusion of 2D 

distance map. This is reasonable because distance maps are capable of indicating the 3D 

structural information of proteins. Designed by the inspiration of image captioning method, 

SPROF is capable of extracting these 3D structural information and thus obtains higher accuracy 
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for sequence prediction. Therefore, such network architecture applying image captioning method 

on 2D distance map is expected to be useful for other 3D structure-based applications, such as 

binding site prediction, protein function prediction, and protein interaction prediction.  

We have shown there is a significant difference of the native residue recovery between binding 

and non-binding residues, such profile may be employed for discrimination of functional 

residues. In addition, the generated sequence profiles have been proven beneficial for improving 

existing protein design and fold recognition techniques studies 14, 45, so our improved prediction 

of the sequence profile could advance the applications in future. 
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